
Vehicle Traffic Volume Counting in CCTV Video
with YOLO Algorithm and Road HSV Color Model­

based Segmentation System Development

oo

~
V')
V')

t:.
Vl
eo

'~
ro

~a.a.«
""C
e
ro
Vl
Q)
u
'>
Qj

V')

E
~
>

V')

eo
'~
ro
u
'c
:::J

E
Eou
Q)

Qj
f0­
eo
Q)
u
e
Q)

~eo
U
ro
eo

'~
ro
e

~e
-5
LI)
n
n
No
N

Abel Stanley
School of Electrical Engineering and Informatics

Institut Teknologi Bandung
Indonesia

kumaken132@gmai1.com

Abstract-Traffic congestion is a significant problem in
developing countries. One viable solution is a Smart Traffic Light
System which utilizes artificial intelligence to adapt light
configuration to actual traffic condition in real time. To adapt
properly, the system would need traffic density information. We
propose a vehicle counting system with neural networks to
calculate vehicle volume in traffic roads. In the proposed system,
a vehicle is detected with YOLO (You Only Look Once), the state­
of-the-art of neural network-based object detection algorithm.
The model's performance can be improved with the extraction of
RoI (Region of Interest), which is traffic roads. RoI extraction is
implemented with HSV color model-based segmentation. Vehicle
detection is followed by vehicle tracking and counting. Three
tracking algorithms are experimented with the system: KCF
(Kernelized Correlation Filter), CSRT (Channel and Spatial
Reliability Tracking), and MOSSE (Minimum Output Sum of
Squared Error). Vehicle counting is implemented in two methods:
incremental or actual. A graphical user interface is developed to
provide easy access to system configurations. The result reveals
that the best system configuration in terms of accuracy while
capable of running in real-time for CCTV recordings is YOLOv4
(608x608) with KCF tracker and RoI Extraction.

Keywords-artificial intelligence, HSV color model-based
segmentation, region of interest extraction, vehicle counting,
YOLO

I. INTRODUCTION

Traffic congestion is a significant problem in urban areas in
developing countries. Congestion results in time loss, higher fuel
consumption, and monetary losses [1]. The capital city of
Indonesia, Jakarta, is one of the cities in a developing country
that suffers the most from traffic jams. According to data
released by the UK's traffic congestion monitoring agency, the
TomTom Traffic Index, Jakarta is ranked 10th out of 416
countries with a 53 percent congestion rate during 2019 [2].
According to World Bank calculations, the results ofwhich were
submitted by the Minister of Transportation, Budi Karya
Sumadi, losses caused by traffic jams in the Indonesian capital
exceeded Rp 65 trillion per year [3].

A YOLO (You-Only-Look-Once)-based object detection
system is able to analyze CCTV recordings and predict vehicle
volume on a route. This vehicle volume can then be used to
calculate the path density value which is one of the variables

978-1-6654-2892-7/21/$31.00 ©2021 IEEE

Rinaldi Munir
School of Electrical Engineering and Informatics

Institut Teknologi Bandung
Indonesia

rinaldi@informatika.org

affecting how Smart Traffic Light System allocates time for
traffic lights.

Several studies have been carried out regarding vehicle
detection in traffic. Four of them are by Kurniawan et al.
(2018)[4], Bhuptani et al. (2019)[5], and Asha et al (2018)[6].
The proposed solutions from the studies stated utilized deep
neural networks for object detection problem. Some ofthem also
implemented tracking algorithms to maintain detection and
identification across video frames. Nevertheless, there are still a
few shortcomings from those studies such as counting parked
vehicles in traffic density calculation, capable of only
calculating the vehicle volume on one lane, and failure to
achieve real-time speed to accommodate CCTV cameras. This
paper proposes a more robust vehicle counting system that
attempts to address each shortcoming previously stated.

II. RELATED WORKS

A. Object Detection
You only look once (YOLO) is state-of-the-art for object

detection in real time. Compared to previous research on object
detection techniques using classifiers, YOLO adopts a technique
that views object detection problems as regression to spatially
separated bounding boxes and their associated class
probabilities. The original YOLO architecture uses a single
neural network so that the bounding box and class predictions
are generated in a single pass. Consequently, the YOLO model
can be optimized end-to-end directly [7].

Since the first iteration of YOLO, many notable
improvements have been made to it by various researchers. The
latest improvement of the original YOLO in the name of
YOLOv4 has been introduced by Alexey Bochkovskiy et al. [8]
The implementation of a new architecture as the backbone of
YOLO and modifications made to the neck of YOLO have
improved the mean average precision (mAP) of the network by
10% and the number of FPS (Frame per second) by 12%. In
addition, YOLOv4 has made the training process of YOLO
easier for single GPU systems.

B. Vehicle Counting and Traffic Density Estimation
Kurniawan et al. implemented a simple, basic CNN

(Convolutional Neural Network) model to detect traffic density

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on June 13,2022 at 07:59:37 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Region of Interest Extraction Flow Process

•
•

B. Vehicle Detection Model
YOLOv4 object detection model is used to detect vehicles in

video frames. Multiple types of YOLOv4 model are
experimented with. The models implemented in the system with
their configuration discrepancies are shown in Table 1.

Each YOLOv4 model is trained with Pascal Visual Object
Classes (VOC) dataset. The dataset used is the aggregation of

A. Region ofInterest Extraction Module
RoI Extraction is performed with HSV color model

segmentation. The module uses hue and saturation values most
commonly found in roads. HSV color model is chosen because
it separates color information (chroma) from intensity or
lightning (luma), allowing us to apply segmentation threshold
using only hue and saturation. In theory, segmentation done in
this way will provide a more robust result regardless of lightning
changes in the value channel compared to other color models
such as RGB.

Figure 2 illustrates the process pipeline that happens in this
module. The preprocess sequence is as follows: first, the raw
image in the RGB color space will be first converted to the HSV
color space. Then, the image is smoothed with Gaussian blur
technique to reduce image detail and Gaussian noise of the
image. The kernel size of Gaussian blur operation is chosen
following a heuristic. The rule of thumb on determining optimal
kernel size of a Gaussian filter is to choose 3 times standard
deviation (sigma value) of the image rounded to the nearest odd
integer in each direction [9].

After the image is preprocessed, HSV color model-based
segmentation is performed. The image is masked using hue and
saturation minimum and maximum threshold parameters to
extract RoI, which is traffic roads. This results in binary colored
mask, white represents RoI pixels and black represents not RoI
pixels. Finally, the mask is subjected to post-process sequence
to improve segmentation result. Next, image erosion and dilation
are performed on the mask. Image erosion calculates local
minimum value of an area of the kernel. This causes the white
areas (RoI) of the masked image get thinner, while the black
areas (not RoI) get wider. Image dilation process calculates the
maximal pixel value overlapped by the kernel and replace the
image pixel in the anchor point position with the maximal value.
This causes white regions within the masked image to "grow".
Image erosion removes noise in the mask but downscales the
mask. Image dilation upscales the mask back to its original size.

The final step in the post-process sequence is to perform
dominant segment extraction. The system finds the contours of
the mask and selects the segment with the largest contour area.
This step effectively removes every remaining noise in the mask.

Figure 1. Proposed Vehicle Counting System Flow Process

level in Indonesia from manually labeled CCTV dataset and
produced an average accuracy of 89.50%. The preprocessing
involves converting the input image into 100x100 single channel
or grayscale images. Exact vehicle counting is not performed in
the project. Instead, the output of the model is a binary
classification of whether the image represents a jammed traffic
condition or not.

Bhuptani et al. has implemented a system that uses CNN to
perform image transformation and is followed by YOLO for
traffic density estimation. The result of the system is the
counting result classified into 5 vehicle classes, namely car, bus,
truck, motorbike, and bicycle. In this project, YOLO is
performed after the image size is reduced to a significantly
smaller 19x19 image by the CNN, which makes the
classification process computationally less expensive and faster.
However, this project is unable to count vehicles across frames
in videos, which would require tracking algorithms. The paper
also stated that the project is unable to exclude parked vehicles,
which should not be counted in traffic density calculation.

Asha et al. (2018) has implemented a traffic management
system by combining an object detection unit and a correlation
filter-based tracker to process traffic data. The object detection
unit is built using the state-of-the-art YOLO algorithm and the
correlation filter is assisted by scale estimation for vehicle
tracking. In the vehicle counting process, the proposed system
observes several states to produce a more accurate counting
result, namely track state, detect state, terminate state, and target
lost state. The solution proposed is stated to only able to count
on a single lane. The system fails to count traffic density on each
lane separately if there are multiple lanes on the frame.

To overcome the limitations of previous studies, a more
robust vehicle counting system that covers every shortcoming
previously mentioned is proposed. The proposed system is
tailored for practical field use-cases, providing an end-to-end
solution to vehicle counting in a video which consists of an
object detector and tracker, RoI extraction module, and a
graphical user interface to provide better accessibility.

III. PROPOSED METHODOLOGY

The proposed vehicle counting system comprised of a
Region of Interest (in this case, traffic roads) extraction module
with HSV color model segmentation, a YOLOv4 object detector
trained to recognized 2 and 4-wheeled vehicles, an object
tracking module in-between detection intervals to reduce
average computational load, a vehicle counting module which
supports multiple lanes counting, and a graphical user interface
(GUI) to provide easy access to every system component
configuration. With the assumption that no vehicles are parked
in an active traffic road, RoI extraction is sufficient in excluding
parked vehicles from the counting result. The flow process of
the proposed vehicle counting system is shown in Figure 1.

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on June 13,2022 at 07:59:37 UTC from IEEE Xplore. Restrictions apply.

Pascal VOC 2007 and 2012. The dataset is also filtered to only
include sets containing 4 different classes of vehicles: car,
bus/truck, motorbike, and bicycle.

TABLE 1. YOLOv4 MODELS TRAINING CONFIGURATION

Configuration YOLOv4 Tiny YOLOv4 YOLOv4 Heavier

Image size 416x416 608x608 832x832

Batch size 64 64 64

Subdivisions 16 32 64

Layers 38 162 162

Base model yolov4.conv.137 yolov4.conv.137 yolov4.conv.137

Note: Other configurations not listed in the table are left as the default configuration

C. Vehicle Tracker
A Tracker is used in tandem with the detection process.

Vehicle bounding boxes' location and trajectory given by the
detection process are considered and their position in the next
frame is predicted by the tracker. Detection process is performed
in frame intervals while tracking process is performed in­
between detections. In this way, the system is able to perform
detection process more seldomly while still maintaining vehicle
detections with an object tracker. Thus, computational load done
per frame can be reduced, enabling the vehicle detection system
to reach a higher FPS.

Tracking algorithm also helps by producing better result in
cases where detection fails to, such as when occlusion happens,
which is a prominent problem in traffic scene as vehicles are
bound to overlap with each other. Three tracking algorithms are
experimented with the system: Kemelized Correlation Filter
(KCF), Channel and Spatial Reliability Tracking (CSRT), and
Minimum Output Sum of Squared Error (MOSSE). Each
tracker's performance is measured and compared to determine
which tracker is capable of achieving the highest accuracy and
is the fastest.

D. Vehicle Counting Module
The system offers two vehicle counting methods:

incremental and actual. The incremental counting method can
incorporate a counting line drawn by the operator and count each
vehicle that crosses it. Whenever a vehicle crossed a line, that
vehicle will be given the line ID which it crossed to prevent
duplicate counting. The module accepts multiple counting lines
and perform counting process on each line separately, which
makes it possible to perform vehicle counting on more than one
lane. Vehicle counting result is accumulated over time. The
incremental counting method is best suited for straight roads far
from intersections or roads that have several lanes. Figure 3
illustrates the system performing incremental counting method.

The actual counting method performs calculations without
any counting line. It outputs the result of the vehicle counting
process of the whole scene. The counting tally is deducted every
time a vehicle leaves the scene. This counting method is
proposed in response to incremental counting method's inability
to count vehicles properly in a congested traffic scene. The

actual counting method is best suited for intersections, roads
near a traffic light, or roads with a single lane.

Figure 3. Sample Detection Process (Left: actual mode. Right: incremental
mode with counting lines)

IV. TESTING METHODOLOGY

A. YOLOv4 Model Test Methodology
After training, each YOLOv4 model is tested with the Pascal

VOC test dataset aggregated from the 2007 and 2012 versions.
The main metric used to evaluate model performance is mean
average precision (mAP). Mean average precision is a common
metric to summarize the precision-recall graph into a single
quantifiable value. The average precision ofa single query is the
mean of the average precision scores over all queries, and the
mAP is the mean of average precisions over all queries, which
are given by:

NR

AP(q) = ~ " Pq(Rn)NRL
n=l (1)

mAP(q) = I~I I AP(q)
qEQ

where Rn is the recall after the nth relevant image is
processed and NR is the total number of relevant items for the
query, Q is the set of queries q. The mAP metric is chosen
because it considers both precision and recall oriented aspects
and is sensitive to the entire ranking [10].

B. Vehicle Counting Testing Methodology
The proposed system as a whole is tested on a traffic video

never seen before in model training. All tests are conducted with
a system supported by Intel(R) Core (TM) i5-8300H CPU @
2.30GHz, 2304 Mhz, 4 Core(s) CPU and NVIDIA GeForce
GTX 1050 Ti GPU. The videos used for testing are retrieved
from Area Traffic Control System of Medan City in Indonesia.
The vehicle counting system is tested on two CCTV videos and
each video is tested with both incremental and actual counting
methods. The final result is the average of testing result on both
videos and counting methods. The ground truth of the test
dataset used is obtained by performing manual counting.

First, a multi-class confusion matrix is constructed. Then, the
proposed vehicle counting system is run and the confusion
matrix is filled as the system counts simultaneously. Every
duplicate detection is classified as a false positive and every
missed detection is classified as a false negative. Lastly, the
values collected in the confusion matrix is used to calculate true
positives, true negatives, false positives, and false negatives.
Figure 4 shows a sample of multi-class confusion matrix used
for testing.

The evaluation metrics considered for testing is Recall,
Precision, F-score, Accuracy, False Positive Rate, and

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on June 13,2022 at 07:59:37 UTC from IEEE Xplore. Restrictions apply.

and accuracy is YOLOv4, YOLOv4 Heavier, and YOLOv4
Tiny. Contrary to the model training result, YOLOv4 Heavier
gave better results than YOLOv4 Tiny.

The cause of the disparity of the result lies on the dataset
used during testing. Models are trained with a high-resolution
dataset. During testing, the model must perform on CCTV
footage with a comparatively lower resolution. This causes
YOLOv4 Tiny model, which processes images at 416x416
resolution, to fail in detecting smaller and narrower vehicles
properly, such as motorcycles or bicycles. As a result, YOLOv4
Heavier with its lower test mAP value is able to provide better
result compared to YOLOv4 Tiny.

-13-ic-yc.-e--.----uu-c-k-TfU....--th------.--mo-tom-ik-----le ~'7:~~:~ undetected

V. RESULT AND ANALYSIS

bicycle 0

~ ~ud 0
i ~
6: I-m-OlO-rb-jk-+e0-'---+-----+-0---+-----t--+----

Fisrure 4. Multi-class Confusion Matrix

Framerate per Second (FPS). The final result of each metric is
averaged with weights relative to their support in ground truth.
This is due to vehicle class imbalance in the test videos,
containing more cars and trucks than two-wheeled vehicles.

• Pt><ls""
• n

1Imr><)

• F.... :lM·.R;.

• S" Dv fill

.110
• F1·S£QI1l

• FIIHfMo-i1IRIIJ.

.rp~(_DvllOl

C. System Performance based on Tracker
The proposed system's performance with each tracking

algorithm is shown in Figure 7. According to the results, the
order from the best to the worst tracker in terms ofFl-score and
accuracy is CSRT, KCF, and MOSSE. In terms of speed, the
order from the fastest to the slowest tracker is: MOSSE > KCF
> CSRT. The FPS difference between MOSSE and CSRT or
KCF is significant. The difference between the false positive rate
ofMOSSE and KCF or CSRT is also quite significant. KCF and
CSRT produce a very similar accuracy and Fl score.

Top Right: Figure 5. YOLOv4 Models Training Result
Top Left: Figure 6. System Performance with Various YOLOv4 Models

Bottom Left: Figure 7. System Performance with Various Tracker
Bottom Right: Figure 8. System Performance with or without RoI Extraction

A. YOLOv4 Model Training Result Analysis
Each YOLOv4 experiment model's training result is shown

in Figure 5. By comparing each model's precision and recall
values, it can be seen that all three models have a balanced ratio
of precision and recall. YOLOv4 boasts a considerable gap
between 0.94 recall and 0.79 precision. We conclude that
YOLOv4 model has a very good detection rate although it can
make some false detections sometimes (false positive).
YOLOv4 Tiny boasts higher precision compared to recall,
though the difference is small. This suggests that YOLOv4 Tiny
has a worse detection rate compared to YOLOv4 but more
seldom in making false detections. YOLOv4 Heavier, having the
lowest Fl-score of all three, is lagging behind YOLOv4 and
YOLOv4 Tiny in terms of precision and recall balance. This
suggests that YOLOv4 Heavier is the comparably worse object
detector model.

The mAP value of YOLOv4 Tiny and YOLOv4 models is
relatively high (>0.8) while YOLOv4 Heavier mAP is relatively
low (0.65). In theory, YOLOv4 Heavier model should have
performed better because it processes images at a higher
resolution. The contradiction suggests that something has gone
wrong in YOLOv4 Heavier model's training process. After
further analysis on YOLOv4 Heavier training process, two
possible causes are considered: smaller mini-batch size causing
the model to be stuck in local optimum [11] and unsuitable
anchors settings for given input image resolution.

D. System Performance with or without Region ofInterest
Extraction
The proposed system's performance with or without RoI

extraction is shown in Figure 8. According to the results, it can
be concluded that the application of RoI extraction can slightly
improve recall, precision, Fl-score, and accuracy of the system.
More importantly, RoI extraction can significantly reduce the
false positive rate and increase the system's average FPS by 3.

Figure 9. Detection Result without and with Region of Interest Extraction.
(Left: without RoI extraction. Thefalse positives: the cars parked on the left

side ofmain road and on far road on top is counted. Right: with RoI
extraction. The false Dositives are not counted.)

RoI extraction is able to improve system performance by
preventing some false detections (false positives). Some false
positive examples are: parked vehicles, vehicles not on the road
of interest, or objects misinterpreted as vehicle such as
billboards with car images. By reducing the false positives, the
number of objects needed to be tracked decreases. This results
in a significant improvement on FPS. By extension, road
extraction also excludes parked vehicles as a consequence of
excluding roadsides, which is where parked vehicles are most
commonly found at. A comparison of detection result with and
without RoI extraction is shown in Figure 9.

B. System Performance based on YOLOv4 Model Analysis
The proposed system's performance with each YOLOv4

models is shown in Top Left: Figure 6. According to the results,
the order from the best to the worst model in terms ofFl-score

E. System Performance based on Configuration
Combinations
The proposed system's performance with each configuration

combination is experimented. Every evaluation metric value

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on June 13,2022 at 07:59:37 UTC from IEEE Xplore. Restrictions apply.

considered for each configuration combination is laid out in
detail by Table 2.

On most configurations, RoI extraction improves the
counting result slightly and increases FPS considerably. The
only configuration in which RoI extraction becomes detrimental
to the performance of the system is with YOLOv4 Tiny and
MOSSE tracker. This is because when RoI extraction is
performed, when the image frame is masked to a very tight fit
with the road of interest, some parts of vehicle might get
occluded as a consequence. The small amount ofocclusion does
not pose a problem for a more accurate YOLOv4 model and
tracker, but it is quite problematic for less accurate YOLOv4
Tiny and MOSSE tracker. This causes the system with that
configuration to fail in maintaining some detections over the
course ofa vehicle's movement, resulting in worse accuracy.

The configuration with a good counting accuracy and
sufficient FPS for real-time CCTV processing (> 20 fps) is
YOLOv4 model, KCF tracker, and with RoI extraction. The
system configuration with YOLOv4 model, MOSSE tracker,
and with RoI extraction or YOLOv4 Heavier model, MOSSE
tracker, and with RoI extraction is not ideal even though it is
capable of achieving real-time FPS and good F1-score value.
This is because those configurations produce a fairly high false
positive rate.

TABLE 2. SYSTEM PERFORMANCE WITH EVERY CONFIGURATION
COMBINATION TABULARIZED

Config Recall Precision Fl- Accuracy FPR Avg
score FPS

Yv4-KCF-RoI 0.944 0.97 0.949 0.963 0.069 21

Yv4-CSRT-RoI 0.956 0.989 0.968 0.981 0.025 3

Yv4-MOSSE-RoI 0.923 0.843 0.857 0.857 0.182 5

Yv4-KCF-NoRoI 0.944 0.879 0.899 0.892 0.313 15

Yv4-CSRT-NoRoI 0.944 0.872 0.895 0.881 0.337 1.5

Yv4-MOSSE-NoRoi 0.923 0.769 0.819 0.798 0.468 47.5

Yv4Tiny-KCF-RoI 0.531 0.866 0.593 0.593 0.274 32.5

Yv4Tiny-CSRT-RoI 0.55 0.884 0.622 0.618 0.246 6.5

Yv4Tiny-MOSSE-RoI 0.47 0.779 0.476 0.477 0.303 57.5

Yv4Tiny-KCF-NoRoi 0.58 0.809 0.616 0.622 0.331 27

Yv4Tiny-CSRT-NoRoi 0.591 0.788 0.633 0.647 0.458 5

Yv4Tiny-MOSSE-NoRoi 0.558 0.713 0.542 0.534 0.511 54.5

Yv4Hvy-KCF-RoI 0.873 0.917 0.866 0.875 0.179 10

Yv4Hvy-CSRT-RoI 0.873 0.93 0.874 0.886 0.161 1.8

Yv4Hvy-MOSSE-RoI 0.829 0.829 0.793 0.784 0.226 40.5

Yv4Hvy-KCF-NoRoi 0.873 0.838 0.826 0.822 0.392 8

Yv4Hvy-CSRT-NoRoi 0.873 0.853 0.835 0.829 0.382 1.3

Yv4Hvy-MOSSE-NoRoi 0.785 0.668 0.696 0.689 0.558 37.5

VI. CONCLUSIONS

This paper proposes and implements a vehicle counting
system running on a CCTV video with YOLOv4 object detector,
three different tracking algorithms, RoI extraction with HSV
color model-based segmentation, and a graphical user interface
to operate the system. First, a frame of the video is selected and
RoI extraction is performed on it. The resulting image mask is
then incorporated into the vehicle detection and tracking
module. After the vehicles are recognized and tracked over
consecutive frames, they are counted with the vehicle counting
algorithm. The system offers incremental and actual counting
methods to suit different traffic road situations.

RoI extraction has been shown to improve system
performance by reducing the false positive rate and increasing
the average FPS of the system. Moreover, RoI extraction allows
the system to ignore parked vehicle on the side of the road by
only performing detection on traffic roads. The system is also
able to perform vehicle counting on two different road lanes
using multiple counting lines, each assigned for different lanes.

Finally, it is concluded that the best system configuration in
terms of accuracy while capable of supporting real-time FPS for
CCTV footage is the system with YOLOv4 (608x608) object
detection model, KCF tracker, and with RoI extraction applied.
This particular configuration achieves an average of 0.944
recall, 0.97 precision, 0.949 F1-score, 0.963 accuracy, 0.069
false positive rate, and 21 FPS.

REFERENCES

[1] V. Jain, A. Sharma, and L. Subramanian, "Road traffic congestion in
the developing world," 2012, doi: 10.1145/2160601.2160616.

[2] TomTom, "Traffic congestion ranking," TomTom Traffic Index,
2019..

[3] Lucky M. Lukman, "Wow, Kerugian Akibat Kemacetan di Jakarta
Mencapai Rp 65 Triliun," GalamediaNews.com, 2020.
https://galamedia.pikiran-rakyat.com/news/pr-35652610/wow­
kerugian-akibat-kemacetan-di-jakarta-mencapai-rp-65-triliun
(accessed Nov. 08, 2020).

[4] 1. Kurniawan, C. K. Dewa, and Afiahayati, "Traffic Congestion
Detection: Learning from CCTV Monitoring Images using
Convolutional Neural Network," 2018, doi:
10.1016/j.procs.2018.10.530.

[5] N. Bhuptani, A. Trivedi, and P. Agarwal, "Automating Traffic
Signals based on Traffic Density Estimation in Bangalore using
YOLO," 2019, doi: 10.1109/ISCON47742.2019.9036213.

[6] C. S. Asha and A. V. Narasimhadhan, "Vehicle Counting for Traffic
Management System using YOLO and Correlation Filter," 2018, doi:
10.1109/CONECCT.2018.8482380.

[7] 1. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look
once: Unified, real-time object detection," Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779­
788,2016, doi: 10.1109/CVPR.2016.91.

[8] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, "YOLOv4: Optimal
Speed and Accuracy of Object Detection," arXiv. 2020.

[9] Alexei Efros, "Image Filtering and Gaussian Pyramids," CS194:
Image Manipulation & Computational Photography, 2017.
https://inst.eecs.berkeley.edu/"'Cs194­
26/fa17/Lectures/FilteringGaussianPyramids.pdf (accessed Jun. 01,
2021).

[10] I. Dimitrovski, S. Loskovska, and I. Chorbev, "Efficient content­
based image retrieval using support vector machines for feature
aggregation," 2010, doi: 10.1007/978-90-481-9112-3-54.

[11] A. Bochkovskiy, "Beta: Using CPU-RAM instead of GPU-VRAM
for large Mini_batch=32 128," 2019.
https://github.com/AlexeyAB/darknet/issues/4386 (accessed Jun. 12,2021).

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on June 13,2022 at 07:59:37 UTC from IEEE Xplore. Restrictions apply.

