
Chaos-based Modified “EzStego” Algorithm for
Improving Security of Message Hiding in GIF Image

Rinaldi Munir
Informatics Research Group, School of Electrical Engineering and Informatics, Institut Teknologi Bandung

Bandung, Indonesia
E-mail: rinaldi@informatika.org

Abstract—EzStego is a steganography algorithm to embed the
secret message in the GIF images. The message is embedded into
indices of sorted color palette of the images. EzStego is a
sequential embedding type of stego-algorithm. There is no key
required for embedding, so anyone that know the algorithm can
extract the message. For improving security, a modified EzStego
algorithm is proposed. Bits of the message are embedded
randomly in the image. Locations of embedding is generated
from a random permutation which need an initial value as stego
key. Before embedding, the message is encrypted with random
bit which is generated by a chaos map. Based on experiments, the
modified EzStego is more secure than the original EzStego,
because anyone who has no information on the key can not
extract the message from the stego-images.

Keywords—EzStego, GIF images, chaos, random, secure.

I. INTRODUCTION
Besides of cryptography, information security can be done

using steganography. Steganography means hidden writing.
Steganography is the art and science of hiding message in the
communication by embedding the secret message into a cover
media (usually digital data such as image, video, or audio).
Goal of steganography is hiding existence of message in the
cover. By using steganography, transmission of secret
information can be done securely, so that the presence of the
information can’t be known from the third party.

Images are common cover in message hiding. The message
can be embedded into the image in spatial domain or transform
domain. In the spatial domain, the message is embedded into
pixel values, meanwhile in the transform domain the message
is embedded into coefficient values such as discrete cosine
transform (DCT) coeficients.

One of popular steganography technique in spatial domain
is the least significant bit (LSB) embedding. In this technique,
bits of the message are embedded into LSB of pixel values.
Majority of based-LSB algorithms use images in bitmap
(BMP) format. In the bitmap format, pixel values represent
graylevel of the pixel. The message is embedded directly by
replace LSB of pixel values with bits of the message.

Besides of bitmap images, there are another popular image
formats such as GIF images. GIF (Graphics Interchange
Format) image, a kind of indexed image, was introduced as an
image format by Compuserve in 1987. An indexed image uses
a palette of up to 256 colors from the 24-bit RGB color space

with values in the range [0,1]. The pixel values represent index
to a palette row. Color of the pixel is combination of each
channel red (R), green (G), and blue (B) in the palette row.

 One of the most popular steganography algorithm for GIF
images has been proposed by Machado [1]. Her algorithm is
called EzStego. In order to minimize color degradation, the
palette is sorted so that the difference between two adjacent
color is minimized. EzStego embeds message into the LSB of
indices (pixel values) pointing to the sorted palette. Besides of
EzStego, there is another steganographic algorithm for GIF
images, i.e. S-Tool. S-Tool was developed by Andy Brown. S-
Tool encrypt the message before embedding with various
encryption algorithm such as DES and IDEA [2].

The disadvantage of EzStego is there is no key required in
embedding process, so anyone who know that the stego-image
is made using EzStego can extract the message. In this paper,
we present a modified EzStego for improve security. In the
modified EzStego, the pixels for message embedding are
chosen randomly using a random permutation that seeded with
a secret key. To make the embedding more secure, the secret
message is encrypted before it is inserted in the image. The
secret message is encrypted by XOR-ing it with random bits
that is generated from a chaos system. Thus, there are two keys
needed, one for a seed for the random permutation, and another
key for encryption. The chaos system is chosen because it is
sensitive to very little change of initial values. This
characteristics is important on security, because it makes the
exhaustive key search becomes more difficult.

This paper is organized into five sections. The first section
is introduction. The second section will explain some study of
literatures such as GIF images, chaos system that called logistic
map, and an original EzStego algorithm. In the third section,
we propose a modified EzStego algorithm that improve
security of original EzStego. The fourth section describe the
experiments and discuss the results. Finally, in last section we
give conclusion and suggest future works.

II. LITERATURE STUDY

A. Review of GIF Images
The GIF images is a kind of indexed images. A GIF image

consists of a pixel matrix and a color palette. There is a direct
mapping from pixel values to the color in the palette. The pixel
values represent indices to the palette. The color of the pixel is

2015 International Conference on Computer, Control, Informatics and Its Applications

978-1-4799-8773-3/15/$31.00 c©2015 IEEE 81

determined by mixing of each component RGB in the palette.
Fig. 1 shows the structure of an GIF image. In the figure, the
pixel value 5 represents the fifth row of the palette. In the row,
R = 0.2902, G = 0.0627, B = 0.0627. Thus, the color perception
of the pixel 5 is combination of the color component.

Fig. 1 GIF image structure (Source: Matlab)

The palette size is up to 256 entries (rows). The limited

number of colors in the palette makes GIF format efficient only
for images with low dept color such as cartoon or animation
image.

B. Logistic Map
Study of the chaos systems for increasing information

security is very interesting in recent years [3]. The Chaos
systems is interesting because they have a characteristics of
sensitivity to initial values. It means that the bit changes to the
initial values will produce the chaos values that differ
significantly. This characteristics is required to information
security.

A popular and the simplest chaos system is a Logistic
Map, described by a iteration equation,

 xk+1 = μxk (1− xk) (1)

The initial values is μ, where 0 < μ ≤ 4, and x0 for starting the
iteration. The map is in chaotic state when 3.57 < μ ≤ 4 [4],
and in this chaotic the behavior of systems appears to be
random.

If a logistic map is used as as a pseudo-random generator,
then the initial values, x0, and constant μ, behave as the secret
keys. For example, by changing x0 slightly becomes x0 + Δ,
the chaos values generated, after iterated several times are
significantly different from the previous chaos values with
initial value x0.

C. EzStego Algorithm
EzStego can be referred as a name of steganographic tool

or as a name of algorithm. EzStego is a sequential embedding
type of stego system. Bits of the message are embedded
sequentially in the LSBs of the pixels values. However, if we
replace LSB of the pixel value with a message bit, the pixel
value maybe increase or decrease. Because of the pixel value is
a pointer to the palette, this new pixel value will point to a

previous or next entry in the palette. The color difference
between two adjacent entries in the palette maybe significant,
so that the color of the pixels before and after embedding
maybe different significantly. This makes distortion in the
stego-image.

In order to minimize the distortion, the palette is first sorted
by intensity values so that the difference between two adjacent
colors is minimized. In the sorted palette, the colors are near to
each other. During the embedding process, the message bits are
embedded to LSBs of color indices to the sorted palette. It
replace color by its neighboring color in the sorted palette, if
necessary.

Fig. 2 illustrates the embedding process in EzStego. Suppoe
there are eight different colors in the palette which the pixel
values (pointer to the palette) are 0, 1, 2, …, 7. First, the palette
is sorted so that the two adjacent colors is minimized. Next, we
assign the new indexs to the palette (000, 001, …, 111).
Suppose we embed a message bit ‘1’to pixel 7 whose the
palette index is ‘100’. We replace the LSB of the ‘100’ by ‘1’
(100 101) which it points to pixel 3. Thus, the color of pixel
7 is replaced by color of pixel 3. This technique is applied to all
pixels sequentially until the message is exhaustive. By this
technique, we get a stego-image with minimal distortion.

The extraction process is very easy. Before extracting, first
we sort the palette with a same way in embedding process.
Next, the message bits are extracted from the LSB of the sorted
indexes.

Fig 2. The embedding process of EzStego [5]

III. THE PROPOSED ALGORITHM
We can see in the original EzStego that no key(s) required

for embedding the message. Thus, anyone who get a stego-
image that maked by using EzStego, he or she can extract the
message from the stego-image.

So, in this section we propose a modified EzStego where
the message bits are embedded in random order of pixels..A
random permutation for the random positions of embedding is
generated. For increasing security, before embedding, we
encrypt the message with the random bits that generated by a
logistic map. The algorithm of embedding and extraction is
described follows.

82

A. Embedding Algorithm
We can resume the steps of embedding message in the

modified EzStego as follow:

1. Sort the palette of the original image by distance between
color of the pixels. The distance between the color (R1, G1,
B1) dan (R2, G2, B2) is calculated by Euclidean distance:

 2
21

2
21

2
21)()()(BBGGRRd −+−+−= (2)

Starting from the first entry of the palette, we calculate the
distance between the first entry and the next entries and
choose the closest distance. Repeat for the second entry, the
third entry, etc. Next, sort the palette by the distances in the
ascending order.

2. Assign the new index of the sorted palette by numbering 0,
1, 2, … etc.

3. Encrypt the message bits by XOR-ing them with the
random bits that generated by a Logistic Map with initial
values x0 and constant μ.

Because of a Logistic Map yields real numbers between 0
and 1, we convert them to integers and extract the LSB of
the integers as the random bits. Conversion xi to integer is
obtained as follows: xi multiplied by 10 repeatedly until it
reach a desired long number (size), and then truncate to
take the integer part. Mathematically, this process is
described by function T as follows [6]:

0,10),(≠∗= xxsizexT count

 (3)

where count is begined from 1 until x ∗ 10count > 10size – 1
and symbol || || represents truncation. The least significant
bit of binary representation of the integer is then extracted
to get the random bits [7].

Suppose the set of message bits is M dan the set of random
bits is K, we encrypt M by XOR-ing M with K to get the
encrypted message, C:

 C = M ⊕ K (4)

Embedding bits of C is performed by next steps.

4. Generate a random permutation with initial key y that
represent the random position of embedding.

5. Based on the random position, replace the LSB of indexs
of the sorted palllete by bits of the encrypted message, C.
Finally we get a stego-image.

B. Extraction Algorithm
1. Sort the palette of the stego-image by distance between

color of the pixels.

2. Assign the new index of the sorted palette by numbering 0,
1, 2, … etc.

3. Generate a random permutation with initial key y that
represent the random position of embedding.

4. Extract the LSB of the index of the sorted palette. We will
get the encrypted message, C

5. Generate the random bits K by iterating the Logistic Map
with initial values x0 and constant μ.

6. Decrypt the encrypted message by XOR-ing C with K to
yield the original message, M:

 M = C ⊕ K (5)

IV. EXPERIMENT RESULTS

We have performed some experiments to measure the
performance of the proposed algorithm. We use some test
images from natural images until cartoon image. The test
images are ‘roman’ (a grayscale image), ‘lenna’ and ‘mandrill’
(the color images), and ‘disney’ (a cartoon image). All of them
are images in GIF format (Fig. 3).

(a) Roman, 512 × 512

(b) Lenna, 512 × 512

(c) Mandrill, 512 × 512

(d) Disney, 397 × 280

Fig 3. The cover images

We embed some text file from vary size so that maximaze a

payload of the original image. Because of we only can embed
one bit in one index of the sorted palette, so the payload of the
GIF image is limited. If the payload is less than size of the
message, then only a part of the message that enbedded into the
original image. Suppose the original GIF image has the size of
M × N pixel. The payload is MN bits or MN/8 bytes. The
‘roman’ image has the size of 512 × 512, thus the payload is
512×512 = 262144 bits or 32768 bytes. The same payload is
for ‘lenna’ and ‘mandrill’ image with the same size with
‘roman’ image. Finally, the last image is ‘disney’ whose size is
397 × 280.

83

Quality of the stego-image is by calculating PSNR. PSNR
is calculated by

⎟
⎠
⎞

⎜
⎝
⎛×=

rms
PSNR 255log20 10 (6)

where rms is abbreviation of root mean square of two images, I
and Î , of size M × N pixels, that has a formula:

∑∑
= =

−=
N

i

M

j
ijij II

MN
rms

1 1

2)ˆ(1

(a) Roman, PSNR = 94.5974

(b) Lenna,PSNR = 77.8391

(c) Mandrill, PSNR = 69.5183

(d) Disney, PSNR = 73.06400

Fig 4. The stego-images

TABLE I. RESULTS OF EXPERIMENT

No. Cover image Text File Size of
File

PSNR (dB)

1. Roman.gif Readme.txt 3.25 Kb +104.4527
2 Roman.gif Snow.txt 17,3 Kb +97.1699
3 Roman.gif License.txt 75.Kb +94.4974

1 Lenna.gif Readme.txt 3.25 Kb +87.7391
2 Lenna.gif Snow.txt 17,3 Kb +80.5117
3 Lenna.gif License.txt 75.Kb +77.8391

1 Mandrill.gif Readme.txt 3.25 Kb +79.4378
2 Mandrill.gif Snow.txt 17,3 Kb +72.1956
3 Mandrill.gif License.txt 75.Kb +69.5183

1 Disney.gif Readme.txt 3.25 Kb +79.2028
2 Disney.gif Snow.txt 17,3 Kb +73.0012
3 Disney.gif License.txt 75.Kb +73.0640

The higher PSNR represent a fine quality after embedding,
the lower PSNR represent a big degradation after embedding.
For the convenience, the quality is still can be tolerance if
PSNR > 30.

The initial values for the Logistic Map is x0 = 0.675, μ =
3.9762, and a seed for the random permutation is y = 0.81. All
of them behave the secret keys in the stego-system.

The results of experiments is resumed in Tabel I, while the
stego images for embedding License.txt are shown in Fig. 4.
The hidden messages could be extracted back from the stego
images exactly. The original messages were same exactly with
the extacted messages, both size and content.

The last experiment was sensitivity testing. We know that
one of characteristics of chaos is the sensitivite to a little bit
changes in initial values. In the embedding algorithm above,
Logistic Map is used to generate random bits with initial
values x0 and constant μ and then encrypt the message with
the random bits. In this experiment, we changed x0 = 0.675 to
x0 = 0.67499999. The cover image was ‘roman’ image and the
message was Readme.txt. As a result, the extracted message
was different significantly if compared with the original
message. Fig. 5 shows the original message (a) and the
extracted message when x0 was changed from 0.675 to
0.67499999.

(a) The original message

(b) The extracted message

Fig 5. Result of the sensitivity testing.

V. DISCUSSION

We have performed some experiments and the results have
been shown in the above section. We find that the stego-images
are similar with the cover images, For maximum payload, we
get that PSNR of every stego-images are very high (all are > 30

84

dB). The results represent that the embedding of messages
didn’t affect quality of the images significantly. We observed
that the greater the size of the message, getting down the
PSNRs. The grayscale image, in this experiment ‘roman’
image, has the highest PSNR among the others. This result can
be explained as follows. In the grayscale image, the value of R,
G, and B are identic. The distance of two consecutive entry in
the palette is always same, i.e the distance is equal to one. It
implies no distortion arise from the sorting of palette.

The sensitivity testing of chaos shows this charcteristics
provide a strong security from exhaustive attack. The very
small change of the initial values caused the extraction process
produced wrong message. Therefore, the modified EzStego
algorithm is more secure than the original EzStego.

Next, we calculate space key. The space key states of
different number of keys that can be used to do embedding
and extraction [8]. In order to make brute-force attack not
effective, then the key space should be made large enough.
The secret keys used in the proposed algorithm is x0, μ, and y.
According to standard 64-bit IEEE floating-point, computation
precision of the floating point is 10-15 [8], so number of
possible values of x0 is 1015 as well as μ and y. Thus, key
space is 1015 × 1015 × 1015 = 1045. This key space is large
enough so that the algorithm can be resistant to exhaustive
attack.

VI. CONCLUSION

In this paper we have presented a modified EzStego
algorithm based on chaos. Quality of the stego-images are very
fine and no degradation significantly. The algorithm is secure
because the key space is enough large.

The future research is how the proposed algorithm can be
implemented for animated GIF. The animated GIF have a
special format that differ from the stil GIF image.

REFERENCES

[1] R. Machado, EZStego, http://www.stego.com
[2] N.F. Johnson and S. Jajodia (1998), ‘Exploring Steganography: Seeing

the Unseen, George Mason University’, IEEE Computers.
[3] Dawei, Z., Guanrong, C., Wenbo, L., A Chaos-Based Robust

Wavelet-Dmain Watermarking Algorithm, Chaos Solitons
and Fractals 22 (2004) 47-54.

[4] Bose, R., Banerjee, A., Implementing Symmetric Cryptography Using
Chaos Function, Indian Institute of Technology.

[5] A. Westfeld and A. Pfitzmann (1999). “Attack on Steganographic
System”, Lecture Notes in Computer Sciences, vol. 1768, pp. 61-76.

[6] Lampton, J., Chaos Cryptography: Protecting Data Using Chaos,
Mississippi School for Mathematics and Science.

[7] Munir, R., A Chaos-based Fragile Watermarking Method in Spatial
Domain for Image Authentication, Proceeding of ISITIA 2015.

[8] C. Fu, J. Chen, H. Zou, W. Meng, Y. Zhan, Y. Yu. 2012. A Chaos-based
Digital Image Encryption Scheme with an improved Diffusion Strategy.

Journal Optic Express 2363, Vol. 20. No. 3

85

