
Email Client Application with Rabbit Algorithm for

Android Smart Phone

Muhammad Anwari Leksono, Rinaldi Munir

Teknik Informatika

Institut Teknologi Bandung

Bandung, Indonesia

m_anwari@students.itb.ac.id, rinaldi@informatika.org

Abstract—this paper explains the implementation of Rabbit

algorithm in email application to secure email content on

Android smart phone. This particular email client uses Rabbit

algorithm to encrypt and decrypt confidential email’s content.

This application can be used to create, edit, send, retrieve, and

read a simple email. Email client is built for Android smart

phone by using Java. The experiments prove that by using

Google Mail service this application can be used as simple email

client with secured content feature.

Rabbit algorithm; email; email client; Android smart phone;

I. INTRODUCTION

Email as one of many important communication facilities

sometimes contains confidential content that needs to be

secured. One of many methods to ensure contents secrecy is by

using encryption. The proposed algorithm is Rabbit which is a

symmetric algorithm and symmetric algorithm is faster than

asymmetric ones [4]. Email service nowadays is commonly

accessed by using smart phone. One of the most popular smart

phone operating system is Android. In order to maintain

secrecy of email sent from Android smart phone, encryption

and decryption process must be planted in an email client for

Android smart phone.

In this paper we present a client application for encrypting

email in Android smart phone using Rabbit Algorithm. This

application is designed to be able to encrypt email content,

send emails, receive emails, read email, and decrypt email

content.

There are many things to be considered in the making of

this application such as: (1) integration of Rabbit algorithm

with email client, (2) method to create encrypted content and

send it by email, (3) method to retrieve email from email

service provider, and (4) read an email completely including

the encrypted content.

II. LITERATURES STUDY

A. Rabbit Algorithm

Rabbit algorithm was created by Fast Software Encryption

in 2003 with Martin Boesgaard, Mette Vesterager, Jesper

Christiansen, and Ove Scavenius. Rabbit uses 128 bit to

encrypt or decrypt 128 bit of plaintext or cipher text. Rabbit

has 17 variables: eight inner states, eight counters, and one

carry. There are three schemes of Rabbit: (1) key setup scheme,

(2) next state function scheme, and (3) extraction scheme. Key

setup scheme is used for initiating value of variables. Next state

function is used for updating variables value. Extraction

scheme is used to create a 128 bit pseudorandom string. Cipher

text is created by using XOR operation between 128 bit

plaintext with 128 bit pseudorandom string [1].

B. Email

Email is method to exchange message by using internet

connection. Email nowadays uses MIME as its format. Email

transaction uses store-and-forward method [5]. This method

enables people to send an email and received email later

without having themselves online at the time an email arrives.

There are protocols defined for email transaction such as

POP3 and IMAP are defined for retrieving email from internet

and SMTP is defined for email delivery. These protocols can

be modified with SSL with the aim of making them more

secure. IMAP protocol allows email user to manipulate their

email from any devices without worrying their email will be

erased after being read. POP3 does the opposites. POP3 allows

user to download their email from internet but this protocol

will erased their email so the same email will not be

downloaded next time [3].

C. Android Operating System

Android is developed by Google which is currently running

in smart phones. Android was built on Linux platform and

developed by using Java. Android has already been optimized

in order to be used in mobile environment. Android is

nowadays known as a popular smart phone operating system

[7].

Android is an open source operating system so there are

many developers who pay attention, explore, and fix Android

security risk. In other words, Android is secured [2].

Developing third-party application in Android can be done by

using Java, C, or C++. Using C or C++ does not improve

2012 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA)

978-1-4673-4550-7/12/$31.00 ©2012 IEEE 130

application performance but it can be assured that using these

languages can make source code more complicated [8].

III. PROPOSED ANALYSIS AND SOLUTION DESIGNS

There are some details to be thought and design for making

this email client including development language, design of

encryption and decryption process, email delivery and retrieval,

and content making and reading.

A. Development Language

In order to develop an email client for Android, there are

three languages that can be chosen. Java is seen to be the most

appropriate language since Java has many free libraries that

support and simplify the making of application. For this matter

Java has JavaMail library that focuses in email.

B. Rabbit Design

Rabbit encrypts 128 bit data or plaintext with 128 bit key. If

the plaintext is more than 128 bit length then plaintext must be

divided into several parts. These parts can be written as B1, B2,

.., Bn-1, and Bn. If the last part of plaintext, Bn, is less than 128

bit length then this part will be added with empty spaces until

this part has 128 bit length.

The process of Rabbit algorithm can be explained shortly as

follows: all variables are set to their initial value based on key

setup scheme; all variables then are updated by using next state

function scheme; extraction scheme creates 128 bits

pseudorandom string, Pn, from variables values; this 128 bits

pseudorandom string then is paired with Bn for XOR operation

creating Cn as the cipher text. These steps imply that next state

function scheme and extraction scheme will be called for n + 4

and n times respectively because next state function is also

called in key setup scheme for four times.

Cipher text has 128 bits or 16 bytes of length. If cipher text

is presented as set of characters then there will be 16

characters. The problem with this is if 8 bit of cipher text is

translated into a character then there is no guarantee that

corresponding character is readable, i.e. “00000000” means

“null” so this will not be visible as character and “00001010”

means “new line” and this also will not be visible. The

proposed solution for this matter is by representing cipher text

as a set of hexadecimal character. Each 8 bits will be translated

into two hexadecimal characters. By doing this, “0000000” will

be written as “00” and “00001010” will become “0A”. Since 8

bits or one byte will be translated into two hexadecimal

characters, 128 bits cipher text will be translated into 32

hexadecimal characters text. Therefore, cipher text’s length

will be two times longer than plaintext. Encryption flowchart

can be seen at Figure 1.

Decryption is designed to be slightly different. Since every

character in plaintexts is transformed into two hexadecimal

characters in cipher texts, cipher texts must be read per two

characters. If cipher text is more than 32 characters then cipher

text must be divided into parts. Each part contains only 32

hexadecimal characters. Each part is then transformed into 128

bits cipher text. The rest of decrypting process is the same as

encryption process. Decryption steps can be seen at Figure 2.

Figure 1. Encryption flowchart

Figure 2. Decryption flowshart

2012 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA)

978-1-4673-4550-7/12/$31.00 ©2012 IEEE 131

C. Content Making and Email Delivery

Content making means creating cipher text that will be used

as email content itself. In creating email content session, user

may insert either plaintext or cipher text or both. In order to

separate cipher text and plaintext, a pair of label is used. The

labels are “<enc>” and “</enc>”. In other words, all words

between these two labels are called cipher text. Steps to create

content and email can be seen at Figure 3.

Figure 3. Content-making and email delivery flowchart

Any other desired content which is not encrypted shall be

placed outside the labels. Plain content – not encrypted

content – must be placed before “<enc>” or after “</enc>.

Placement of plaintexts (plain contents) and cipher texts may

vary, such as cipher text followed by plaintext or vice versa.

Email is then sent by using SMTP. JavaMail provides SMTP

with TLS and SSL support. Email content is prepared to be

sent as text/plain content. This is a simple type of email

content which only contains text.

D. Email Retrieval and Content Reading

Retrieving email from internet can be done either with

IMAP or POP3. The chosen protocol is IMAP. IMAP is chosen

because it allows emails retrieval from internet without

deleting those emails in internet like what POP3 does. This

implies that even emails are already read by using application

once, emails can still be accessed.

Email content is composed by cipher texts and plaintexts.

In order to read email completely, cipher texts and plaintexts

must be divided into parts where each part contains either

cipher texts or plaintexts. These parts also need to be arranged

in proper order so when parts are joined, content will not lose

its semantic meaning.

Each part contains TYPE which defines if the subtext is

cipher text or plaintext and CONTENT which defines the

subtext itself. These parts can be seen in table below. If TYPE

equals to zero then CONTENT must be plain text and if TYPE

equals to one then CONTENT must be cipher text. After

decrypting, all parts are joined into one content. These steps

can be seen at Figure 4.

Figure 4. Email retrieval and content reading flowchart

IV. IMPLEMENTATION AND EXPERIMENTS

Implementation is done at personal computer. Application is

developed with Eclipse 3.6 with Android Plugin, Android

SDK, JDK 1.6, and JRE 16. Application is tested in Sony

Xperia Ray with Android 4.0.4 operating system.

Experiments are done in order to know if encryption-

decryption, email exchange, and content creation do their

function well. Encryption-decryption function is tested by

using some texts to be encrypted and the cipher text is

decrypted. If test data is the same as plaintext from decryption

then encryption-decryption function does its function well.

TABLE I. TABLE TEST DATA ENCRYPTION RESULT

No Ciphertext

1 34cf9bd6e25efd9a80b96dc0b44e1609

2
02cad6faae5a8fabd4ff21c9cb451b14

e3737b3c4cf07428cbeed24fcc4cd5a0

3 4d98c48eb8489dcdcbe529c0b44e1609

4

34cf9bd6e2528a819db16899b4074509

cb6b501513ba2a7386e2cd51c403d5b2

31b9022cf81e8c187d8a8ba790bfd0bf

4dbcf1c5cae2fe23914b44a8779f9504

1417338e78a3a9dbba5d3d3fb6d98740

68c71aadbc1d22e461b13bc0f1944865

4eae5ff6a8329fbab99379672d7ec9ae

29a59eb4fa88159f49e59b172161da42

Content creation function is tested along with encryption

test. Test data which are used to be encrypted and inserted into

email contain are “Hello World”, “~`!@#$%^&*()_+-

2012 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA)

978-1-4673-4550-7/12/$31.00 ©2012 IEEE 132

={}[]:'<>?,./|'”, “1234567890”, “Hello, today is September

11th 2012. Today is a big day. One of my friends says, 'Hey,

this new day should be awesome, right?'”. These four test data

are defined representing words, punctuations, numbers, and

their combination. These four test data is then encrypted by

using “helloworld” as the key. The cipher text from words,

punctuations, numbers, and combinations respectively can be

shown at TABLE I. Application interfaces for all test data with

“helloworld’ as the key are shown by Figure 5.

(a)

(b)

(c)

(d)

Figure 5. Application interfaces to encrypt all test data.

These four cipher texts are then used as part of email main

content. Cipher texts are inserted into main content by placing

them between two labels, “<enc>” and “</enc>”.To check that

encryption is done properly, the cipher texts must be decrypted.

Decryption result can be seen at TABLE II. Since decryption

results are as readable as the original plain texts then it is safe

to assume that encryption-decryption function works properly.

TABLE II. TABLE TEST DATA DECRYPTION RESULT

No Decryption Result

1 Hello World

2 ~`!@#$%^&*()_+-={}[]:'<>?,./|'

3 1234567890

4

Hello, today is September 11th

2012. Today is a big day. One of

my friends says, 'Hey, this new

day should be awesome, right?'

Email content is created by combining plaintexts and cipher

texts into one writing. There are many arrangements that can

be formed by combining cipher texts with plaintexts. Examples

of content can be seen at Figure 6. and Figure 7. below.

First two words which begin the world of

programming is “Hello World”. Encrypted “Hello

World” is this.

<enc>

34cf9bd6e25efd9a80b96dc0b44e1609

</enc>

Not only words, punctuations also can be

encrypted like this one.

<enc>

02cad6faae5a8fabd4ff21c9cb451b14

</enc>

And, that is it. Farewell for now.

Figure 6. First example content

<enc>

4d98c48eb8489dcdcbe529c0b44e1609

<enc>

<enc>

cb6b501513ba2a7386e2cd51c403d5b2

31b9022cf81e8c187d8a8ba790bfd0bf

4dbcf1c5cae2fe23914b44a8779f9504

1417338e78a3a9dbba5d3d3fb6d98740

68c71aadbc1d22e461b13bc0f1944865

4eae5ff6a8329fbab99379672d7ec9ae

29a59eb4fa88159f49e59b172161da42

</enc>

First cipher text comes from numbers

encryption.

Second cipher text comes from paragraph

encryption.

Figure 7. Second example content

Application interfaces for creating these two examples content

can be seen at Figure 8.

(a)

(b)

Figure 8. Application interfaces to send (a) first content and (b) second

content.

There are many ways to place plaintext and cipher text other

than two above. These two example paragraphs above are used

for two email content. Emails are then sent to two different

addresses which are roadflame@yahoo.com and

2012 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA)

978-1-4673-4550-7/12/$31.00 ©2012 IEEE 133

mailto:roadflame@yahoo.com

roadflame@gmail.com from address flameroad64@gmail.com.

To check if emails are sent properly, these two addresses are

accessed by using web browser. The result of delivery

experiment is that these two emails arrive at desired addresses

and application succeeds to send emails properly. These emails

with these certain contents are then forwarded to the sender

itself at flameroad64@gmail.com. After forwarding emails,

application by using sender account can read these example

emails.

Emails must be readable completely including cipher texts

inserted in email’s content. Complete email content can be

served after decrypting cipher texts, reading plaintexts, and

joining then together in the right order. These complete

readable contents can be seen at Figure 9. and Figure 10.

Application interfaces for each reading can be seen at Figure

11. (a) and Figure 11. (b).

First two words which begin the world

programming is “Hello World”. Encrypted “Hello

World” is this.

--

Hello World

--

Not only words, punctuations are also can be

encrypted like this one.

--

~`!@#$%^&*()_+-={}[]:'<>?,./|'

--

And, that is it. Farewell for now.

Figure 9. First example content reading

--

1234567890

--

--

Hello, today is September 11th 2012. Today is a

big day. One of my friends says, 'Hey, this new

day should be awesome, right?'

--

First cipher text comes from numbers

encryption.

Second cipher text comes from paragraph

encryption.

Figure 10. Second example content reading

Content can be read completely including the cipher texts.
Decrypted cipher texts are decrypted into readable plaintexts.
Since plaintexts from decryption are as good as original
plaintexts, reading-decrypting function for application is
proven to work properly.

Email content security has to be proven. This is done by

eaves dropping the network related to email delivery. Eaves

dropping is necessary in order to know whether the email

content is still secured even in network or not. Expected result

is that cipher texts which are inserted in email content are still

unreadable but plaintexts may be readable.

(a)

(b)

Figure 11. Application interfaces in reading (a) first example content, and (b)

second example content

To intercept email transmission in local area network, tool

which is used is WireShark. Application is run by using

emulator from PC. WireShark captures all data frames sent

from PC related to application’s email transmission. JavaMail

provides a feature which allows user to debug email

transmission related to the email protocols. This feature is

called mail-debug.

With this feature, before application sends an email to the

nearest network, mail-debug captures this email and reads the

content. Content is then shown by PC. Mail-debug captures all

messages that come and go from application. The expected

result is that email content will be captured and able to be read

plainly.

V. EXPERIMENT RESULTS ANALYSIS

Cipher text is always larger than plaintext because every

character in plaintext is transformed into two hexadecimal

characters in cipher text. Decryption results are not exactly the

same as original plaintexts. The difference is located at the end

of plaintexts from decryption. Results of decryption may have

spaces at the end of the text. These spaces are added to make

the length of plaintexts is dividable by 16.

Labels are added to every cipher texts from one Rabbit

session. Rabbit session starts with one key setup for one

plaintext in any length. This means that if content contains two

pairs of label then user must have used two Rabbit sessions.

Emails are sent by using SMTP protocol. The only email

service which is working for this application is Google Mail.

Google Mail does not allow email transmission by using

unsecure protocol. That is why when using JavaMail, SMTP

must be followed by enabling TLS protocol or SSL.

IMAP protocol is used to retrieve emails. By using IMAP

protocol, emails can be downloaded and accessed more than

just once. Content type for emails is text/plain. This explains

the reason why application is only able to send text messages.

In order to read content completely, content itself must be

divided into parts based on whether it is plaintext or cipher

2012 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA)

978-1-4673-4550-7/12/$31.00 ©2012 IEEE 134

mailto:roadflame@gmail.com
mailto:flameroad64@gmail.com

text. Content breaking for example one and two can be seen at

TABLE III. and TABLE IV. respectively.

TABLE III. TABLE CONTENT PARTS FOR FIRST CONTENT

No Type Content

1 0

First two words which begin the

world programming is “Hello World”.

Encrypted “Hello World” is this

2 1 34cf9bd6e25efd9a80b96dc0b44e1609

3 0

Not only words, punctuations are

also can be encrypted like this

one.

4 1 02cad6faae5a8fabd4ff21c9cb451b14

5 0 And, that is it. Farewell for now.

TABLE IV. TABLE CONTENT PARTS FOR SECOND CONTENT

No Type Content

1 1 4d98c48eb8489dcdcbe529c0b44e1609

2 1

cb6b501513ba2a7386e2cd51c403d5b2

31b9022cf81e8c187d8a8ba790bfd0bf

4dbcf1c5cae2fe23914b44a8779f9504

1417338e78a3a9dbba5d3d3fb6d98740

68c71aadbc1d22e461b13bc0f1944865

4eae5ff6a8329fbab99379672d7ec9ae

29a59eb4fa88159f49e59b172161da42

3 0

First cipher text comes from

numbers encryption.

Second cipher text comes from

paragraph encryption.

Decrypting is only done to content which has type one. After

decrypting is finished for all type one contents, all parts are

joined into one content. Joining process is done by following

the order of the parts. This order needs to be followed to

maintain the content semantic meaning.

Tapping email transmission using WireShark is a failure.

This is caused by JavaMail itself. JavaMail requires SMTP to

be secured with TLS. By using TLS all data frames are

encrypted before they go out to the nearest network. This fact

means that data frames can be intercepted but they can’t be

read at all.

Result from using mail-debug feature is a log from

application’s activity. This log records all messages coming

from network to application and going from application from

network. Email’s content is shown at this log clearly. Log

shows that cipher texts are not changed.

VI. CONCLUSIONS

There are conclusions from implementation Rabbit

algorithm in email client for Android smart phone.

1. Rabbit algorithm is implemented by using Java.

Encryption-decryption feature is combined with

email content editor.

2. Cipher texts and plaintexts must be able to be

separated. This separation is done by using labels.

3. Emails are sent by using SMTP service with TLS

support from JavaMail and received by using IMAP.

4. Content reading is done by dividing content into

parts. Parts which contain cipher texts will be

decrypted.

There are suggestions to make this email application better.

1. Another email content type should be supported.

2. Supported email services can be widened so other

than Google Mail service are useable.

3. Encryption-decryption can be used for images,

sounds, and other multimedia data types.

REFERENCES

[1] Boesgaard. Martin, Pedersen. Thomas, Vesterager. Mette, “The Rabbit
Stream Cipher – Design and Security Analysis”.

[2] Bryan. Randy, “Top 4 Advantages of Android over the iPhone”. 2010
[Online]. Available: http://randybryan.com/?p=671. [Accessed 7
November 2011].

[3] Crispin. M, “Internet Message Access Protocol - Version 4rev1”.

[4] KetuWare, “Symmectic vs. Asymmectic Encryption”.

[5] Partige. Craig, "The Technical Development of Internet Email”.

[6] Postel. J.B, “Simple Main Transfer Protocol”.

[7] Titlow. J.P, “Android, the Fastest Growing Smartphone OS in Europe,
Zooms Past iPhone”. 2011. [Online]. Available:
http://www.readwriteweb.com/archives/android_european_marketshare_
beats_iphone.php. [Accessed 3 November 2011].

[8] Turner. David, “Introducing Android 1.5 NDK”. 2009. [Online].
Available: http://android-developers.blogspot.com/2009/06/introducing-
android-15-ndk-release-1.html. [Available 6 December 2011].

2012 7th International Conference on Telecommunication Systems, Services, and Applications (TSSA)

978-1-4673-4550-7/12/$31.00 ©2012 IEEE 135

