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ABSTRACT. Social distancing is a feasible solution to break the chain of the spread of corona-
virus disease 2019 (COVID-19). A human crowd detection model was trained with a
computational load that can be handled by a companion computer on the unmanned
aerial vehicle (UAV) to minimize the spread of COVID-19. The model is designed to
be able to measure social distance between people, whether it exceeds predeter-
mined safe limits (1.5 m). The convolutional neural network model was trained using
a dataset of 9600 images featuring humans, cyclists, and motorcyclists, with an allo-
cation of 200 images each for testing and hyperparameter tuning. The image dataset
was extracted from videos recorded above the UAV in the Institut Teknologi
Bandung area, capturing diverse crowd scenarios throughout the day. The pre-
trained model for transfer learning method is a single shot detector with MobileNet,
ResNet50, and ResNet101 architectures. The measurement of the estimated social
distance uses the Euclidian distance with the average Indonesian human as a refer-
ence, which is 1.6 m. MobileNet V2 was chosen as a crowd detection model with a
lightweight size, which is only 19 MB and the average detection runtime for a single
image is only 0.606s, in accordance with the load for the onboard companion com-
puter. MobileNet V2 is also able to detect crowds of people well with the precision
value reaching 84.9% and the recall value reaching 87.8%.
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1 Introduction
The coronavirus disease 2019 (COVID-19) pandemic has swept across the world and changed
the way people live in general. The spread of this virus is extremely fast and massive, especially
in environments that are crowded with people. The World Health Organization has suggested that
steps to anticipate the spread of the virus, including close contact and crowds, should be mini-
mized by implementing social distancing.1 Several studies have proven that implementing social
distancing has lowered the risk of spreading the virus and reduced mortality rates that may
arise.2–5 Crowd is a condition that occurs when two or more people caught on camera are close
together at <1.5 m.6 Crowd detection is a research topic regarding the observation of a large
collection of people who violating social distance in a certain area.

In crowd detection, a sensor is needed that can capture data to be translated into other forms
into information on the state of the crowd. The information can be received in various forms, such
as the result of human enumeration in a crowd,7 geographical location in a density map,8 and
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estimation of social distance between humans and each other.9 Computer vision is a specific
branch of science that extracts a digital image, then produces information that can be processed
into several methods, such as counting methods, measuring distances, or navigation.10 On the
other hand, convolutional neural network (CNN) is a type of neural network that forward signals
into a stack of convolutional layers. The output of the last layer will be spread into a stack called
the fully-connected layer.11 Currently, crowd detection using CNN and computer vision is the
best solution to anticipate close contact between people in a crowd.

Crowd detection can be achieved by installing multiple static cameras at strategic crowd
locations.12 To overcome occlusions, cameras placed at a high elevation track only people’s
heads, and by combining data from multiple views, height information is extracted and used
for head segmentation, detecting head tops as two-dimensional (2D) patches at various heights
through intensity correlation applied to aligned frames from different cameras. The deployment
of multiple cameras with overlapping fields of view facilitates robust tracking of individuals in
densely populated scenes. However, these cameras have limitations in ensuring comprehensive
coverage of all monitored areas where crowds may gather. In addition, the maintenance and
repair costs of multiple static cameras, which are susceptible to potential damage, can be
substantial.12,13 Therefore, the utilization of unmanned aerial vehicles (UAVs) becomes neces-
sary to extend the detection range of human crowds and mitigate occlusion issues that arise when
multiple human objects are stacked upon one another.

Research on crowd detection in relation to social distancing monitoring has been conducted
with different results and conditions. Papaioannidis et al.14 have created an image segmentation
model that can detect crowds to determine the safe flying altitude of UAV’s with accuracy rate
ranging from 85% to 98%. However, the image segmentation results cannot be used to estimate
social distance. Rezaee et al.15 have also trained an image segmentation model for each case of
contact between humans using UAVs. The accuracy of detection reaches 97.5% of the 100%
scale, but the social distancing violation model is displayed in the same detection box and
the detection is not able to estimate the distance between people. Another approach to crowd
detection was designed by Shao et al.,16 which detects pedestrians using UAVs and transforming
human head images. The detection accuracy reaches 88.5% for video processing with 75 FPS.
However, there is no indication of the specific location where a violation occurred, either in
the form of contact lines between people or the entire human image.

The objective of this paper is to create a CNN model that can detect crowds of people from
the point of view of the UAV camera. The main goal is to build a lightweight model so the
computational process is below the memory capacity of the companion computer in the UAV
with high precision and recall values. Next, the new CNN model will measure the estimated
distance between humans who are close to each other, with the help of computer vision. From
the results of the estimated social distance measurement, a program will be developed to display
the counting of social distancing violations between two or more humans who are close together.

This paper is divided into four parts, starting with an introductory section that explains the
background of this research and related works that explain the crowd detection research that was
previously researched. Then, the results and discussion section will discuss the human crowd
detection model testing output and its analysis. Finally, there are conclusions and future works
for the further development of this research.

2 Related Works
The approach of crowd detection with hidden Markov models (HMMs) simulations, as presented
by Butenuth et al.,17 focuses on detecting the density of crowds. However, it should be noted that
using simulation models such as HMMsmay not necessarily lead to generalizable results. HMMs
often make assumptions about linear data distributions, which may not capture the complexity of
real-world crowd scenarios.

In contrast, deep learning algorithms, such as CNNs, have gained popularity due to their
ability to model complex data and learn hierarchical representations.18 Deep learning models can
capture intricate patterns and relationships in crowd scenes, enabling them to handle non-linear
data distributions more effectively compared to traditional HMMs.
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Human detection can be performed using histograms of oriented gradient (HOG) features.19–21

However, numerous poses can be formed due to the flexibility of the human body, which can
hinder the process of human detection. Choi et al.22 demonstrated that human detection accuracy
using CNN achieved an accuracy of more than 80%, which is higher than the accuracy achieved
using HOG methods. Therefore, CNNs are required to better understand the human objects
involved in a crowd.23

There are two object detection approaches, which are one-stage object detection and
two-stage object detection. The one-stage object detection approach was chosen because high
detection inference speed was prioritized.24 Models that belong to the one-stage object detection
approach are single shot detection (SSD), RetinaNet, EfficientDet, and others. SSD architecture
is based on a feed-forward convolution network approach. A collection of bounding boxes with a
fixed size along with their values will be generated to predict the existence of the object class in
the box, followed by a non-maximum suppression step to generate predictions at the final detec-
tion stage.25 The main difference between SSD architecture training methods and other detection
architectures is that there is no need for a region proposal on the SSD, only a small convolution
filter is needed. This filter will be run after the feature mapping layer in the convolution stage to
get the class prediction results. Therefore, detection processing can be conducted quickly, and
the resulting detection box will be more accurate.

Human crowd detection models have been generated in the study of Papaioannidis et al.14 as
a sensor for determining the safe flight altitude of a UAV. The method used to perform the detec-
tion is a training model based on image segmentation on a convoluted neural network. The
experiment was conducted by inserting the model into the embedded system. This model has
a high detection accuracy, which is at a confidence value of 85% to 98% depending on the size
of the image to be processed. The disadvantage of this study is that it can only detect crowds
at general locations and is only intended as a UAV flight altitude determination device.
Unfortunately, this model is not suitable for detecting humans at close range and cannot capture
detailed images of human objects.

Another crowd model training was conducted by Rezaee et al.15 using ShuffleNet, an image
segmentation model to capture human objects and create a detection box for humans who are
caught in close proximity to each other. Humans will be detected using the Kalman filter method
to track human movements from above the UAV. The accuracy obtained is quite high, which is
around 97.5% with an average processing time of about 84 ms for each video frame. However,
the model cannot calculate the distance between two or more captured human objects. This is
because in image segmentation, the coordinate center of one human object cannot be determined
from another human object. In addition, the resulting frames per second (FPS) is also quite low,
it can only process videos with a size of 11 FPS. The optimization is needed to improve the
performance of the related human detection model.

Another approach to detecting crowds of people from above the UAV is to detect human
head images and perform transformations so that they are like the representation of location
coordinates on a 2D matrix.16 This model is trained using PeleeNet with a high level of precision,
which is about 88.22% in video processing at 76 FPS. In experiments using UAV, the level of
precision obtained is about 88.5% in video processing of 75 FPS. This model can also be applied
to the human object counting system for those who violate social distancing rules. Unfortunately,
the model cannot capture the entire human body image. As a result, the results of image extrac-
tion will only get human heads and make identification of violators difficult. In addition, there
are no markers where the social distancing violations occurred, such as lines or other signs.
Therefore, a complete human detection is needed and can display the location of the violation
in the image set to be processed.

The field of crowd detection and human counting encompasses several complex challenges
that demand scientific investigation and resolution. First, the diverse range of human body
sizes presents a significant obstacle in achieving reliable detection and precise counting across
individuals of varying proportions. In addition, the presence of visual noise and the ability to
accurately distinguish humans from similar objects within crowded environments necessitates
the application of advanced feature extraction and classification techniques. Furthermore, ensur-
ing computational efficiency is of utmost importance for real-time implementation, given the
large number of individuals typically present in crowd scenes that require rapid processing.
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Moreover, the generalization of detection and counting algorithms to diverse environments is
hindered by factors such as variations in lighting conditions, background changes, and camera
perspectives,26 thereby necessitating the development of robust and adaptable models to over-
come these challenges.

3 Proposed Method

3.1 Proposed Workflow
In the data gathering process (as shown in Fig. 1), the video containing human detection will be
extracted into a single image set, each of which will be labeled. Next, a model training and
evaluation process will be conducted to produce a model that can adapt to the human crowd
image captured from the UAV camera. After that, the model that could detect human objects
precisely with the fastest inference time will be selected. Then, the program will be developed
to process the model’s detection results into a detection box that can be displayed to the screen
using computer vision. The process of counting camera-captured social distancing violators and
storing captured images of social distancing violations will be managed by an algorithm devel-
oped in Python. Both the enumeration results and the captured images will be stored in a log in
a specific folder that can also be accessed by the user. Finally, an overall program test will be
conducted to ensure that the detection program runs well.

3.2 System Architecture Design
When developing a whole crowd detection program, there is a system that helps few processes
(as shown in Fig. 2). In the initial stage, the video obtained in real-time from the camera on the
UAV will be adjusted to FPS at certain frame intervals. After obtaining the image capture in a
frame, the human object detection process will then be conducted. The detection model that will
be used has previously been stored in the internal storage embedded in the UAV’s companion
computer to make processing the detection results easier. The next step is to get all the detection
boxes contained in the captured image of the detection results, the detection box to be processed

Fig. 1 Proposed workflow for crowd detection system.

Fig. 2 System architecture design for crowd detection.
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is the classification of objects that indicate the “human” class. By estimating the distance
between all detection boxes, a human object that has violated social distance will be obtained
in the form of specific coordinates of the detection box and the estimated number of social dis-
tance violations for each detection box. The data will be processed to produce a capture of human
objects, detection boxes, and social distance violation lines.

For the social distancing violation capture image, an image containing two human object
violators and one social distancing violation line will be produced. The more detailed image
processing results will be stored in the internal storage. On the other hand, the social distancing
violation line data will be collected and then the number of lines generated will be enumerated.
The number of lines represents the social distancing violations that occur in one image capture at a
given time. The results of this enumeration will be written into a file containing a log of the number
of social distancing violation events along with the specific time of the event. This log will be stored
in the internal storage dedicated to the number of social distancing violations. The entire process
previously described will run continuously until the UAV stops operating. The stop condition
occurred when the state of the UAV after getting the landing command and returning to Home.

3.3 Datasets
There are several image datasets that can be accessed and used publicly. However, the convo-
lution model tends to have difficulty recognizing different detection environments from the train-
ing data. Some pre-trained models can detect humans well, but it is difficult to detect humans
from the point of view of the UAV camera. Therefore, it is necessary to independently adjust the
image dataset by adjusting the training data taken from the camera when the UAV is flying.

Images that represent human objects will be collected to conduct model training. Image data
retrieval process uses a video extraction process for each frame to be saved in portable network
graphic (PNG) format. PNG format was chosen because the compression type in this format is
lossless. This format can improve the accuracy of object detection at the representation of small
pixels.27 Video recording of the crowd is generated by the UAV camera in flight, at an altitude of
about 5 to 10 m from the ground. Positive dataset [can be seen in Fig. 3(a)] contains human
objects when standing or walking and is categorized as a “human” class. On the other hand,
negative dataset [can be seen in Fig. 3(b)] contains objects such as cyclists or motorcyclists which
are categorized as “non_human” class. Therefore, the amount of positive data with negative data
is balanced so that there is no oversampling in certain classes.

Videos containing crowds [Institut Teknologi Bandung (ITB) area] were recorded in the
morning to evening timeframe so the camera could capture images with bright and clear con-
ditions. After validating the objects contained in the image, 10,000 images from video extraction
in sizes of 640 × 480 pixels have been collected. Datasets that have been collected will be labeled
according to their respective class categories using the labelImg tool.28 The output of the image
data labeling process is in Extensible Markup Language (XML) format following the PASCAL
visual object classes convention.29 Furthermore, the image datasets that have been assigned class
category labels will be divided into three folders, more details can be seen in Table 1.

Fig. 3 Example of (a) positive dataset and (b) negative dataset.
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3.4 Transfer Learning from Pre-Trained Model
For the selection phase of the pre-trained model, considerations are made from the side of the
most optimal speed with high enough precision (Table 2, which have bold font). SSD MobileNet
V2 lightweight feature pyramid network (FPNLite) is selected because the model provides a high
detection speed and a better level of precision than other MobileNet models. With the addition of
this FPNLite feature, objects with small sizes will be able to be detected better than the standard
MobileNet V2 model.31 Moreover, the SSD ResNet50 and the SSD ResNet101 were chosen with
a layer size of 640 × 640 compared to 1024 × 1024 because they fit the needs of model training
and testing. The SSD ResNet152 was not selected due to the excessive number of layers and the
final model memory being inefficient for the case of crowd detection using the UAV companion
computer.

Table 1 Dataset splitting.

Folder Positive images Negative images Total images

Train 4800 (48%) 4800 (48%) 9600 (96%)

Dev 100 (1%) 100 (1%) 200 (2%)

Test 100 (1%) 100 (1%) 200 (2%)

Total 5000 (50%) 5000 (50%) 10,000 (100%)

Table 2 SSD pre-trained model in TensorFlow model zoo.30

Model name Speed (ms)

Common objects
in context dataset
mean average

precision
(COCO mAP) Output

SSD MobileNet v2 320 × 320 19 20.2 Boxes

SSD MobileNet V1 FPN 640 × 640 48 29.1 Boxes

SSD MobileNet V2 FPNLite 320 × 320 22 22.2 Boxes

SSD MobileNet V2 FPNLite 640 × 640 39 28.2 Boxes

SSD ResNet50 V1 FPN 640 × 640 (RetinaNet50) 46 34.3 Boxes

SSD ResNet50 V1 FPN 1024 × 1024 (RetinaNet50) 87 38.3 Boxes

SSD ResNet101 V1 FPN 640 × 640 (RetinaNet101) 57 35.6 Boxes

SSD ResNet101 V1 FPN 1024 × 1024 (RetinaNet101) 104 39.5 Boxes

SSD ResNet152 V1 FPN 640 × 640 (RetinaNet152) 80 35.4 Boxes

Fig. 4 Layer of SSD MobileNet V2 FPNLite 320 × 320.
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In the MobileNet architecture (as shown in Fig. 4), the very first layer will receive inputs
with dimensions of 320 × 320. After that, there is an additional convolution which is the base
layer of the SSD architecture. Furthermore, the output of the additional convolution layer will
enter 16 blocks, which are useful for depthwise separable process along with batch normalization
process. This normalization is useful for scaling the output of each previous layer so the input to
the convolutional layer afterward becomes more adaptive. Finally, depthwise and pointwise
feature processing will be performed. For depthwise, the process is performed at a kernel size
of 3 × 3 while at pointwise, the kernel size used is simply 1 × 1 dimension.

In the ResNet50 architecture, the input layer dimension size is 640 × 640, and will be proc-
essed in conv_1 as the base layer of the SSD architecture. Furthermore, the output of conv_1 will
enter conv_2. In the conv_2 section, there are three main blocks, and each block has three layers.
In the first block, there is a Layer_0 that will directly send the results to the temporary output in
the same block (can be seen in Fig. 5 in the yellow layer). This is in accordance with the residual
learning principle on operations within a particular block. For other blocks, the process runs
sequentially like any other process. After all blocks have been processed, the output of the con-
volution will be input to the next convolution process. While the ResNet convolution process
has been completed, the final feature extraction and normalization process will be conducted to
determine the class classification along with the location of the detection box. The result of this
process will be forwarded to the output layer.

The layer architecture in ResNet101 is similar to ResNet50 (can be seen in Fig. 6). First, the
input data are received with dimensions of 640 × 640 and will be processed in conv_1 as the base
layer of SSD architecture. Next, the residual learning system will be applied to block_1 in
Layer_0 whose output will be stored while waiting for other block processing. The number of
blocks in the convolution layer is more than the ResNet50 model. As seen in Fig. 6, the number
of blocks in conv_4 is 23 units, more than the ResNet50 model (only 6 blocks). After the con-
volution process is complete, the feature extraction and final normalization process is conducted
to determine the class classification and the location of the detection box.

Fig. 5 Layer of SSD ResNet50 V1 feature pyramid network (FPN) 640 × 640 (RetinaNet50).

Fig. 6 Layer of SSD ResNet101 V1 FPN 640 × 640 (RetinaNet101).
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3.5 Hyperparameter Tuning
For all pre-trained models, hyperparameter adjustments will be made to fit the training process on
a larger dataset. For tuning phase, development dataset (about 200 images) will be used to sup-
port the best-fit method armed with experience from numbers obtained in related research.32,33

There are several hyperparameters that need to be tuned, such as learning rate base, cosine decay
step,34–36 exponential decay step,37 warmup learning rate,38,39 and warmup step.40 The best
combination of hyperparameters is expected to increase the speed of the training process on
a larger amount of data without worrying about the precision and sensitivity of the model.41,42

Hyperparameter tuning is using graphics processing unit (GPU) computing environment with a
total epoch of 100,000 steps. The hyperparameter combination in each model is selected based
on the lowest total loss value, the highest precision value, and the highest sensitivity (recall)
value, as can be seen in Table 3 with bold font.

3.6 Ratio of Social Distance to Human Height
A digital image consists of constituent elements in the form of pixels with a limited size and has a
defined value for each pixel. Digital image representation is 2D matrix with the elements rep-
resented by pixel values at each location.43 To measure the distance between two defined pixels,
the Euclidian distance formula can be used as shown in Eq. (1)

Table 3 Hyperparameter testing.

Optimizer
Batch
size

Learning
rate base

Cosine
decay
step

Exp
decay
step

Warmup
learning
rate

Warmup
step

Total
loss

Precision
IoU =

0.50:0.95
Recall

AR@100

SSD MobileNet V2 FPNLite 320 × 320 configuration

Momentum 12 0.040 100,000 — 0.013 5000 0.074 0.821 0.858

Momentum 12 0.080 100,000 — 0.027 5000 0.047 0.832 0.866

Momentum 12 0.040 100,000 — 0.040 0 0.071 0.823 0.862

Momentum 12 0.040 100,000 — 0.027 5000 0.068 0.814 0.850

RMS_Prop 12 0.004 — 5000 — — 1.959 0.000 0.036

RMS_Prop 12 0.040 — 500 — — 0.879 0.389 0.577

SSD ResNet50 V1 FPN 640 × 640 (RetinaNet50) configuration

Momentum 12 0.040 100,000 — 0.013 5000 0.046 0.821 0.854

Momentum 12 0.080 100,000 — 0.027 5000 0.043 0.793 0.828

Momentum 12 0.040 100,000 — 0.040 0 0.050 0.780 0.813

Momentum 12 0.040 100,000 — 0.027 5000 0.039 0.807 0.835

RMS_Prop 12 0.004 — 5000 — — 0.578 0.569 0.662

RMS_Prop 12 0.040 — 500 — — 0.981 0.258 0.547

SSD ResNet101 V1 FPN 640 × 640 (RetinaNet101) configuration

Momentum 8 0.040 100,000 — 0.013 5000 0.062 0.801 0.835

Momentum 8 0.080 100,000 — 0.027 5000 0.066 0.803 0.831

Momentum 8 0.040 100,000 — 0.040 0 0.061 0.794 0.829

Momentum 8 0.040 100,000 — 0.027 5000 0.053 0.786 0.826

RMS_Prop 8 0.004 — 5000 — — 0.608 0.599 0.678

RMS_Prop 8 0.040 — 500 — — 0.726 0.579 0.700

Wastupranata and Munir: Convolutional neural network-based crowd detection. . .

Journal of Applied Remote Sensing 044502-8 Oct–Dec 2023 • Vol. 17(4)



EQ-TARGET;temp:intralink-;e001;117;467DEðði; jÞ; ðh; kÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði − hÞ2 þ ðj − kÞ2

q
: (1)

where ði; jÞ are the pixels at the starting point and ðh; kÞ are the pixels at the target point.
To estimate the social distance between two or more people, the human height will be used

as a basis for measurement. Distance measurement using the human height reference value
should be considered further from the point of view of a particular UAV camera. Social distance
reference according to human height caught by UAV camera can be seen in Fig. 7.

Using the ratio of height y to get d, the value of d will be generated as shown in Eq. (2)

EQ-TARGET;temp:intralink-;e002;117;369d ¼ Δpixeld
Δpixely

× y; (2)

EQ-TARGET;temp:intralink-;e003;117;320y ¼ y
ffiffiffi
2

pffiffiffi
2

p ¼ 1.6 mffiffiffi
2

p ≈ 1.13 m; (3)

where d is social distance estimation (meters), Δpixeld is the number of pixels between two
humans that are d apart (pixels), Δpixely is the number of pixels that represent the human height
from the UAV camera (pixels), and y = human height projection (meters). The height of humans
captured by the UAV camera is set at 1.6 m, representing the average height of adults in
Indonesia.44,45 However, this value can be adjusted to accommodate different standard heights
across the world. Thus, the human height captured by the camera will be approximated as high as
1.13 m to the projection of the camera angle on the UAV by 45 deg [as shown in Eq. (3)].
The value of y will be substituted into Eq. (2) to estimate the social distance.

3.7 Calibration of Human Coordinate Components Parallel to UAV Camera
Viewpoint

The vertical angle of view of the camera determines the human height reference due to the pro-
jection on the object that will appear on the detection screen. The flying height of the UAVwill be
used as a basis in determining the projection to determine the distance of humans who are close to
each other from the parallel side of the UAV camera’s point of view. Therefore, it is necessary to
calibrate the component of human coordinates that are parallel to the point of view of the UAV
camera and then substitutes into the Euclidian distance formula in Eq. (1). Illustration of adjust-
ing the projection of human object coordinates parallel to the UAV camera’s point of view can be
seen in Fig. 8.

Fig. 7 Illustration of human height captured as a reference for estimating social distance.
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The calculation to get the human coordinates projection that is parallel to the camera’s point of
view is in the letter FE to the AE line. The AE line is 1.5 m long (social distancing requirement) so
the AD Line and DE Line have a length of 0.75m to the center of the camera axis. Since the camera
angle has a 45 deg angle to the UAV’s maneuverability, the HDE angle also has a 45 deg angle.
Since the projection is always perpendicular to the plane on which it is projected, the angles at point
H are all 90 deg. Next, the Euclidean equation will be used to determine the social distance for the
angle of view that is parallel to the UAV camera while flying, as shown in Eq. (5)

EQ-TARGET;temp:intralink-;e004;114;446dFE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

9

4ð8hþ 3Þ −
3

4

�
2

þ
�

6h
8hþ 3

�
2

s
; (4)

where dFE is the distance projection estimation (meters), and h is UAV altitude.
It is necessary to calibrate and adjust the value of the y-axis to the flying height of the UAV

(h variable) in the coordinates of the estimated social distance. Therefore, the calculation of
the new Euclidian formula previously seen in Eq. (1) can be seen in Eq. (6)

EQ-TARGET;temp:intralink-;e005;114;354dh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x2Þ2 þ

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
9

4ð8hþ3Þ −
3
4

�
2 þ

�
6h

8hþ3

�
2

r
3
2

ðy1 − y2Þ

1
CA

2

vuuuuut ; (5)

where dh is social distance estimation from UAValtitude of h (pixels), x1, x2 are the pixel of x in
starting point and target point (pixels), and y1, y2 are the pixel of y in starting point and target
point (pixels).

Euclidian distance in Eq. (6) depends on the value of h variable, so the calibration of the y
variable will be different for any given height. The UAV flight test is conducted at a constant
altitude so that changes in the value of h will not occur during the program compilation process.
To get the original social distance in meters, substitute again in Eq. (2) as Δpixeld.

3.8 Experimental Setup
The object detection test will be conducted with the test dataset, which has a different image set
from the train and development dataset. Then, runtime detection test will be conducted on a
single image for different resolutions. One of the best models will be selected which will then
be implemented in the program to display the results of human object detection with the approxi-
mate distance between the human objects. The pilot will turn on the UAValong with the remote
control which is the main component in the crowd detection system. The mobile phone will be
connected to the remote control as a tool in handling video matters. The pilot will maneuver the
UAVand search for crowd points via video transmitted from the UAV camera via the Wi-Fi direct
system. The input video is not processed directly on the UAV but is done on a local computer in
real time. This processing method is to overcome the UAV specifications that are not able to

Fig. 8 Illustration of adjusting human object coordinate projection with UAV camera parallel view
angle.
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embed a companion computer (microprocessor). Furthermore, evaluating the entire human
detection system can be seen in Fig. 9.

The UAV must be in a radius of <50 m from the remote-control location to avoid loss of
contact. After the UAV has successfully flown at a certain altitude, the mobile phone will send
raw video to a local computer that contains a program to calculate the number of social distancing
violations. The result of the violation will be displayed on the pilot and first stored on local
storage. The testing process will keep looping until the UAV has landed perfectly and program
execution has been stopped. To minimize detection delays, a detection will be performed for each
specific frame interval. For every N frame, one detection will be performed, including the meas-
urement of the distance between humans and other operations. This interval setting is also useful
for getting objects with other positions that may be caught on camera, so time does not run out
just to detect at the same position. In addition, the memory used to store the image of the violator
will also be less, so the memory can be used for other purposes.

3.9 Hardware and Resources
The UAV, which is used for crowd video recording, is the TXD 8S(L) Drone Wi-Fi HD Camera.
For training phase, Google Colab provides a single 12 GB NVIDIATesla K80 GPU that can be
used up to 6 h continuously. The program development and testing phase are using a computer
with Intel® Core™ i7-9750H CPU @ 2.60 GHz, with 8.192 MB RAM.

4 Results and Discussion

4.1 Crowd Detection Model Test Results
There are three test metrics conducted at the final evaluation stage of the model, depicted by a bar
graph as can be seen in Fig. 10.

Fig. 9 Architecture diagram of crowd detection system testing.

Fig. 10 Graph of final evaluation results of model training.
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The intersection over union (IoU) metric represents how big the wedge area is between the
detection box on ground truth and the detection box formed from the prediction data. The equa-
tion of the IoU metric can be seen in Eq. (6)

EQ-TARGET;temp:intralink-;e006;114;700IoUðp; aÞ ¼ ðBoxT ∩ BoxPÞ
ðBoxT ∪ BoxPÞ

; (6)

where IoUðp; aÞ is introduction over union [0.1], BoxT = pixel of x in starting point and target
point (pixels). Meanwhile, BoxP is the pixel of y in starting point and target point (pixels).

All human crowd detection models yield more than 80% precision and recall values. In
addition, all human detection models also have a low loss value, which is below the 0.2 scale.
Precision metric is used to determine the ratio between the correct prediction data detection boxes
compared to the overall detection results as shown in Eq. (7). In addition, the recall metric is
used to determine the ratio between the correct prediction data detection boxes compared to the
overall label data that should be formed (ground truth) as shown in Eq. (8)

EQ-TARGET;temp:intralink-;e007;114;567Precision ¼ True positive

True positiveþ False positive
; (7)

EQ-TARGET;temp:intralink-;e008;114;520Recall ¼ True positive

True positiveþ False negative
: (8)

True positive is positive class detection results being in accordance with the basic truth.
False positive is a detection result being a positive class, but the basic truth should be a negative
class. False negative is detection result being a negative class, but the ground truth should be
a positive class.

Precision value exceeding 80% indicates that the number of true positives is 4 times greater
than the number of false positives [Eq. (7)]. That is, the number of images detected as “human”
corresponds to the ground truth of the category, which is also “human.” Only <20% of “human”
images were incorrectly detected as “non_human.” Furthermore, if the recall value exceeds 80%,
the number of true positives is 4 times greater than the number of false negatives [Eq. (8)].
This indicates that the number of images detected are of the “human” class and identical with
the basic truth, which is also “human” category. Less than one fifth of the image is detected as
“non_human” even though it has the basic truth of “human.” In determining true positive and
false negative, IoU will be involved for certain value limits. If the IoU between the predictive data
detection box and the ground truth is higher than 0.5, the area can be defined as TP. Otherwise,
it will be FP.46

Regarding the loss value, which has a scale of <0.2, there are 2 variables that have an impact
on the total loss calculation. This loss function is impacted by the classification loss value and
the localization loss value

EQ-TARGET;temp:intralink-;e009;114;285Lðx; c; l; gÞ ¼ 1

N
ðLconfðx; cÞ þ αLlocðx; l; gÞÞ; (9)

where N is the number of detection boxes in a detection, x is image to be detected, c is the
predictive value of the predictive confidence, l is the detection box formed from the results
of object detection, and g is label data detection box for ground truth.

As seen in Eq. (9), the error caused in the category classification phase is ridiculously small.
The low value of classification loss can also be caused by a high detection confidence level. On
the other hand, the low value of localization loss is supported by the appearance of a detection
box that matches the ground truth coordinates that have been defined in the image dataset in
XML format. The best precision and sensitivity values were obtained by the ResNet50 model,
with a precision value reaching 87.6% and a sensitivity (recall) value reaching 89.6%. However,
the lowest loss value among all crowd detection models is obtained from the MobileNet V2
metric model, which is 0.113. However, MobileNet is a crowd detection model with the smallest
size compared to the other 2 models, only having a size of 27 MB (Fig. 11).

Furthermore, the testing of the human crowd detection model was conducted by entering
two images, namely the first image containing humans and the second image containing motor-
cycle riders. The results of the runtime testing of each model can be seen in Table 4.
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Model setup time is the time measured during the model initiation phase until the model is
ready for use. Detection time is the time measured when the human crowd detection module is
run until the output is the coordinates of the detection box and the number of objects detected
(Fig. 12). The duration of image processing is very dependent on the size of the image resolution
received by the human crowd detection model. The larger the resolution size of the human crowd
image, the greater the human detection time. For this reason, it is necessary to pay attention to
the size of the input video resolution when using the human crowd detection model if it has a time
constraint.

Fig. 11 Human crowd detection model size chart.

Table 4 Human detection runtime test results.

Model Resolution Load time (s)
Image #1
runtime (s)

Image #2
runtime (s)

Detection runtime
average (s)

MobileNet V2 480 × 360 7.387 1.044 0.117 0.581

640 × 480 6.863 1.099 0.119 0.609

960 × 720 7.471 1.101 0.129 0.615

1440 × 1080 7.286 1.102 0.141 0.621

Average 7.252 0.606

ResNet50 480 × 360 7.201 1.478 0.389 0.934

640 × 480 7.515 1.501 0.392 0.947

960 × 720 9.123 1.685 0.430 1.058

1440 × 1080 9.438 1.701 0.444 1.073

Average 8.319 1.003

ResNet101 480 × 360 12.472 1.936 0.541 1.239

640 × 480 13.685 1.972 0.541 1.256

960 × 720 13.748 2.192 0.615 1.403

1440 × 1080 15.022 2.207 0.661 1.434

Average 13.732 1.333

Fig. 12 Example of (a) “human” detection and (b) “non_human” detection result.
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Considering the results of precision values, sensitivity, total loss, and model size, MobileNet
V2 was chosen as the best human crowd detection model. Furthermore, the testing of the social
distance estimation module and the program for calculating the number of social distancing
violations will use the MobileNet V2 model.

4.2 Social Distance Estimation and Calibration Test Results
Furthermore, the test is conducted at different altitude. The flying altitude of the UAV is used as
one of the factors to determine social distance calibration and has an indirect impact on the
sensitivity of the human detection model. Social distance estimation is conducted for every two
people detected in proximity. An example of an image from the estimation of social distance at
a height of �5 m can be seen in Fig. 13. The lines of social distancing violations are intercon-
nected with each other. For this reason, it is necessary to calculate the number of violators and
the number of social distancing violations to find out the number of people that participate in
the crowd. Calibration will make a correction to the difference in the angle of the UAV camera
while flying. By calibrating, the excess distance caused by the illusion of a viewing angle can be
overcome as shown in Eq. (6).

4.3 Evaluating the Program for Calculating the Number of Social Distance
Violations

In general, there are several mandatory conditions that need to be met to fulfill the requirements of
detecting human social distancing violations, as shown in Fig. 14. First, the estimated social

Fig. 13 Example of the estimation of social distance at a height of �5 m.

Fig. 14 Mandatory requirements conditions for detecting social distance violations.
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distance must be <1.5 m, which is measured based on the original distance obtained from the
calibration results using the UAV camera’s viewpoint as described in Eq. (6). Second, the
detection box should fall within the defined padding limits, determined by the offset numbers
of the x and y components. This requirement ensures that the standard height of humans is not
compromised by objects that may intersect with the image frame. The width of the detection box
should be smaller than its height to minimize errors when measuring social distance estimates in
humans.

With the formation of a crowd of people in one place, the potential for social distancing
violations is extremely high. The program will be evaluated to ensure that the integration between
the human detection module, the social distance estimation and calibration module, and the
social distance enumeration module is not a problem. Human crowd video in MP4 format will
be input to the program and produce video output in MP4 format, as seen in the architecture of
the crowd detection system testing system (Fig. 9). An example of the calculation results of
violators and social distancing violations can be seen in Fig. 15.

The program succeeded in calculating the number of violators and social distancing viola-
tions. As seen in Fig. 15, five humans were detected as social distancing violators. In addition,
there are also five social distancing violations for every two humans who are close together.
Because all human objects are within the padding limit, the total human height has been calcu-
lated and can be used as a reference to calculate social distance.

The first baseline paper test will use the same image dataset, namely the Oxford Town Center,
whereas the second test will use the human dataset taken from ITB area. Using the Oxford Town
Center dataset,47 this paper has advantages compared to previous studies (see Table 5).

Fig. 15 Example of violation calculation results (red text) and social distance violation (orange text).

Table 5 Comparison between this paper and other previous studies on Oxford Town Center
dataset.

Research Backbone Precision (%)
Measured

social distance
Counting social

distancing violators

Rezaee et al.15 ShuffleNet 88.45 — —

Elbishlawi et al.48 DETR + ResNet50 43.4 — —

Özbek et al.49 Darknet-53 + YOLOv3 55.3 ✓ —

Madane and Chitre50 ResNet50 94.23 — —

Ahmad et al.51 YOLOv3 97 ✓ —

Wastupranata and
Munir (Proposed)

MobileNet V2 82 ✓ ✓
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The model precision values in this paper are higher than the detection transformer (DETR) +
ResNet50 and Darknet-53 + YOLOv3 backbones, but slightly lower than ShuffleNet, ResNet50,
and YOLOv3. The purpose of this paper is to find a model with a load that can be handled by a
UAV companion computer. It can also be seen that social distance measurements were also car-
ried out in the study of Özbek et al.49 and Ahmad et al.51 This paper has integrated the meas-
urement of social distance estimation with the enumeration of social distance violators, which has
not been implemented by the other five studies.

The results of a comparison of crowd detection systems using human image dataset at the
ITB can be seen in Table 6. The model precision value in this final project is the highest com-
pared to other pre-trained models. The next good precision value is found in the EfficientDet
model, reaching 93.08%. The interesting thing is that MobileNet V2 before training has a bad
precision value, which is only 40.88%.

Comparison of human detection models will be seen from the size of each. The model in this
final project has the lowest model size, around 26.6 MB, lower than the MobileNet V2 model,
which has not been trained (76.3 MB). This is because the pre-training model must store 90
different class categories. CenterNet has the largest size, which is 1.48 GB. The model in this
paper is suitable for detecting crowds of people using the image dataset at the ITB with a small
model size and very high precision values.

5 Conclusions
Three human detection models were successfully created using the MobileNet, ResNet50,
and ResNet101 pre-trained models. All models can detect humans, cyclists, and motorcyclists
with precision and sensitivity values above 80%. All trained models also did not experience
overfitting during training, as evidenced by the loss function value below the 0.2 scale.
MobileNet V2 was chosen as the detection model for further implementation in the social
distance calculation program. This is because the MobileNet V2 model has a file size
only 19 MB, so the detection process can be conducted smoothly according to the computa-
tional load that can be managed by the UAV companion computer. The precision value of
MobileNet V2 reaches 84.9% (IoU ¼ 0.50∶0.95), with a sensitivity value (recall) reaching
87.8% (MaxDets ¼ 100).

The estimation of social distance was successfully conducted using the average human
height in Indonesia as a reference, which is 1.6 m. The social distance calibration formula for
the social distance component that is parallel to the UAV camera’s point of view has been
successfully implemented in the program so the estimated social distance is close to the original
distance. However, the flying height of the UAV must be determined in advance so the estimated
social distance can be properly calibrated. The social distancing violation calculation program
has been successfully integrated with the crowd detection model and the social distance estima-
tion and calibration calculation module.

Table 6 Comparison with other research using human datasets in ITB area.

Research Model Precision (%) Size (MB)

Howard et al.52 MobileNet V2 40.88 76.3

He et al.53 ResNet50 71.70 261

He et al.53 ResNet101 74.21 411

He et al.53 ResNet152 74.21 537

Tan et al.54 EfficientDet 93.08 63.7

Zhou et al.55 CenterNet 91.82 1480

Wastupranata and
Munir (Proposed)

MobileNet V2 96.86 26.6
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6 Future Works
In the future, an improved architectural model will be conducted that can detect crowds of people
more quickly. In addition, hyperparameter tuning can be done with other variables to increase the
accuracy and sensitivity of the resulting model. Furthermore, the number of images for model
training should be increased, so the UAV can detect human crowds in a more heterogeneous
environment. Thus, the program can be further developed to conduct human tracking so the
movements of social distance violators can be further traced. The measurement of social distance
will be developed using proximity sensors that are integrated with the UAV companion computer.
The UAV’s flight altitude measured from the ground can also be determined using the proximity
sensor. It is also possible to develop a crowd detection model in darker places, using a thermal
sensor. The detection of social distancing violators can also be conducted on humans with
temperatures higher than the normal reference so that it can be seen whether the human being
is suspected of being a COVID-19 suspect.
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