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Background and Objective: Object detection is a primary research interest in computer vision. Sperm- 

cell detection in a densely populated bull semen microscopic observation video presents challenges that 

are more difficult than those presented by other general object-detection cases. These challenges include 

partial occlusion, vast number of objects in a single video frame, tiny size of the object, artifacts, low 

contrast, low video resolution, and blurry objects because of the rapid movement of the sperm cells. This 

study proposes a deep neural network architecture, called DeepSperm, that solves the aforementioned 

problems and is more accurate and faster than state-of-the-art architectures. 

Methods: In the proposed architecture, we use only one detection layer, which is specific for small object 

detection. For handling overfitting and increasing accuracy, we set a higher input network resolution, use 

a dropout layer, and perform data augmentation on saturation and exposure. Several hyper-parameters 

are tuned to achieve better performance. Mean average precision (mAP), confusion matrix, precision, re- 

call, and F1-score are used to measure accuracy. Frame per second (fps) is used to measure speed. We 

compare our proposed method with you only look once (YOLO) v3 and YOLOv4. 

Results: In our experiment, we achieve 94.11 mAP on the test dataset, F1-score of 0.93, and a processing 

speed of 51.9 fps. In comparison with YOLOv4, our proposed method is 2.18 x faster on testing, and 2.9 x 

faster on training with a small dataset, while achieving comparative detection accuracy. The weights file 

size was also reduced significantly, with one-twentieth that of YOLOv4. Moreover, it requires a 1.07 x less 

graphical processing unit (GPU) memory than YOLOv4. 

Conclusions: This study proposes DeepSperm, which is a simple, effective, and efficient deep neural net- 

work architecture with its hyper-parameters and configuration to detect bull sperm cells robustly in real 

time. In our experiments, we surpass the state-of-the-art in terms of accuracy, speed, and resource needs. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Due to its massive population, Indonesia has a big beef demand. 

owever, current beef production levels are insufficient to meet 

he demand. Indonesian government imported beef from foreign 

ountries at a cost of approximately $900 million in 2019 [1] . The 
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ndonesian government built and mandated some artificial insem- 

nation centers, such as The Lembang Institute for Artificial Insem- 

nation ( Balai Inseminasi Buatan/BIB , Lembang, Indonesia), to pro- 

ide high quality frozen bull semen as the main substance for arti- 

cial insemination, in order to address the lack of beef production. 

rtificial insemination is the most widely used reproductive tech- 

ology in the country for improving beef production [2] . Currently, 

he Lembang Institute for Artificial Insemination carries out sperm 

valuation manually. 

When a manual sperm evaluation is performed, there is a risk 
f intra-variabilities and inter-variabilities. When the same ob- 
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Table 1 

First dataset extractions. 

Video number Number of video frames extracted 

1 50 

2 50 

3 2 

4 2 

5 2 

6 2 

7 2 

8 2 

9 2 

10 2 

11 2 

12 2 
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erver delivers different manual measurement findings at differ- 

nt times, even though the sample is the same, this is known 

s intra-variability. When two (or more) observers produce dif- 

erent manual measurement results on the same sample, this is 

nown as inter-variability. Unlike manual measurement, computer- 

ssisted sperm analysis produces consistent measurement results 

or each sample. For more details, the intra-variabilities and inter- 

ariabilities [3] , its subjectivity [4] , high time and human-resource 

onsumptions, and exhaustion to the observer’s eyes have been the 

ain drawbacks of manual evaluation. Automatic sperm evalua- 

ion has been a critical demand for the institution. A computer- 

ided sperm analysis (CASA) robust sperm detection capability is 

rgently required. 

Dott and Foster reported that sperm motility assessment by 

ASA is well correlated with manual sperm measurement of var- 

ous animals [5] . They also mentioned some studies that came to 

imilar conclusions. Several studies also reported the comparison 

etween manual and CASA based sperm evaluation [ 6 , 7 ]. The ad-

antage of sperm measurement using CASA compared to manual 

easurement is that it is more accurate [8] , high reproducibility 

8] , and objective [7] . 

Sperm quality is measured with different parameters such as 

oncentration, morphology, and viability. However, sperm motility 

s the parameter that is the most related to fertilization [9–11] . The 

ost common approach to measure sperm motility, in sequential 

rder, is sperm detection, sperm tracking, computing CASA motility 

arameters, and sperm motility classification based on CASA motil- 

ty parameters. Sperm detection is unquestionably important for 

ccurate and timely sperm tracking, which has an impact on the 

ntire sperm motility measuring process. Therefore, we focus on 

mproving sperm-cell detection. 

Several studies have been conducted for sperm-cell detection. 

owever, some problems remain unsolved. In this study, we focus 

n solving these two problems: (1) limited accuracy and (2) high 

omputational cost, which are detailed in the following section. 

Observers in many artificial insemination centers are constantly 

onfronted with densely populated sperm videos. In a single 

ensely populated video frame, there can be more than 500 sperm 

ells. 

According to a survey paper [12] , the vast majority of previous 

perm cell detectors achieved high accuracy because the density 

as small (only 10-20 sperm cells presents in the video). When the 

ensity increases, the accuracy decreases significantly. For example, 

amilton Thorne, a commercial computer-based automated sys- 

em, yields measurement errors in densely populated sperm sus- 

ensions due to many colliding sperms as reported in [ 7 , 13 ]. 

Previous methods mostly used conventional image-processing 

pproaches [14–16] . Some of the researchers employed mainly im- 

ge binary morphological operations [17–19] . In contrast, Nissen 

t al. [20] used some sets of convolutional neural network (CNN) 

rchitectures for performing sperm detection. In those studies, they 

laimed to have achieved 84–94% sperm detection on low concen- 

rated semen. However, once again, this percentage significantly 

egrades on highly concentrated semen. 

Deep learning-based methods have gained popularity due to 

heir performance. However, another problem arises with these 

ethods, which is the need for a large number of valid annotated 

raining data to prevent overfitting. Unfortunately, performing an- 

otation in this study case is very laborious. 

To summarize, the limited accuracy was caused by these spe- 

ific challenges of sperm-cell detection on densely populated se- 

en: frequent partial occlusion, vast number of objects in a sin- 

le video frame, tiny size of the object, artifacts, low contrast, low 

ideo resolution, and blurry object because of the rapid movement 

f the sperm cell. In addition, having many annotated training data 

as laborious. These were the first problems we addressed. 
2 
Sperm-cell detection is a kind of object detection. Deep 

earning-based approaches, YOLOv3 [21] and YOLOv4 [22] , have 

chieved state-of-the-art performance for solving general object- 

etection problems. Unfortunately, owing to the fairly large size 

f the architecture, large weights files were produced that needed 

onsiderable amounts of training and test time, graphical process- 

ng unit (GPU) memory, and considerable amount of storage space. 

he high computational cost was the second problem that we ad- 

ressed. 

. Materials and methods 

.1. Dataset 

We collected twelve bull-sperm observation videos from twelve 

ifferent bulls at the Balai Inseminasi Buatan Lembang , Indonesia. 

he samples were not stained. The length of the videos varied from 

 s to 124 s. In each video frame, the average number of sperms 

as 370 with a 139.53 standard deviation. The least dense video 

rame contains 114 sperm cells whereas the densest video frame 

ontains 568 sperm cells. An Olympus BX 51 phase-contrast micro- 

cope with 10 x magnification of the objective lens was employed 

o capture the sperms. We recorded the sperm using Sony Exwave- 

AD digital camera with 10 x magnification which results in 100 

 total magnification. The video resolution was 640 × 480 pixels 

ecorded at 25 fps and stored in MPEG format. Each video was 

aken in moderately different lighting conditions. We extracted 

ideo frames from each video in jpeg format with three channels 

RGB) and 24-bit depth. Despite the fact that the video frames ap- 

ear to be monochromatic, they actually comprise three channels, 

s specified by the digital camera. 

To know the characteristics of the dataset, we converted the 

rame extracted from each video sample into a greyscale image 

nd plotted its histogram, as shown in Fig. 1 . We also calculated 

he pixel mean value and the standard deviation ( std ) of the image 

ixels. There were two conclusions drawn from the samples; firstly, 

ll the histograms were very narrow, representing that all the sam- 

les had low contrast; secondly, the histograms of the dataset vary 

rom left-skewed, intermediate, and right-skewed. 

We constructed the dataset using three different dataset splits 

o adequately test the models. The first split involves randomly 

xtracting 50 frames from two videos with different histogram 

haracteristics as a training dataset. We shuffled them; 80% was 

sed for the training dataset and the remainder for the valida- 

ion dataset. We randomly extracted two video frames from each 

f the remaining ten videos and used them as the test dataset. This 

plit was suggested in [23] and was beneficial to test how well the 

odel generalizes to new data [24] . This split is particularly use- 

ul for determining which models perform well with minimal data, 
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Fig. 1. (a) V1, mean = 171.19 and std = 27.92; (b) V2, mean = 163.22 and 

std = 24.38; (c) V3, mean = 125,45 and std = 21.27; (d) V4, mean = 108.84 and 

std = 19.87; (e) V5, mean = 97.82 and std = 21.34; (f) V6, mean = 148.86 and 

std = 22.81; (g) V7, mean = 102.86 and std = 21.46; (h) V8, mean = 88.93 and 

std = 15.51; (i) V9, mean = 93.09 and std = 22.49; (j) V10, mean = 144.55 and 

std = 25.16; (k) V11, mean = 88.56 and std = 21.17; (l) V12, mean = 179.95 and 

std = 32.25. 

Table 2 

First dataset proportions. 

Dataset role Source Number of video frames 

Training Video 1 – 2 80 

Validation Video 1 – 2 20 

Test Video 3 – 12 20 

Table 3 

Second and third dataset extractions. 

Video number Number of video frames extracted 

1 10 

2 10 

3 10 

4 10 

5 10 

6 10 

7 10 

8 10 

9 10 

10 10 

11 10 

12 10 

Table 4 

Second dataset proportions. 

Dataset role Source Number of video frames 

Training Video 1 – 9 75 

Validation Video 1 – 9 15 

Test Video 10 – 12 30 

Table 5 

Third dataset proportions. 

Dataset role Source Number of video frames 

Training Video 1 - 7 60 

Validation Video 1 - 7 10 

Test Video 8 – 12 50 
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3 
hich is common in sperm detection. Tables 1 and 2 illustrate the 

ataset extractions and proportions. 

The second and third splits are intended to take distinct data 

ariations into account. It begins by randomly extracting 10 frames 

rom each video. The second split begins with the selection of 

hree videos for the test dataset with distinct histogram character- 

stics (left-skewed, intermediate, and right-skewed). For the valida- 

ion dataset, we shuffled the remaining nine videos and randomly 

elected 15 frames. This split is also suggested in [23] . The dataset 

xtractions and proportions are shown in Tables 3 and 4 . 

The third splits try to take different variations of the data while 

lso providing greater test variance. It works in a similar way to 

he second split, but with a larger test dataset. For the test dataset, 

e take five videos with various histogram characteristics. For the 

alidation dataset, we shuffled the remaining seven videos and 

andomly selected 10 frames. The dataset extractions are shown in 

able 3 and the proportions are shown in Table 5 . 

.2. Ground truth and dataset annotation 

Ground truth data were obtained from manual detection of 

perms by two experienced veterinarians who have more than 14 

ears of experience. The dataset in this study was relatively small 

ecause it was fairly laborious to annotate hundreds of sperm cells 

n a video frame. Several days were required to annotate 120 video 

rames. We adopted YOLOmark [25] to annotate the dataset man- 

ally. It is an annotation tool developed by Bochkovsky which is 

esigned specifically for YOLO based model. It is the most user- 
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Table 6 

Number of annotated sperm cells. 

No of split scheme Role Number of annotated sperm cells 

1 Training 28,735 

Validation 7,301 

Test 6,519 

2 Training 28,048 

Validation 4,978 

Test 11,382 

3 Training 21,390 

Valiation 4,117 

Test 18,901 
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Fig. 2. The proposed method’s architecture. 
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riendly tool to annotate small objects such as sperm cells. It will 

reate text annotation files with format 

〈 obje ct − class 〉〈 x _ cent er 〉〈 y _ cent er 〉〈 width 〉〈 heig ht 〉 
here 〈 object − class 〉 is the object identity, in- 

eger number ranging from 0 to (classes-1) and 

 x _ center 〉 〈 y _ center 〉 〈 width 〉 〈 height 〉 is the bounding box 

pecification, float number relative to width and height of image 

anging from 0.0 to 1.0. 

As an additional note, we evaluated sperms that reached the 

rame border. If 50% of their heads were visible, they were marked 

nd counted in. As we have three dataset splits, the number of 

amples in each dataset role is different which is presented in 

able 6 . In total, there were 44,048 annotated sperm cells. There- 

ore, we had a considerable number of annotated objects. 

.3. Neural network architecture 

The proposed architecture is based on YOLO. Sperm observed 

t a magnification of 100 x is considered a tiny object in this pa-

er. Some survey papers compare different state-of-the-art meth- 

ds for detecting small objects. Faster R-CNN was slower, achieving 

3.6 mAP, whereas YOLOv3 was faster, achieving 32.5 mAP on the 

ider Face dataset [26] . In tiny object samples from the PASCAL 

OC 2007 dataset, YOLOv3 often outperformed Faster RCNN [27] . 

OLOv3 (40 fps) is 10 times faster than Faster RCNN (4 fps) in both 

tudies [ 26 , 27 ]. We chose a YOLO-based object detector since it has

 high level of accuracy and is significantly faster than other meth- 

ds. We plan to put the findings of these studies to use in practi-

al application, therefore speed is as important as accuracy. As a 

esult, we use YOLOv3 as a benchmark because it was known as 

eing very good at recognizing small objects [ 26 , 27 ], and YOLOv4

s the current state-of-the-art. 

To improve the detection accuracy, the input network resolution 

as increased up to 640 × 640. The network contained 42 layers 

n total. All the convolutional layers used batch normalization. The 

rst seven layers were designed to downsample the image until 

 sufficient resolution for the architecture to detect small objects 

ccurately (80 × 80). 

In the following layers, there were 24 deep convolutional layers 

ith leaky RELU [28] activation function which formula presented 

n Eq. (1) [28] , i.e., 

 ( x ) = { x, i f x > 0 

0 . 1 x, otherwise. 
(1) 

To prevent vanishing/exploding gradient problems and to in- 

rease the detection accuracy, a shortcut connection was added to 

tilize the residual layers for every two convolutional layers [29] . 

he last layer, the YOLO layer, gave detection prediction on each 

nchor box along with its confidence score. The number of fil- 

ers of the YOLO layer was set according to Eq. (2) [28] . We used

hree anchor boxes, 1 × 1 grid size, and one class (sperm class). 
4 
herefore, the number of the filters at the YOLO layer according to 

q. (2) was 18. 

 = Gs × Gs × ( B ∗ 5 + C ) , (2) 

here 

n = number of f ilters 

Gs × Gs = number of the grids 

B = number of anchor boxes 

C = number of classes. 

At the end of the network, the logistic function is used. YOLOv3 

nd YOLOv4 have three YOLO layers, whereas the proposed archi- 

ecture has one YOLO layer only. This was because the proposed 

ethod is meant to detect only small objects; hence, a multi-scale 

rediction is not required. A more detailed schematic of the archi- 

ecture is presented in Fig. 2 . 

The reason why the number of layers used in the proposed ar- 

hitecture is less than that of YOLOv3 and YOLOv4 is to enhance 

he training and testing speeds. The maximum filter size is 3 × 3 

ecause the objects are very close to one another. This small fil- 

er size improves the speed while maintaining its accuracy. On the 

ther hand, to enhance the accuracy, the input network resolution 

s increased to 6 40 × 6 40. It is higher than the input network res-

lution YOLOv3 and YOLOv4 which use 608 × 608 resolution. 

We put a dropout layer just after the first shortcut layer. The 

hreshold is set to 0.5, which means any node with a weight less 

han half is dropped. This layer is crucial to prevent overfitting 

n the case of limited data and to increase speed while main- 

aining accuracy. Our code can be accessed at https://github.com/ 

Hidayatullah/DeepSperm . 

We compare our proposed method with YOLOv3 and YOLOv4 

hich have been the state-of-the-art model for object detection. 

able 7 shows the architecture comparison. We do not compare 

o YOLOv5 which has no official publication for its architecture, 

https://github.com/pHidayatullah/DeepSperm
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Table 7 

Architecture comparison. 

Method YOLOv3 YOLOv4 DeepSperm 

Input network resolution 608 × 608 608 × 608 640 × 640 

Number of layers 78 109 30 

Number of nodes 61,150,304 60,246,720 3,530,592 

Number of parameters 61,176,662 60,279,958 3,535,026 

Number of detection (YOLO) layers 3 3 1 

Activation function Leaky ReLU Mish Leaky ReLU 

Dropout No No 1 

Randomized input network resolution Yes Yes No 

Table 8 

Hyper-parameters comparison. 

Method YOLOv3 YOLOv4 DeepSperm 

Momentum 0.9 0.949 0.9 

Decay 0.0005 0.0005 0.0005 

Learning rate 0.001 0.00261 0.001 

Burn in 1000 4000 250 

Batch size 64 64 64 

Subdivision 16 64 16 

Pretrained weights darknet53.conv.74 yolov4.conv.137 darknet53.conv.74 
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yper-parameter, and configuration that makes comparison diffi- 

ult. 

.4. Hyper-parameters 

Besides neural network architecture, the network parameters 

ere also critical to obtain a faster training speed and a higher ac- 

uracy. We set the batch size to 64 and subdivisions to 16. To pre-

ent overfitting, in addition to the dropout layer, the momentum 

arameter is used to penalize a substantial weight change from 

ne iteration to another, whereas the decay parameter is used for 

enalizing enormous weights. We set the momentum to 0.9 and 

he decay parameter to 0.0 0 05. 

For the same purpose, we fine-tuned the learning rate. In this 

tudy, we set the default learning rate to 0.001, with burn-in 

warming up) until 250 iterations, which is 6.5% of the total it- 

rations: 40 0 0. We also set the learning rate decay, with a factor 

f 0.1, after 10 0 0 iterations, which is 25% of the total number of

terations. 

Owing to the relatively small dataset, we generated more data 

rom the existing data using data augmentation. We augmented 

he data by varying the exposure and saturation of each sample 

y specific parameters once. Both parameters were random num- 

ers between 0.5 to 1.5. The augmentation formula can be found 

n Eq. (3) . 

 

′ = k e V k s SI (3) 

 e = rand ( 0 . 5 , 1 . 5 ) (4) 

 s = rand ( 0 . 5 , 1 . 5 ) (5) 

here 

I ′ = augmented image sample 

I = original image sample 

k e = exposure parameter 

V = v alue/exposure of the original image 

k s = sat urat ion parameter . 

S = sat urat ion of the original image 

For clarity, we summarize the comparison between YOLOv3, 

OLOv4, and the proposed method’s hyper-parameters and config- 

rations in Table 8 . 
5 
.5. Training and testing environment 

We used two different system environments for training and 

esting. Both systems used Ubuntu 16.04 LTS operating system. 

able 9 shows the specification comparison. 

.6. Training 

As Tajbakhsh et al. [30] claimed that using a pre-trained model 

onsistently outperformed training from scratch, we used a pre- 

rained model called darknet53.conv.74. It contained convolutional 

eights trained on ImageNet available in the YOLOv3 repository 

31] . For comparison, we trained YOLOv3 with the same pre- 

rained model as ours and YOLOv4 with darknet.conv.137. YOLOv3 

as trained on the original darknet framework [31] , our model 

as trained using Bochkovskiy darknet implementation [32] , and 

OLOv4 was trained using the newest Bochkovskiy darknet imple- 

entation [33] . We trained YOLOv3 and YOLOv4 with their recom- 

ended original parameters except for the image augmentation. 

e used the same image augmentation parameters for YOLOv3 

nd our model specified in Eqs. (3) , (4) , and (5) . On the other hand,

OLOv4 used its augmentation parameters. This training scheme 

as chosen to give the best possible result for each model. 

Bochkovskiy [32] recommended using the number of iterations 

s many as 20 0 0 times the number of classes. Because one class 

as used, the recommended number of iterations was 20 0 0. How- 

ver, we trained the network 40 0 0 times (twice the recommenda- 

ion) just in case we found the best weights after 20 0 0 iterations. 

.7. Inference/testing 

We performed the testing of all the methods on the validation 

ataset as well as on the test dataset. We used mAP@50 as the 

etric of accuracy so that we can directly compare the proposed 

ethod’s accuracy with those of others. In mAP@50, 50 is used 

s an intersection over union parameter. We used mAP all-point- 

nterpolation implementation [32] , which was calculated according 

o Eqs. (6) and (7) . Mean average precision (mAP) with all point 

nterpolation calculates the area under the precision-recall curve 

or each unique recall. As described above, we use three different 

ataset splits, we calculate mAP for each split and averaging them 

o have mAP. We also use precision, recall, and F1-score as the 

etric to further analyze the result. Frame per second (fps) was 
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Table 9 

Hardware specification comparison. 

Training Testing 

Model Server PC 

Processor Intel(R) Xeon(R) Gold 6136 @ 3.00GHz Intel Core i7 8700 @3.2 GHz 

RAM 385 GB 16 GB 

GPU NVIDIA Titan V 12GB GPU RAM NVIDIA GeForce RTX 2070 8GB GPU RAM 

Fig. 3. Results comparison on one video frame from the validation dataset. 
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sed as a metric for speed. 

P = 

1 ∑ 

n =0 

( r n +1 − r n ) p interp ( r n +1 ) (6) 

p interp ( r n +1 ) = 

max 
˜ r : ̃ r ≥ r n +1 

p ( ̃ r ) (7) 

here 

p ( ̃ r ) = measur ed pr ecision at r ecall ˜ r . 

In the testing phase, all models were tested on their original 

ramework. On the Bochkovskiy implementation, we turned on the 

UDNN_HALF option. This option allowed for the use of Tensor 

ores of the GPU card to speed up the testing process. 

. Results and discussion 

.1. Accuracy 

The proposed method achieved 96.19 mAP on the validation 

ataset and 94.11 mAP on the test dataset, which is comparable 

o YOLOv4. Figs. 3 , 4 , 5 , 6 , and 7 present the comparison of the

esults. 

In a more detailed quantitative investigation (see Table 10 ), 

OLOv4 has the highest recall (0.97). However, it has the largest 

umber of false positives, lowering its precision to the lowest 

0.81) of all the methods. Our proposed method has nearly the 

ame recall (0.96) as YOLOv4 while maintaining precision (0.89). 
6 
s a result, we have the highest F1-score of any method (0.93). 

OLOv3 is a method that falls between YOLOv4 and our proposed 

ethod. 

YOLOv3 used a 608 × 608 input network resolution which 

chieved 91.28 mAP on the test dataset. YOLOv4 used the same in- 

ut network resolution and achieved 94.12 mAP average test accu- 

acy. To increase the accuracy, we used a higher input network res- 

lution (640 × 640). With this resolution, the input video frames 

ere divided into a 6 40 × 6 40 grid, which reduced the grid size. 

t was the main key to our proposed method’s accuracy. 

We may deduce from Figs. 5 , 6 , and 7 that the second split pro-

ides the best average test accuracy (95.03 mAP) whereas the first 

plit provides the poorest (89.49 mAP). It is reasonable because the 

econd split has the largest data variation in the training dataset 

hile the first split has the least. There is no significant difference 

n speed amongst models trained with different dataset splits. 

.2. Partial occlusion handling 

Partial occlusion is one of the main challenges that causes lim- 

ted detection accuracy. However, compared to other methods, our 

roposed method had been excellent at handling partial occlusion. 

ig. 8 presents the comparison details. 

In the first case, YOLOv3 failed to handle the partial occlu- 

ion of the bottom sperm cell. However, YOLOv4 and our proposed 

ethod was able to detect all the sperms correctly. 
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Fig. 4. Results comparison on one video frame from the test dataset. 

Fig. 5. Accuracy comparison of all the methods on the first dataset split. 
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reduction. 
In the second and third cases, our proposed method was able 

o detect the sperms accurately. The other methods still failed. The 

ey factor for handling partial occlusion is the higher input net- 

ork resolution. 

.3. Artifacts handling 

Artifacts are also the main challenges that lead to limited de- 

ection accuracy. In one of the test samples, there were tiny marks. 

hey had a similar grayscale as the sperm cells but smaller in size. 
7 
In YOLO90 0 0 [34] , the authors increased the recall of YOLO 

28] by using anchor boxes. However, they obtained a small de- 

rease in accuracy (mAP) [34] . The reason was YOLO based de- 

ector produces a significant amount of false positives. Fig. 9 in- 

icates that YOLOv4 regarded two artifacts as sperm cells. Our 

roposed method and YOLOv3 were able to ignore these ar- 

ifacts successfully. We believe that the failure of YOLOv4 ig- 

oring those tiny marks is because of the use of max pool- 

ng layers in the architecture. Pooling layers do not preserve 

ll the spatial information well by applying spatial resolution 
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Fig. 6. Accuracy comparison of all the methods on the second dataset split. 

Fig. 7. Accuracy comparison of all the methods on the third dataset split. 

Fig. 8. Partial occlusion handling comparison. 

8 
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Table 10 

Overall results comparison. 

Model YOLOv3 YOLOv4 DeepSperm 

Dataset split 

scheme 

1 2 3 1 2 3 1 2 3 

Number of layers 78 109 30 

Weights file size 

(MB) 

249.9 250 13.8 

Best weights epoch 4000 4000 3900 2800 2100 2300 1300 900 800 

Training 

time/epoch (s) 

6.50 7.88 7.20 13.37 13.11 12.92 3.98 4.74 4.85 

GPU RAM need 

(GB) 

7.2 6.5 6.1 

Validation set 

accuracy 

(mAP@50) 

93.84 95.34 94.28 94.86 96.16 96.33 95.01 96.33 96.58 

Test set accuracy 

(mAP@50) 

86.63 93.78 93.42 90.85 95.75 95.75 91.00 95.75 95.75 

TP 6242 10923 18212 6302 11046 18302 6245 10965 18393 

FP 1375 1101 1808 2706 1960 2608 984 1027 1903 

FN 274 459 689 214 336 599 271 417 508 

Precision 0.82 0.91 0.91 0.7 0.85 0.88 0.86 0.91 0.91 

Recall 0.96 0.96 0.96 0.97 0.97 0.97 0.96 0.96 0.97 

F1-score 0.88 0.93 0.94 0.81 0.91 0.92 0.91 0.94 0.94 

Average Fps 18.1 23.8 51.9 

Average testing 

time/image (s) 

0.049 0.042 0.017 

Fig. 9. Artifacts handling comparison. 
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We have managed to reduce false positives by increasing in- 

ut network resolution. Compared to YOLOv4, we can reduce the 

umber of false positives so that only two of these artifacts were 

egarded as sperm cells. 

.4. Overfitting handling 

If the training dataset’s samples have too little variation, the 

etectors may result in overfitting. We included samples in the 

ataset that we believe have sufficient variation to make the model 

esistant to overfitting. When detecting sperm with a magnification 

f 100x, the sperm cells appear relatively small, having annotated 

amples are often limited. Therefore, we add a single dataset split 

ith low variation in the training data to examine the influence 

n accuracy and determine which model has the best generaliza- 

ion capabilities. 
9 
With three different dataset splits, the detection performed by 

OLOv3 dropped by 3.21 mAP points. YOLOv3 used batch normal- 

zation in every convolutional layer, as well as in ours. Batch nor- 

alization was considered sufficient without any form of other 

egularizations. Therefore, the dropout layers were removed since 

OLO90 0 0 [34] . However, we observed that using only batch nor- 

alization was not sufficient for reducing overfitting. It was be- 

ause of the small number of samples in the training dataset. As 

 solution, we utilized the dropout layer with a threshold of 0.5. 

here were two recommended positions of the dropout layer: the 

rst at every layer and the second at the first layer only [35] . We

bserved that putting the dropout layer at the first shortcut con- 

ection yielded much better results than putting it at every short- 

ut connection. 

In addition, based on the dataset histogram analysis, we per- 

ormed data augmentation to increase the number of training data 
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Fig. 10. Speed comparison of all the methods during the test phase. 

Fig. 11. Speed comparison of all the methods during the training phase. 

b

r

a

2

t

a

r

c

t

o

v

g

s

r

s

t

3

F

t

m

t

l

i

b

r

Y

y varying the data according to its exposure and saturation. The 

esult indicated that the detection accuracy on the test dataset, 

s well as on the validation dataset, could be increased. With a 

.08 mAP gap, we achieved up to 96.19 mAP and 94.11 mAP on 

he validation and test datasets, respectively. 

The narrowest discrepancy between validation and test average 

ccuracy is found in YOLOv4 (1.67 mAP). The employment of a va- 

iety of augmentation techniques to enrich the training dataset is a 

ritical aspect. The test accuracy, on the other hand, was very near 

o the proposed method accuracy, with only a 0.01 mAP difference. 

YOLOv4 and the proposed method have the same accuracy gap 

f 4.01 mAP in the split when the training dataset only contains 

ideo frames from two videos, however YOLOv3 has a 6.21 mAP 

ap. The proposed method has the highest accuracy in this dataset 

plit, with 95.01 mAP validation accuracy and 91.00 mAP test accu- 

acy. It is obvious from this finding that including distinct variation 
w

10 
amples in the training dataset is critical to avoid. It is also crucial 

o apply regularization and augmentation. 

.5. Speed 

Speed is another highly critical criterion for object detection. 

or example, the observers in artificial insemination centers need 

he detection to be performed fast so that they can process as 

any semen evaluations as possible. Secondly, object detection (in 

his case, sperm cell detection) is often used as the first step for 

arger applications such as sperm cell tracking. Sperm cell track- 

ng is used to measure sperm cell motility, which also needed to 

e in real time. We need a real-time sperm cell detector to have a 

eal-time sperm cell tracker. 

We employed a smaller network (one-twentieth of YOLOv3 and 

OLOv4 convolutional layer parameters) to boost the test speed, 

hich was 2.87 times faster than YOLOv3 and 2.18 times faster 



P. Hidayatullah, X. Wang, T. Yamasaki et al. Computer Methods and Programs in Biomedicine 209 (2021) 106302 

Fig. 12. Some detection failures. 
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han YOLOv4. YOLOv4 ′ s architecture includes max-pooling layers, 

hich reduces computation and makes it faster than YOLOv3, de- 

pite the fact that the two have a similar amount of parameters. 

ith only 30 convolutional layers, the proposed architecture was 

rained 1.6 times faster compared to YOLOv3 (78 layers) and 2.9 

imes compared to YOLOv4 (109 layers). Figs. 10 and 11 show the 

peed comparison. 

.6. Failure case analysis 

In general, our proposed method has been able to detect sperm 

ells better than the other methods, summarized in Figs. 8 and 

 . However, we still encountered some detection errors. Fig. 12 

resents some of the detection failures which were highlighted by 

he arrows. 

To summarize, these were the reasons for the failures: the 

perm were almost fully occluded (second and third cases), the ar- 

ifacts were more or less similar to a sperm cell (first case), and 

he sperm was very blurry (fourth case). 

.7. Overall comparison 

For clarity, we compared the performances of all the methods 

n a single table ( Table 10 ). The results in bold were the best re-

ults achieved. YOLOv3 delivered better accuracy in detecting small 

bjects, compared to other methods in [21] . It has almost the same 

ccuracy as Faster R-CNN, but it is 10 times faster [26] . YOLOv4 is

he successor to YOLOv3, which includes numerous improvements 

nd achieves state-of-the-art performance for generic object detec- 

ion in terms of accuracy and speed. There is a common thread of 

etween accuracy and speed. Our proposed method, on the other 

and, can achieve substantially faster performance while maintain- 

ng accuracy and using fewer resources. Table 10 presents the over- 

ll results comparison. We average several parameters that are the 

ame or comparable across different splits. 

. Conclusions 

This study proposed a deep neural network architecture, with 

ts hyper-parameters and configurations detailed in the material 

nd methods section, for robust detection of bull sperm cells. It 

as robust to partial occlusion, artifacts, vast number of mov- 

ng objects, object’s tiny size, low contrast, low video resolution, 

lurred objects, and different lighting conditions. 

To summarize, the proposed method surpassed all the meth- 

ds in terms of accuracy, speed, and resource need. 0.93 F1-score 

nd 94.11 mAP on the test dataset, which is 0.05 points higher 
11 
nd 0.01 mAP lower than the state-of-the-art method (YOLOv4). 

n terms of speed, the proposed method achieved real-time per- 

ormance with 50.3 average fps, which was 2.18 times faster than 

he state-of-the-art method. Our training time was also faster, up 

o 2.9 times that of the state-of-the-art method. With that perfor- 

ance, it eventually needed a small dataset containing only 120 

ideo frames. 

The memory usage of the proposed architecture was also signif- 

cantly smaller than both YOLOv3 and YOLOv4. Only 30 layers were 

sed in the suggested architecture, which is 2.6 times smaller than 

OLOv3 layers and 3.6 times smaller than YOLOv4. Our proposed 

rchitecture has 3.5 million trainable parameters, which is one- 

wentieth of YOLOv3 or YOLOv4 parameters. There were some ad- 

antages to such architectures. The training and testing times were 

ast, less GPU memory was needed (1.18 times less than YOLOv3 

nd 1.07 times less than YOLOv4), and less amount of file storage 

as needed (weights file’s size was one-twentieth of the size of 

OLOv3 and YOLOv4 weights file). 

In the future, we shall apply the proposed method for sperm 

ell tracking. We also want to test it for different cases such as 

etecting blood cells, bacteria, or any other biomedical case. We 

elieve that this architecture shall perform well in these cases too. 
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