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ABSTRACT Sperm motility measurement using computer assisted sperm analysis (CASA) has been
widely accepted as a substitute for manual measurement but still faces several challenges. In the tracking
phase, tracking errors caused by detection failure often occur when measuring fresh bull semen. Track-
ing errors occur for two reasons: (1) the sperm move very fast, which makes them appear blurry, and
(2) partial occlusion, which frequently occurs. This study proposes the mean angle of sperm motion and
Tracking-Grid to predict the position of the sperm that failed to be detected. The Tracking-Grid has also
been found useful in tracking fast-moving sperm. The proposed methods reduce identity switch (ID-switch)
and achieve a multi-object tracking overall accuracy (MOTAL) of 73.2. The MOTAL result exhibits 5%
less ID-switch and is 15.6 MOTAL points higher than state-of-the-art simple online and real-time tracking
with a deep association metric (Deep SORT). The speed achieved is 41.18 frames per second (fps), which
is 1.8 times faster than Deep SORT. In sperm motility classification, most researchers use one or several
CASA parameters with a static threshold value. Such a method is effective for motile-progressive sperm
classification but is less reliable for identifying non-motile-progressive sperm such as vibrating and floating
sperm. This study proposes a machine learning-based motility classifier using a support vector machine
with three CASA parameters: curvilinear velocity (VCL), straight-line velocity (VSL), and linearity (LIN),
which we call the bull sperm progressive motility classifier (BSPMCsvm3casa). Experimental results show
that BSPMCsvm3casa’s mean accuracy is 92.08%, which is 2.51–9.67 points higher than other classification
methods.

INDEX TERMS Computer assisted sperm analysis, object tracking, sperm motility classification, sperm
tracking.

I. INTRODUCTION
Along with the population growth, the demand for beef for
Indonesian citizens is increasing. However, the increase in the
amount of beef production is not as fast as the community’s
increasing meet needs. This deficit was met with imports
of a huge value (Rp. 4.27 trillion per year in 2016) and
continued to increase from year to year [1]. In Indonesia,
artificial insemination technology is the single most appli-
cable reproductive technology for increasing livestock pro-
duction, especially bull/cow. For the implementation of arti-
ficial insemination, high quality cryopreserved bull semen is
required. The Lembang Institute for Artificial Insemination
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(Balai Inseminasi Buatan/BIB, Lembang, Indonesia) is
mandated by the government to provide high quality cryopre-
served bull semen in sufficient quantity for artificial insemi-
nation. To fulfill this role, the Lembang Institute for Artificial
Insemination needs to improve its principal activity’s perfor-
mance, which is fresh bull semen quality measurement before
cryopreservation. Currently, they perform sperm quality eval-
uation manuallyWe believe a similar problem occurs in many
developing countries.

There are many sperm quality parameters such as sperm
concentration, viability, morphology, pH, and color of the
semen [2], [3]. However, many researchers mentioned that
motility is the main parameter for sperm quality evaluation.
Awad [4], Januskauskas et al. [5], and Verstegen et al. [6]
resume that sperm motility is one of the most important
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features associated with semen fertilizing capacity, and for
many years has been recognized as essential for sperm fer-
tilization. Zhang et al. [7] examined the correlation between
bull sperm characteristics with the ability of spermatozoa
fertility after artificial insemination (AI) of 9426 females.
Their result suggests that sperm linear-motility patterns
and swim-up separated sperm motility can provide a valu-
able assessment of the fertilizing capacity of AI bull. Fitz-
patrick et al. [8] mentioned, estimating the motility before
cryopreservation closely relates to the quality of post-thaw
sperm. Simonik et al. [9] concluded that sperm motility is
one of the indicators most evaluated before and after cryop-
reservation for bull field fertility. Based on those researches,
we focus on sperm motility evaluation of fresh bull
semen.’’

Manual sperm motility measurement has some signifi-
cant drawbacks, namely subjectivity, low accuracy, inter-
variability, and intra-variability [10], [11]. Computer assisted
sperm analysis (CASA) has been widely used to overcome
these drawbacks. However, there are still some challenges
in using CASA, particularly in measuring sperm motility
in fresh bull semen where the speed of sperm is relatively
high and partial occlusions frequently occur. In this study,
ourobjective is not to replace the current complete whole
CASA system. We aim to improve some critical parts of
the CASA system. We first address the limited accuracy and
speed of multi-sperm tracking. The second major problem is
difficulties in the accuracy of motility classification. These
two challenges are detailed in the following sections.

One of the primary hurdles is the limited accuracy
and speed of multi-sperm tracking. Several researchers
have tried to address this challenge [12]. For example,
Sørensen et al. [13] used a Particle Filter and a Kalman Filter
with a Hungarian algorithm for labeling, which is somewhat
similar to the method Jati et al. [14] used in their study.
In Imani et al. [15], the authors employed frame difference
background subtraction, and selection of the threshold value
was made using a non-linear diffusion filter. In these studies,
the samples had low sperm concentrations so that only a few
sperm were visible in one field of view, and it was rare for
occlusion or passing sperm to occur.

In comparison, Urbano et al. [16] used a modified joint
probabilistic data association filter with good tracking results.
A video sample indicates hundreds of sperm counts in one
field of view. However, the speed is relatively low at two
frames per second (fps), and the accuracy drops dramatically
in the second sample (a 20% disparity). Beya et al. [17]
extracted several features from the candidate regions; that
is, speeded up robust features (SURF), histogram of ori-
ented gradients (HOG), and local binary patterns (LBP).
Subsequently, a mean-shift tracking algorithm was applied.
In Akbar et al. [18], researchers used theHungarian algorithm
to associate sperm between consecutive frames. The inputs
of the Hungarian algorithm were sperm coordinates and head
direction angle. To speed up performance, Akbar et al. [18]
used thread programming.

A newer method employed in the field is simple online
and real-time tracking with a deep association metric (Deep
SORT) [19]. This method has reasonably better tracking
speed and accuracy than previous methods. However, the
performance is insufficient for robust and real-time tracking
of sperm cells in fresh bull semen, which has a high density of
sperm cells. In [20], Wojke and Bewley improve Deep SORT
by combining it with deep cosine metric learning. There are
many variants ofmetric learning, asmentioned in [21].Metric
learning can also be used for recognition, as in [22].

The second major problem in sperm motility measurement
is classification accuracy. Researchers have used different
CASA parameters to classify spermmotility. Nafisi et al. [23]
classified sperm motility using three CASA parameters: lin-
earity (LIN), straight-line velocity (VSL), and sperm head
angle variations. The authors used the old 1999 WHO stan-
dard [24], in which sperm is categorized into four grades:
a (fast motile-progressive), b (slow motile-progressive), c
(not progressive), and d (non-motile). However, there was
no mention in Nafisi et al. study [23] of each parame-
ter’s threshold value or the formula combining the three
parameters.

In comparison, Urbano et al. [16] classified human sperm
as motile if the VCL > 20 µm/s. This parameter was calcu-
lated from two human semen samples, and WHO 2010 stan-
dards [25] were followed. Akbar et al. [18] classified bull
sperm using the LIN parameter. Sperm were classified as
‘‘progressive motile’’ if LIN> 0.5, ‘‘motile not progressive’’
if LIN was between 0.2 and 0.5, and ‘‘non-motile’’ if LIN <
0.2. The standards used were the 2010 WHO standards [25].

In sum, all the studies use a static threshold for classi-
fying sperm motility. The static threshold is effective for
motile-progressive sperm classification but less reliable for
non-progressive-motile sperm, such as vibrating or floating
sperm.

The main contributions of this study are as follows:
1. We present a modified sperm detection model for

detecting bull sperm in a video captured in a 500x total
magnification setting.

2. We propose using the mean angle of sperm motion
and a Tracking-Grid for multi-sperm tracking to
predict undetected sperm in the video caused by par-
tial occlusion and the high speed of sperm move-
ment. These methods effectively reduce ID-switch,
increasing overall tracking accuracy and speeding up
tracking.

3. Unlike previous methods using a static threshold,
we propose a machine learning-based sperm motil-
ity classification model called bull sperm progressive
motility classifier (BSPMCsvm3casa), which uses a sup-
port vector machine (SVM) with three CASA parame-
ters: VCL, VSL, and LIN.

4. We conduct experiments with real datasets from Balai
Inseminasi Buatan Lembang, Indonesia, with specific
settings that reduce disputes between observers. Exper-
imental results have shown that our proposed methods

61160 VOLUME 9, 2021



P. Hidayatullah et al.: Bull Sperm Tracking and Machine Learning-Based Motility Classification

increase precision and speed for tracking as well as
accuracy in motility classification.

The remainder of this paper is organized as follows. The
experiment’s settings, detection model, mean angle of sperm
motion, Tracking-Grid, and BSPMCsvm3casa are detailed in
Section 3. Experimental results are elaborated and discussed
in Section 4, and conclusions are offered in Section 5.

II. MATERIALS AND METHODS
A. DATASET
Most datasets used in sperm motility measurement are drawn
from experiments using a 100x or 200x magnification set-
ting. Although this magnification level might be sufficient to
detect sperm, it has drawbacks such as subjectivity, low accu-
racy, low repeatability, and high intra- and inter-variability
for revealing the ground truth in sperm motility classifica-
tion [26]–[29]. These limitations derive from problems with
the use of manual measurement to reveal ground truth. It is
reasonably difficult to manually measure hundreds of small
sperm’motility status without any dispute between observers.
These challenges reduce the validity of the ground truth.
To overcome these limitations, we used a 500x magnification
setting so that sperm cells can be observed in more detail.
Each sperm is possible to be manually classified, whether it
is a progressive or non-progressive.

Twelve fresh sperm samples are diluted with physiological
natrium chloride (NaCl) 0.9%. The three sperm concentra-
tion settings are 0.1%, 0.5%, and 1.0%. We choose 0.9%
physiological NaCl as recommended by Fauzi et al. [30].
One of the conditions for a dilution media to meet is similar
osmotic pressure with the semen. The 0.9% physiological
NaCl has similar osmotic pressure to the semen osmotic pres-
sure with neutral pH, making it suitable for dilution before
semen evaluation. We also choose 0.9% physiological NaCl
as the sample looks clearer so that the sperm is easier to
be detected and tracked. It is undoubtedly crucial to have a
clear appearance of sperm to have a high detection accuracy,
leading to high tracking and classification accuracy.

When recording sperm movement, an Olympus BX51
phase-contrast microscope with a total magnification of 500x
and an eyepiece 2-megapixel universal serial bus (USB) cam-
era are used. This setting allows the observer to properly
assess the movement of individual sperm [2]. The video
resolution is 640 × 480 pixels, which is recorded at 15 fps.
To improve the accuracy of sperm detection, we set the con-
trast diaphragmmicroscope to ph.1 to obtain a higher contrast
sample.

Three experienced observers from Balai Inseminasi
Buatan Lembang Indonesia classify each sperm for its motil-
ity and we record the data. Motility classification is possible
because at a magnification of 500x the sperm is clearly
visible, and it is easier to assess motility. For detection, they
perform annotation using YOLOmark [31], and for tracking
they use the DarkLabel 1.3 application [32].

The training dan validation dataset is taken from the initial
50 frames of the first and the second bull video samples

(100 frames in total), in which the sperm concentration is
0.5% and 1.0%. We randomly choose 80% of the data for
the training dataset and the rest for the validation dataset.
Although the number of videos for the training dataset is lim-
ited, the number of objects annotated is relatively sufficient
at 2933. The validation dataset has 739 annotated objects.
For the test dataset, we used all three sperm concentration
settings to thoroughly test the model in different situations.
Two frames are extracted from each of the remaining ten
videos, with 525 total objects in the dataset. This composition
is suggested by Rosebrock [33] and is useful for testing the
models’ generalizability against new data [34]. We used the
same dataset for all phases, that is, sperm detection, sperm
tracking, and motility classification.

B. DETECTION MODEL
This study’s sperm tracking method applies detection-based
multi-object tracking (tracking by detection). Object tracking
researchers commonly use this approach. The coordinates
resulting from the detection model become input for the
tracking application to determine the position of the sperm
in the ensuing frame.

We adopt the DeepSperm model [35], which is devel-
oped for bull sperm tracking at a 100x total magnification.
According to the YOLOv3 architecture, the sperm recorded
using 100x total magnification are considered small-sized
objects. On the contrary, objects in the sample of this study
are recorded at 500x total magnification, which are consid-
ered middle-sized objects. Therefore, we modify DeepSperm
architecture to detect middle-size objects by changing its
input layer resolution from 640 × 640 into 416 × 416.
We also add several convolutional layers and a Resnet block
at the end of the architecture. Fig. 1 shows the illustration of
the modified architecture. We train the model using the same
hyper-parameters, augmentation parameters, and the number
of epochs as DeepSperm [35]. The darknet framework [36] is
used for the training.

C. SPERM TRACKING METHOD
This study uses a detection-based, multi-object tracking
approach, where the multi-object tracking problem can be
formulated into (1) to (7) [37]

Xk =
(
x1k , x

2
k , . . . , x

Mk
k

)
, (1)

x iks:ke =
{
x iks , . . . , x

i
ke

}
, (2)

X1:k = {X1,X2, . . . ,Xk} , (3)

where vector x ik is the ith sperm state in the k th frame
whereas, Xk = (x1k , x

2
k , . . . , x

Mk
k ) is a set of state vectors

of all sperm totaling Mk in the k th frame. The notation
x iks:ke =

{
x iks , . . . , x

i
ke

}
is used to denote the ith set of sperm

state vectors where ks is the initial frame and ke represents
the appearance of sperm in the video’s final frame. In (3),
X1:k = {X1,X2, . . . ,Xk} represents collections of all sperm
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FIGURE 1. Detection model architecture.

objects states ordered from the first frame to the k th frame.

Zk =
(
z1k , z

2
k , . . . , z

Mk
k

)
, (4)

ziks:ke =
{
ziks , . . . , z

i
ke

}
, (5)

Z1:k = {Z1,Z2, . . . ,Zk} , (6)

where zik is the result of the detection of the ith sperm in the
k th frame, and Zk = (z1k , z

2
k , . . . , z

Mk
k ) is all sperm detection

results totaling Mk in the k th frame. The notation ziks:ke =
{ziks , . . . , z

i
ke is the result of the i

th sperm detection where ks
is the initial frame and ke is the final frame in which sperm

appears in the video. Z1:k = {Z1,Z2, . . . ,Zk} represents all
sets of sperm object detection results sorted from the first
frame to the k th frame.

The purpose of detection-based multi-object tracking is to
find the optimal vector sequence of objects. These objects can
generally be modeled by estimating the maximal a posteri-
ori (MAP) of conditions in a particular frame (X1:k−1) with
input in the form of total detection results (Z1:k ), as shown
in (7) [37].

X1:k =
argmax
X1:k−1

P (X1:k−1 |Z1:k) . (7)

The state of the art in multi-object tracking is Deep SORT,
which focuses on improving simple online and real-time
tracking (SORT) [38] performance in data association by
reducing the change in object identity (ID-switch). To achieve
this goal, information on the object’s appearance is added in
addition to using a Kalman filter to predict an object’s posi-
tion based on its movement. The object display information
comes from a convolutional neural network architecture that
has been trained on the pedestrian dataset. Using this method,
Wojke et al. [19] claim to reduce ID-switch by 45%.
However, the Kalman filter’s use as the central part of the

tracker decreases the tracking speed because theKalmanfilter
requires a reasonably high computation [39]. In this study,
a faster method is proposed by not using the Kalman filter.
Instead, we propose using the mean angle of sperm motion
and the Tracking-Grid to predict the sperm’s position in the
next frame. The prediction with the mean angle of sperm
motion uses standard trigonometric calculations, whereas the
Tracking-Grid only considers a small number of detected
sperm in the data association phase to reduce computation.

After the sperm detection phase is complete, the tracking
model task can accurately associate bull sperm in consecutive
frames. Sperm association typically uses sperm coordinates.
However, sperm coordinates are often insufficient to pro-
duce accurate tracking results in the case of occlusion and
sperm that fail to be detected. For that, other methods of
increasing tracking accuracy are required. This study pro-
poses to employ the mean angle of sperm motion and the
Tracking-Grid to improve multi-sperm tracking accuracy and
speed. The overview of the tracking algorithm is displayed
in Fig. 2.

1) MEAN ANGLE OF SPERM MOTION
Determining sperm motion direction is crucial because a
frequent problem in sperm tracking is occlusion. Moreover,
this angle is also vital in tracking when sperm fails to be
detected. When such cases occur, the data association based
on position alone is insufficient. The mean angle of sperm
motion is used to predict the position of the sperm when it
fails to be detected. The failure happens due to occlusion or
because it appears blurry due to its swift movement.

Akbar et al. [18] determine the direction of the sperm from
the detection of an elliptical sperm head. However, in this
research dataset, the results of the segmentation of sperm
from the background are not acceptable. About 40% of the
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FIGURE 2. The tracking and classification overview.

sperm segmentation results are not perfect ellipses, so the
resulting angle is less accurate.

The second drawback of this method is that it is unsuitable
for application to sperm with low progressive motility values.
For example, floating sperm often does not move in the

direction of the head of the sperm. Instead, it moves because
of a push from the surrounding motile sperm or the flow of
semen. This study proposes using the mean angle of sperm
motion to determine new sperm angles of motion to overcome
these drawbacks.
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The mean angle of motion of the sperm is calculated based
on the displacement of the sperm. The calculation starts from
the second frame because the sperm has not moved in the
first frame, so it is impossible to know the angle. If a new
sperm enters the video’s field of view when the video has
been running, the angular data will start to be calculated in
the second frame after the sperm has entered. The mean angle
calculation is then performed two frames later (on the fourth
frame after birth) so that the total angles averaged are three
angles (3-frame averaged angle). This calculation of themean
angle continues throughout the video. The calculation of the
mean angle follows,

θ̄ ik =

∑k
k−2 θk

3
, k ∈ {4..N } , (8)

where θ̄ ik , θk , and N denote the mean angle of the ith sperm
motion in frame k , the angle of sperm motion direction in
frame k , and the total number of video frames, respectively.

2) DATA ASSOCIATION
In multi-object tracking, data association is a major chal-
lenge. In this study, data association is meant by the asso-
ciation of sperm found in one frame with the sperm in the
next frame. The problem formulation is in (1)–(7). Data asso-
ciation is carried out using the Hungarian algorithm. In this
study, the Hungarian algorithm’s implementation, called the
linear assignment, is used from the scikit-learn library [40].

3) SPERM REIDENTIFICATION
Often the detection of sperm fails for some sperm that are
difficult to detect in a specific frame. This case occurs, for
example, when the sperm is moving rapidly so that at certain
times the sperm appears opaque and difficult to detect. Often
the sperm is detected again at the next frame. Inmany tracking
methods, the detected sperm is given a new identity so that the
tracking path will be interrupted.

For the tracking to remain accurate, and the tracking
trajectory to be continuous despite a detection failure, this
study proposes sperm reidentification using the mean angle
of motion of the sperm and the Tracking-Grid. When some
sperm fail to be detected, their positions are predicted using

pik

=

(
x ixk−1+VSL

i
k−1 × cos θ̄ ik−1, x

iy
k−1+VSL

i
k−1 × sin θ̄ ik−1

)
,

(9)

where pik is the predicted position of the i
th sperm in frame k ,

x ixk−1 is the x coordinate of the i
th sperm in frame k − 1, x

iy
k−1

is the y coordinate of the ith sperm in frame k − 1, VSL ik−1 is
the straight-line velocity of the ith sperm in frame k − 1, and
θ̄ ik−1 is the mean angle of motion of the ith sperm in frame
k − 1.

4) TRACKING-GRID
Occlusion frequently occurs in semen with a high den-
sity, as found in this study sample. The occlusion effect

FIGURE 3. Tracking-Grid example.

FIGURE 4. Tracking-Grid illustration. Undetected sperm is in the yellow
cell. The close-neighbor area is in green. The far-neighbor area is blue.

on tracking is ID-switch: a tracking error in which there
is an exchange of identity numbers between the occluding
sperm. In this study, we propose a Tracking-Grid to solve
the problem of occlusion. With the Tracking-Grid, the video
frame is divided into grid cells where the grid cell’s size is
half the average sperm size. We choose a half-value because
the consensus of determining whether a sperm is counted is
when half of the head is visible in the frame. The position
in the grid of each sperm is also determined by knowing the
neighboring sperm. Fig. 3 shows an example of Tracking-
Grid implementation in a video frame.

At the time of occlusion, each sperm is evaluated, and its
neighboring sperm are determined. In principle, the sperm
move relatively consistently in a particular direction. There-
fore, the neighboring sperm is adjacent to it and in the direc-
tion of the mean angle of spermmotion. Fig. 4 illustrates how
the Tracking-Grid works. For example, the sperm in the grid
cell Gj,k (colored yellow), have a mean motion angle of 45o
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and a center point in this image. Its neighbors are the sperm
located in the grid cellsGj,k−1,Gj+1,k−1, andGj+1,k (colored
green). These sperm are called close neighbors.

There is a particular case where sperm moves very fast.
In this condition, the sperm in the next frame sometimes
does not overlap with the sperm in the current frame. Often
the sperm is considered lost (undetected), and the sperm in
the next frame is given a new identity. The Tracking-Grid
addresses this problem by identifying a fast-moving sperm
from its velocity. If the VSL ≥ 62.38 µm/s, then the sperm
is considered as a fast-moving sperm. Far neighbors are rapid
sperm located farther apart. In the previous example, the far
neighbors are grid cellsGj,k−2,Gj+1,k−2,Gj+2,k−2,Gj+2,k−1,
and Gj+2,k (colored blue).
The benefit of the Tracking-Grid and the mean angle, apart

from predicting the position of the sperm in the next frame
more accurately, is computational efficiency. This benefit
derives from not having to examine all sperm surrounding
sperm in the grid cell Gj,k . It is sufficient to only check the
close neighbors or far neighbors (for fast-moving sperm).

5) SPERM TRACKING EVALUATION
We use the test dataset from BIB Lembang for evalua-
tion. Evaluation is performed on the proposed method and
the state-of-the-art method to see whether the proposed
method has significant improvements. We use the standard
multi-object tracking metric 16 (MOT16) [41] as a measuring
tool to compare the accuracy performance and fps for speed.

D. SPERM CLASIFICATION MODEL
The final part of this research is to develop a method of sperm
motility classification.

1) CALCULATION OF CASA PARAMETERS FROM SPERM
TRACKING RESULTS
The next process after sperm tracking is to calculate the
percentage of progressive-motile sperm. Veterinarians need
this information at the artificial insemination center to decide
whether the tested semen sample is qualified for preservation.
The process begins with calculating the CASA parameters
based on the results of sperm tracking. The model classifies
the spermmotility from these CASA parameters. In theWHO
laboratory manual, sperm are classified into three categories,
namely progressively motile, non-progressively motile, and
immotile. In BIB Lembang, the veterinarians use two
categories, motile-progressive and non-motile-progressive.
Non-progressively motile and immotile sperm based on the
WHO standard are categorized as non-motile-progressive
sperm. Included in this category are static, floating, and
vibrating sperm.

Several researchers [16], [18], [23], [42] use one or more
of CASA parameters in classifying sperm motility. In this
study, we calculate three CASA parameters, which are VCL,
VSL, and LIN. These three parameters are calculated using
the equations in (10)–(12) [25], [43], [44]. For determining
sperm velocity (VCL and VSL) in µm/s units, we use an

improved Neubauer counting chamber [45] to determine the
pixels to µm scale.

VCL i =

∑M
j=1

√(
xj+1 − xj

)2
+
(
yj+1 − yj

)2
(M − 1)1t

, (10)

VSL i =

√
(xM − x1)2 + (yM − y1)2

(M − 1)1t
, (11)

LIN i =
VSL i
VCL i

, (12)

where VCL i is the average velocity of ith sperm on the actual
trajectory for 1t duration, and M is the number of points in
the trajectory.VSL i is the average velocity of ith sperm along a
straight line connecting the initial position to the end position
of the sperm M in 1t duration. LIN i is the linearity of the
ith sperm motion, which is defined as the ratio between VSL i
and VCL i. The x and y are the coordinates of the sperm.

2) CLASSIFICATION OF SPERM MOTILITY BASED
ON BSPMCsvm3casa
Based on the WHO laboratory manual [25], sperm motility
analysis using CASA can be done with a minimum of 1 s
video duration. However, in this study, the videos used are
1–5 s in duration to test the methods’ reliability. A classifica-
tion model is built using an SVMwith a linear kernel. We use
the same training and test dataset as for the detection model,
naming the classification model as BSPMCsvm3casa.

The proposed classification model has three input CASA
parameters: VCL, VSL, and LIN. The output is the clas-
sification result of whether the sperm is included in the
progressive-motile sperm class. The model is trained to find
the wi weight parameter that provides the most appropriate
classification according to the classification ground truth.
Equation (13) is the target function representation

y = b+ (w1 × VCL)+ (w2 × VSL)+ (w3 × LIN ) . (13)

From the learning results, the values of wi and b are obtained
so that we have the estimation function

y = −4.080+ (0, 060× VCL)+ (0, 008× VSL)

+ (2, 136× LIN ) , (14)

ŷ =

{
−1 (non-motileprogresive) , y < 0,
+1(motileprogresive), y > 0,

where ŷ is output in the form of sperm classification, wi is the
ith weight from training results, and b is bias.

3) EVALUATION OF SPERM MOTILITY CLASSIFICATION
RESULTS
After the method has been successfully developed, the final
step is testing to assess its performance. The performance
is measured from the conformity with the results of manual
classification conducted by veterinarians fromBIBLembang.
In the newest available WHO laboratory manual (2010 5th
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edition) [25], sperm should be classified into three clas-
sifications: progressively motile, non-progressively motile,
and immotile. For bull sperm motility assessment, especially
in practice, what the Artificial Insemination Centers need
is the percentage of progressively motile sperm. Therefore,
the classification of WHO can be used but with modification.
For bull sperm, classifying the spermmotility into two classes
is sufficient: (a) progressively motile and (b) a class consists
of non-progressively motile and immotile [2]. The value of
the percentage of motility is calculated based on the ratio of
sperm that moves actively forward (progressive motile) to the
total sperm [2].

E. OVERALL EVALUATION
A CASA system consists of three main processes: sperm
detection, tracking, and classification. In this study, we pro-
posed methods to improve the performance of those pro-
cesses. To evaluate the effectiveness of our proposed methods
to the current CASA system, we compare the performance of
a bull sperm CASA system by Akbar et al. [18] before and
after improved using our proposed methods.

F. EXPERIMENTAL ENVIRONMENT
Model training and testing employed an Intel Core i7 8700
@3.2 GHz workstation with 16 GB RAM. The operating
systemwas an Ubuntu 16.04 LTS. A single NVIDIAGeForce
RTX 2070 8 GB GPU RAM was used with 7.5 compute
capability points, which is considered sufficient for training
and testing in this case.

III. RESULTS AND DISCUSSION
A. SPERM DETECTION RESULTS
With the dataset and experimental setting of this study,
the detection model converged at 2400 epochs out
of 4000 training epochs. With 1.515 s of training time needed
for an epoch, we achieve convergence in 60.6 minutes. The
achieved accuracy is also considerably high, with a 98.4mean
average precision (mAP) validation accuracy and 95.09 mAP
test accuracy.

B. SPERM TRACKING RESULTS
Tracking accuracy affects classification accuracy. Tracking
accuracy is the most critical criterion in tracking because
the artificial insemination center demands an accurate sperm
motility classification. The video sample tests yielded a total
of 414 sperm trajectories. Of these trajectories, 233 can
be tracked well (‘‘mostly tracked’’ (MT)). Whereas Deep
SORT mostly tracks 121 trajectories. The multi-object track-
ing accuracy (MOTA) of the proposed method is 70.9,
with the multi-object tracking precision (MOTP) reaching
73.0 and multi-object tracking overall accuracy (MOTAL) is
73.2. On the other hand, Deep SORT achieves an accuracy
of 55.2 and a precision of 72.7 and total accuracy of 57.6.

Some fast-moving sperm failed to be detected. The
assumption that sperm always exists in the video frame except

FIGURE 5. Finding scale from pixel to µm.

FIGURE 6. Illustration of ID-switch on Deep SORT when the sperm is
moving very fast. Deep SORT (top row); Tracking- Grid (bottom row).

if it exits the frame is valid for this study case. Based on
this assumption, a prediction of the position of the sperm is
carried out. This prediction follows (9). Beforehand, we need
to convert between pixel distance in a video frame into µm to
calculate CASA parameters. Based on the calibration using
the improved Neubauer chamber in our experiment setting,
we obtain that 1 pixel is 0.29412 µm. Fig. 5 illustrates the
process of finding the scale.

The proposed method managed detection failure cases to
reduce the switch ID from 147 cases to 133 cases (a 10%
reduction). Fig. 6 shows an ID-switch illustration due to
the fast-moving sperm (VSL >= 62.5 µm/s). The first row
in Fig. 6 is sperm tracked using Deep SORT. On the 88th and
89th frames, some detection failures occurred. Deep SORT
gives a new identity to the sperm that failed to be detected
from 108 to 115.

On the other hand, in the proposed method, at frame 88 and
89, the position is predicted using (9). At the 90th frame,
the sperm can be redetected. Tracking-Grid (Fig. 4) is used
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FIGURE 7. Illustration of ID-switch on Deep SORT during occlusion. Deep
SORT (top row), Tracking-Grid (bottom row).

to check whether the sperm is neighbors. Once confirmed,
the new detection result is given the same identification num-
ber as the sperm on the 88th frame. The result is that the sperm
can be appropriately tracked, and the identity of the sperm can
be maintained.

In addition to rapid sperm movement, occlusion is also a
cause of identity switch. Fig. 7 illustrates occlusion. In the
first row of Fig. 7, sperm number 4 fails to be detected when
it crosses sperm number 39 (at frame 61). At the 63rd frame,
sperm number 4 is given a new identity (i.e., 41). However,
in the proposed method (Fig. 7 second row), sperm number
11, which fails to be detected at frame 61, its identity number
can be retained. It is possible because when sperm number
11 fails to be detected, its position in that frame is predicted
according to (9) and given the same identity number (i.e., 11).
Subsequently, at frame 63, when the sperm can be redetected,
it is checked whether the detection result is a neighbor of
sperm number 11 based on Fig. 4. After it is known that the
detection result is the neighbor, it is given the same identity
number (i.e., 11).

The tracking implementation must be able to run at high
speed to be used in practice. The proposed method reaches a
speed of 41.18 fps. This speed is 1.8x faster than the Deep
SORT speed of 23.44 fps. The Kalman filter computation
has a significant share of the limited speed of Deep SORT.
Whereas, in the proposed method, prediction is carried out
employing data association using the mean angle of sperm
motion and Tracking-Grid, for which the computation is not
as heavy as the Kalman filter.

Wojke and Bewley [20] improve the performance by com-
bining Deep SORT with deep cosine metric learning. We do
the training of their convolutional neural network for 100,000
iterations as suggested in the paper [20] and choose the
last checkpoints as it gives the best validation accuracy.
We fine-tune the minimum detection threshold to have the
best possible detection accuracy and found that 0.01 gives the
best result.

The result is accuracy and speed are both increased.
Though the ID-switch is increased slightly, the overall accu-
racy (MOTAL) is increased by 0.7 points. The significant
improvement is the speed, which is 1.3x faster than Deep
SORT.

TABLE 1. Tracking results comparison.

FIGURE 8. Comparison of classification with VCL (a) and
BSPMCsvm3casa (b).

We present the tracking results in tabular form to make it
easier to compare findings. This table contains Deep SORT
and Tracking-Grid results with standardmulti-object tracking
metrics MOT-16 [41]. Table 1 displays the comparison with
the values in bold, showing the best values after comparison.

C. SPERM CLASSIFICATION RESULTS
Motility classification performance is measured by calculat-
ing the difference between the classification result from the
system (compared methods) and the classification ground
truth from the manual measurement. With the settings men-
tioned in the Dataset section, there is no dispute between
observers in making ground truth classifications. In this
study, a comparison of the effectiveness of several pro-
posed CASA parameters for classifying bull sperm motility
is conducted. We choose two recent studies for comparison,
Urbano et al. [16] and Akbar et al. [18]. In both studies,
manual static threshold values are used. To maintain fairness
in comparison, all classification methods are fed with the
same input which is come from detection and tracking results
using our proposed methods.

The BSPMCsvm3casa is a classifier model that uses several
CASA parameters: VCL, VSL, and LIN. This model is not
only able to better classify progressive-motile sperm but also
non-progressive-motile sperm. In the third test sample video,
there is a vibrating sperm. This sperm has a high VCL value.
However, based on the WHO standard, it is not classified as
a motile-progressive sperm. One of the reasons is because
the position of the sperm is generally unchanging. There-
fore, even though we have searched for an optimal threshold
value, the use of VCL alone in determining sperm motility is
insufficient.

In Fig. 8, four pieces of information are displayed for
each sperm: the identity number (ID), VCL, VSL, and
LIN. The yellow indicates that the sperm is classified as
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FIGURE 9. Comparison of classification with LIN (a) and
BSPMCsvm3casa (b).

FIGURE 10. Comparison of the mean accuracy of the classification results.

motile-progressive sperm, whereas red indicates that the
sperm is non-motile-progressive. This figure provides an
illustration of the failure of sperm motility classification in
vibrating non-motile-progressive sperm. Sperm with an ID
number of 8 (ID number 1 in Fig. 8 (b)) is an example of this
type of sperm, whose characteristics are that the VCL value
is relatively high but the VSL (and the LIN) is small. If only
VCL is used in the classification, the sperm is classified as
motile-progressive sperm (yellow bounding box) because the
VCL is above the threshold (20 µm/s). However, when using
BSPMCsvm3casa, this sperm can be correctly classified as non-
motile-progressive sperm (Fig. 8(b)).

In one of the samples, some dead sperm are continually
moving toward the lower left. These sperm are called floating
sperm because they move in constant motion with high VCL
and VSL values but an inactive manner. In addition to high
VCL and VSL values, these sperm have a higher LIN value
than others because they move relatively linear and do not
vibrate like normal motile sperm. Therefore, using only LIN
failed to classify this type of sperm irrespective of the manner
of finding the best threshold value.

Fig. 9 illustrates the failure of sperm motility classification
in floating non-motile-progressive sperm. Sperm numbers 1,
16, and 40 are floating sperm with relatively high linearity
values (0.7 and 0.9). If we use only LIN in the classifica-
tion, these sperm are classified as motile-progressive sperm
because LIN > 0.5. However, when using BSPMCsvm3casa,
these three sperm can be correctly classified as non-
motile-progressive sperm (red bounding boxes).

Fig. 10 shows the classification results’ mean accuracy
using various CASA parameters, including their standard

deviation. From the experiment’s findings, we can observe
that the mean accuracy of the classification results using
BSPMCsvm3casa outperforms the accuracy of results from all
other methods. Besides failing in the condition in Fig. 8 and
Fig. 9, the other methods also failed to correctly classify
sperm that moves in a small circle.

In Fig. 10, from left to right, the standard deviations for
each method are 15.1, 15.8, and 5.9, respectively. The small
standard deviation can be achieved as the proposed model is
a machine learning-based model and considers three CASA
parameters at a time. Therefore, it is more adaptive to dif-
ferent kind of sperm movement and gives relatively good
accuracy to all test samples. On the other hand, the other
methods consider one CASA parameter only which give very
good result in some cases and drop the accuracy significantly
in some other cases. The experiment’s results also show that
using VCL provides better classification accuracy than using
LIN.

D. OVERALL RESULTS
In the previous results section, we compare the performance
of our proposed methods with the corresponding previous
works separately. For evaluating the effectiveness of our pro-
posed method in the overall CASA system process, we com-
pare Akbar et al. [18] CASA system’s performance without
and with our proposed method. Beforehand, we do some
modification to Akbar et al. CASA system as it is originally
designed for measuring bull sperm motility using 100x total
magnification. The purpose is to have the best possible
Akbar et al. CASA system’s performance to this study’s
dataset. After many experiments, the best performance
is achieved when we set MIN_HEAD_SIZE = 16,
MAX_HEAD_SIZE = 48, mean filter kernel size = 12,
and remove morphology operations in its detection process.
We achieve 67.22% motility classification accuracy with
the speed of 3.04 fps whereas, after improvement using our
proposed method, we achieve 92.08% accuracy (24.86 points
more accurate) and 11.18 fps (3.67 times faster).

IV. CONCLUSION
This study presents a modified model for detecting sperm
from fresh bull semen recorded using 500xmagnification and
achieving encouraging accuracy. For tracking, this research
proposes using the mean angle of sperm motion and the
Tracking-Grid to reduce the ID-switch and increase the track-
ing accuracy and speed, which surpasses state-of-the-art per-
formance. In the sperm classification process, in contrast
to previous methods that use a static threshold, we propose
BSPMCsvm3casa, a machine learning-based bull sperm motil-
ity classifier model using SVMwith three CASA parameters:
VCL, VSL, and LIN. The classification results also show
that the proposed method outperforms previous methods.
A further use could be implementing the proposed model and
method in a portable single-board circuit mobile device to
inspect post thawed cryopreserved bull semen in farms. This
model can also be used for other cases, such as examining
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bull sperm in 3-dimensions or with different magnifications,
examining human sperm, or examining other medical objects.

ACKNOWLEDGMENT
The authors thank Supraptono, Rudi Harsono, Iman Sukir-
man, Fahmy Avicenna, Dr. Asep Kurnia, and Tri Harsi for
recording and annotating the samples. The authors also thank
Reza Kahar Aziz, Ph.D., for meaningful feedback.

REFERENCES
[1] Outlook Daging Sapi: Komoditas Pertanian Subsektor Peternakan, Sekre-

taris Jenderal-Kementrian Pertanian, Pusat Data dan Sistem Informasi
Pertainian, South Jakarta, Indonesia, 2016.

[2] R. I. Arifiantini, Teknik Koleksi dan Evaluasi Semen pada Hewan, 1st ed.
Bogor, Indonesia: IPB Press, 2012.

[3] B. Hafez and E. S. E. Hafez, Eds., Reproduction in Farm Animals, 7th ed.
Philadelphia, PA, USA: Lippincott Williams & Wilkins, 2000.

[4] M. M. Awad, ‘‘Effect of some permeating cryoprotectants on CASA
motility results in cryopreserved bull spermatozoa,’’ Animal Reproduction
Sci., vol. 123, nos. 3–4, pp. 157–162, Feb. 2011.

[5] A. Januskauskas, J. Gil, L. Söderquist, M. G. M. Hrd, M. C. Hrd,
A. Johannisson, and H. Rodriguez-Martinez, ‘‘Effect of cooling rates on
post-thaw sperm motility, membrane integrity, capacitation status and fer-
tility of dairy bull semen used for artificial insemination in Sweden,’’ The-
riogenology, vol. 52, no. 4, pp. 641–658, Sep. 1999, doi: 10.1016/S0093-
691X(99)00159-4.

[6] J. Verstegen, M. Iguer-Ouada, and K. Onclin, ‘‘Computer assisted semen
analyzers in andrology research and veterinary practice,’’ Theriogenology,
vol. 57, no. 1, pp. 149–179, Jan. 2002.

[7] B. R. Zhang, B. Larsson, N. Lundeheim, and Rodriguez-Martinez, ‘‘Sperm
characteristics and zona pellucida binding in relation to field fertility
of frozen-thawed semen from dairy AI bulls: Sperm characteristics and
ZP-binding relative to non-return rate,’’ Int. J. Androl., vol. 21, no. 4,
pp. 207–216, Jul. 1998, doi: 10.1046/j.1365-2605.1998.00114.x.

[8] L. A. Fitzpatrick, G. Fordyce, M. R. McGowan, J. D. Bertram,
V. J. Doogan, J. De Faveri, R. G.Miller, and R. G. Holroyd, ‘‘Bull selection
and use in northern Australia,’’Animal Reproduction Sci., vol. 71, nos. 1–2,
pp. 39–49, May 2002, doi: 10.1016/S0378-4320(02)00024-6.

[9] O. Simonik, J. Sichtar, A. Krejcarkova, R. Rajmon, L. Stadnik, J. Beran,
M. Dolezalova, and Z. Biniova, ‘‘Computer assisted sperm analysis—
The relationship to bull field fertility, possible errors and their impact on
outputs: A review,’’ Indian J. Animal Sci., vol. 85, no. 1, pp. 3–11, 2015.

[10] J. Auger, ‘‘Intra- and inter-individual variability in human sperm con-
centration, motility and vitality assessment during a workshop involving
ten laboratories,’’ Hum. Reproduction, vol. 15, no. 11, pp. 2360–2368,
Nov. 2000, doi: 10.1093/humrep/15.11.2360.

[11] M. K. Hoogewijs, S. P. De Vliegher, J. L. Govaere, C. De Schauwer,
A. De Kruif, and A. Van Soom, ‘‘Influence of counting chamber type
on CASA outcomes of equine semen analysis: Counting chamber type
influences equine semen CASA outcomes,’’ Equine Vet. J., vol. 44, no. 5,
pp. 542–549, Sep. 2012, doi: 10.1111/j.2042-3306.2011.00523.x.

[12] P. Hidayatullah, T. L. E. R. Mengko, and R. Munir, ‘‘A survey
on multisperm tracking for sperm motility measurement,’’ Int. J.
Mach. Learn. Comput., vol. 7, no. 5, pp. 144–151, Oct. 2017, doi:
10.18178/ijmlc.2017.7.5.637.

[13] L. Sørensen, J. Østergaard, P. Johansen, and M. de Bruijne, ‘‘Multi-
object tracking of human spermatozoa,’’ Proc. SPIE, vol. 6914, Mar. 2008,
Art. no. 69142C, doi: 10.1117/12.771135.

[14] G. Jati, A. A. S. Gunawan, S. W. Lestari, W. Jatmiko, and M. H. Hilman,
‘‘Multi-sperm tracking using hungarian Kalman filter on low frame rate
video,’’ in Proc. Int. Conf. Adv. Comput. Sci. Inf. Syst. (ICACSIS), Malang,
Indonesia, Oct. 2016, pp. 530–535, doi: 10.1109/ICACSIS.2016.7872796.

[15] N. Teyfouri, Y. Imani, M. Ahmadzadeh, and M. Golabbakhsh, ‘‘A new
method for multiple sperm cells tracking,’’ J. Med. Signals Sensors, vol. 4,
no. 1, p. 35, 2014, doi: 10.4103/2228-7477.128436.

[16] L. F. Urbano, P. Masson, M. VerMilyea, and M. Kam, ‘‘Automatic
tracking and motility analysis of human sperm in time-lapse images,’’
IEEE Trans. Med. Imag., vol. 36, no. 3, pp. 792–801, Mar. 2017, doi:
10.1109/TMI.2016.2630720.

[17] O. Beya, M. Hittawe, D. Sidibe, and F. Meriaudeau, ‘‘Automatic detection
and tracking of animal sperm cells in microscopy images,’’ in Proc. 11th
Int. Conf. Signal-Image Technol. Internet-Based Syst. (SITIS), Bangkok,
Thailand, Nov. 2015, pp. 155–159, doi: 10.1109/SITIS.2015.111.

[18] A. Akbar, E. Sukmawati, D. Utami, M. Nuriyadi, I. Awaludin, and
P. Hidayatullah, ‘‘Bull sperm motility measurement improvement using
sperm head direction angle,’’ TELKOMNIKA, Telecommun. Comput. Elec-
tron. Control, vol. 16, no. 4, p. 1642, Aug. 2018, doi: 10.12928/telkom-
nika.v16i4.8685.

[19] N. Wojke, A. Bewley, and D. Paulus, ‘‘Simple online and realtime
tracking with a deep association metric,’’ Mar. 2017, arXiv:1703.07402.
Accessed: Jun. 5, 2020. [Online]. Available: http://arxiv.org/
abs/1703.07402

[20] N. Wojke and A. Bewley, ‘‘Deep cosine metric learning for person re-
identification,’’ in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV),
Mar. 2018, pp. 748–756.

[21] M. Kaya and H. S. Bilge, ‘‘Deep metric learning: A survey,’’ Symmetry,
vol. 11, no. 9, p. 1066, 2019.

[22] X. Zhou, Z.Wei,M. Xu, S. Qu, andG. Guo, ‘‘Facial depression recognition
by deep joint label distribution and metric learning,’’ IEEE Trans. Affect.
Comput., early access, Sep. 8, 2020, doi: 10.1109/TAFFC.2020.3022732.

[23] V. R. Nafisi, M. H. Moradi, and M. H. Nasr-Esfahani, ‘‘A template
matching algorithm for sperm tracking and classification,’’ Physiol. Meas.,
vol. 26, no. 5, pp. 639–651, Oct. 2005, doi: 10.1088/0967-3334/26/5/006.

[24] WHO Laboratory Manual for the Examination of Human Semen and
Sperm-Cervical Mucus Interaction, 4th ed.,World Health Org., Cambridge
Univ. Press, Cambridge, U.K., 1999.

[25] WHO Laboratory Manual for the Examination and Processing of Human
Semen, 5th ed., World Health Org., Geneva, Switzerland, 2010.

[26] G. M. Centola, ‘‘Comparison of manual microscopic and computer-
assisted methods for analysis of sperm count and motility,’’ Arch. Androl.,
vol. 36, no. 1, pp. 1–7, Jan. 1996, doi: 10.3109/01485019608987878.

[27] M. L. W. J. Broekhuijse, E. Şoštarić, H. Feitsma, and B. M. Gadella,
‘‘Additional value of computer assisted semen analysis (CASA) com-
pared to conventional motility assessments in pig artificial insemination,’’
Theriogenology, vol. 76, no. 8, pp. 1473.e1–1486.e1, Nov. 2011, doi:
10.1016/j.theriogenology.2011.05.040.

[28] K. Coetzee, T. F. Kruger, and C. J. Lombard, ‘‘Repeatability and vari-
ance analysis on multiple computer-assisted (IVOS∗) sperm morphol-
ogy readings,’’ Andrologia, vol. 31, no. 3, pp. 163–168, May 1999, doi:
10.1046/j.1439-0272.1999.00257.x.

[29] Á. Nagy, T. Polichronopoulos, A. Gáspárdy, L. Solti, and S. Cseh, ‘‘Cor-
relation between bull fertility and sperm cell velocity parameters gener-
ated by computer-assisted semen analysis,’’ Acta Veterinaria Hungarica,
vol. 63, no. 3, pp. 370–381, Sep. 2015, doi: 10.1556/004.2015.035.

[30] M. Fauzi,W. S. Rachmawati, and E. Pramono, ‘‘The effect of physiological
NaCl dilution levels and storage duration to sperm motility and abnormal-
ity in Muscovy duck,’’ Animal Prod., vol. 3, no. 2, pp. 1–12, May 2001.

[31] A. Bochkovskiy. (2019). Yolo_Mark: Windows & Linux GUI for Mark-
ing Bounded Boxes of Objects in Images for Training Yolo V3 and
V2. Accessed: Aug. 24, 2019. [Online]. Available: https://github.com/
AlexeyAB/Yolo_mark

[32] Lee. (Jul. 18, 2017). DarkLabel (Video/Image Labeling and
Annotation Tool). Accessed: Jun. 30, 2020. [Online]. Available:
https://darkpgmr.tistory.com/16

[33] A. Rosebrock, Deep Learning for Computer Vision With Python: Starter
Bundle, 1st ed. Philadelphia, PA, USA: PyImageSearch, 2017.

[34] A. Zheng, Evaluating Machine Learning Models: A Beginner’s Guide to
Key Concepts and Pitfalls, 1st ed. Sebastopol, CA, USA: O’Reilly Media,
2015.

[35] P. Hidayatullah, X. Wang, T. Yamasaki, T. L. E. R. Mengko, R. Munir,
A. Barlian, E. Sukmawati, and S. Supraptono, ‘‘DeepSperm: A robust and
real-time bull sperm-cell detection in densely populated semen videos,’’
Mar. 2020, arXiv:2003.01395. Accessed: Aug. 31, 2020. [Online]. Avail-
able: http://arxiv.org/abs/2003.01395

[36] A. Bochkovskiy. (Aug. 24, 2019).Windows and Linux Version of Darknet
Yolo V3 & V2 Neural Networks for Object Detection (Tensor Cores are
Used): AlexeyAB/Darknet. Accessed: Aug. 24, 2019. [Online]. Available:
https://github.com/AlexeyAB/darknet

[37] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, X. Zhao, and
T.-K. Kim, ‘‘Multiple object tracking: A literature review,’’ May 2014,
arXiv:1409.7618. Accessed: Jun. 10, 2020. [Online]. Available:
http://arxiv.org/abs/1409.7618

VOLUME 9, 2021 61169

http://dx.doi.org/10.1016/S0093-691X(99)00159-4
http://dx.doi.org/10.1016/S0093-691X(99)00159-4
http://dx.doi.org/10.1046/j.1365-2605.1998.00114.x
http://dx.doi.org/10.1016/S0378-4320(02)00024-6
http://dx.doi.org/10.1093/humrep/15.11.2360
http://dx.doi.org/10.1111/j.2042-3306.2011.00523.x
http://dx.doi.org/10.18178/ijmlc.2017.7.5.637
http://dx.doi.org/10.1117/12.771135
http://dx.doi.org/10.1109/ICACSIS.2016.7872796
http://dx.doi.org/10.4103/2228-7477.128436
http://dx.doi.org/10.1109/TMI.2016.2630720
http://dx.doi.org/10.1109/SITIS.2015.111
http://dx.doi.org/10.12928/telkomnika.v16i4.8685
http://dx.doi.org/10.12928/telkomnika.v16i4.8685
http://dx.doi.org/10.1109/TAFFC.2020.3022732
http://dx.doi.org/10.1088/0967-3334/26/5/006
http://dx.doi.org/10.3109/01485019608987878
http://dx.doi.org/10.1016/j.theriogenology.2011.05.040
http://dx.doi.org/10.1046/j.1439-0272.1999.00257.x
http://dx.doi.org/10.1556/004.2015.035


P. Hidayatullah et al.: Bull Sperm Tracking and Machine Learning-Based Motility Classification

[38] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, ‘‘Simple online
and realtime tracking,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP),
Phoenix, AZ, USA, Sep. 2016, pp. 3464–3468, doi: 10.1109/ICIP.
2016.7533003.

[39] V. Vaidehi and C. N. Krishnan, ‘‘Computational complexity of the Kalman
tracking algorithm,’’ IETE J. Res., vol. 44, no. 3, pp. 125–134, May 1998,
doi: 10.1080/03772063.1998.11416038.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, and D. Cournapeau, ‘‘Scikit-learn: Machine learning in
python,’’ J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.

[41] A. Milan, L. Leal-Taixe, I. Reid, S. Roth, and K. Schindler,
‘‘MOT16: A benchmark for multi-object tracking,’’ May 2016,
arXiv:1603.00831. Accessed: Jun. 10, 2020. [Online]. Available:
http://arxiv.org/abs/1603.00831

[42] M. Kraemer, C. Fillion, B.Martin-Pont, and J. Auger, ‘‘Factors influencing
human sperm kinematic measurements by the Celltrak computer-assisted
sperm analysis system,’’ Hum. Reproduction, vol. 13, no. 3, pp. 611–619,
Mar. 1998, doi: 10.1093/humrep/13.3.611.

[43] P. Hidayatullah, I. Awaludin, R. D. Kusumo, and M. Nuriyadi, ‘‘Auto-
matic sperm motility measurement,’’ in Proc. Int. Conf. Inf. Technol.
Syst. Innov. (ICITSI), Bandung, Indonesia, Nov. 2015, pp. 1–5, doi:
10.1109/ICITSI.2015.7437674.

[44] Ł. Witkowski, ‘‘An automatic system for calculating basic semen parame-
ters,’’ TASK Quart., Sci. Bull. Acad. Comput. Centre Gdansk, vol. 8, no. 2,
p. 6, 2004.

[45] E. Bailey, N. Fenning, S. Chamberlain, L. Devlin, J. Hopkisson, and
M. Tomlinson, ‘‘Validation of sperm counting methods using limits of
agreement,’’ J. Androl., vol. 28, no. 3, pp. 364–373, Dec. 2006, doi:
10.2164/jandrol.106.002188.

PRIYANTO HIDAYATULLAH received the bach-
elor’s degree from the Department of Informatics,
Institut Teknologi Bandung, Indonesia, in 2004,
and the Double Master of Science degree from
Université Jean Monnet, France, and the Uni-
versity of Eastern Finland, in 2010. He is cur-
rently pursuing the Ph.D. degree with the School
of Electrical Engineering and Informatics, Institut
Teknologi Bandung. He is currently a Lecturer
with the Computer Engineering and Informatics

Department, Politeknik Negeri Bandung, Indonesia. He is the author of the
book titledDigital Image Processing: Theory and Real Applications (Pengo-
lahan Citra Digital: Teori dan Aplikasi Nyata). His research interests include
digital image processing, computer vision, deep learning, and biomedical
engineering.

TATI L. E. R. MENGKO received the bachelor’s
degree in electrical engineering from the Institut
Teknologi Bandung, Bandung, Indonesia, in 1977,
and the Ph.D. degree from the École Nationale
Supérieure d’Électronique et de Radioélectricité
de Grenoble (ENSERG), Institut National Poly-
technique de Grenoble, France, in 1985, where
she studied texture-based image processing. Since
2005, she has been a Professor with the School
of Electrical Engineering and Informatics, ITB.

She is currently the Head of the Biomedical Engineering Research Group,
ITB. Her research interests include biomedical signal and image process-
ing. In 2015, she was granted the Innovation Award from ITB due to her
contribution to developing a non-invasive vascular analyzer device. She has
chaired numerous conferences, including the International Conference on
Instrumentation, Communication, Information Technology, and Biomedical
Engineering (ICICI-BME).

RINALDI MUNIR received the bachelor’s degree
in informatics engineering and the M.Sc. degree
in digital image compression from the Insti-
tut Teknologi Bandung, Bandung, Indonesia,
in 1992 and 1999, respectively, and the Ph.D.
degree from the School of Electrical Engineering
and Informatics, ITB, in 2010, where he studied
image watermarking. In 1993, he started his aca-
demic career as a Lecturer with the Informatics
Department, ITB. He is currently an Associate

Professor with the School of Electrical Engineering and Informatics, ITB,
where he is also affiliated with the Informatics Research Group. His research
interests include cryptography and steganography-related topics, digital
image processing, fuzzy logic, and numerical computation.

ANGGRAINI BARLIAN received the bachelor’s
degree in biology from the Institut Teknologi
Bandung, Bandung, Indonesia, in 1987, the mas-
ter’s degree from the University of Waterloo,
Canada, in 1990, and the Ph.D. degree in biol-
ogy from the Biology Department, ITB, in 1999.
In 1988, she started her career as a Lecturer with
the Biology Department, ITB. She is currently
an Associate Professor in cell biology with the
School of Life Sciences and Technology, ITB. Her

research interests include tissue engineering, developmental biology, repro-
ductive biology, and aging.

61170 VOLUME 9, 2021

http://dx.doi.org/10.1109/ICIP.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
http://dx.doi.org/10.1080/03772063.1998.11416038
http://dx.doi.org/10.1093/humrep/13.3.611
http://dx.doi.org/10.1109/ICITSI.2015.7437674
http://dx.doi.org/10.2164/jandrol.106.002188

