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Abstract. Chaos systems have become a promising alternative for developing secure
and robust image encryption algorithms. However, most chaos-based encryption meth-
ods are symmetric, meaning encryption and decryption use the identical key. This makes
the sender and receiver have to share the secret key before doing communication, making
it vulnerable to interception by attackers. To address this issue, asymmetric algorithms
can be used. This paper introduced a new asymmetric image encryption algorithm that
integrates the integer Chebyshev map, the Henon-Sine map, and an enhanced RC4 stream
cipher. The integer Chebyshev map, defined on Zp, p is a prime number, is used for pub-
lic and private key generation of the users, while the Henon-Sine map is used to produce
the secret key, for image encryption and decryption, derived from the improved RC4
stream cipher. Experiments have been conducted and the results show that the proposed
algorithm is secure against brute-force attacks, correlation attacks, statistical attacks, en-
tropy attacks, and sensitivity attacks, while also maintaining robustness against common
image processing techniques.
Keywords: Image encryption, chaos, Chebyshev Map, Henon-Sine map, asymmetric

1. Introduction. In this age of information technology and the internet, messages in
the form of text, images, audio, and video are represented digitally. These messages
can be easily transmitted through communication channels or stored in various storage
media. However, confidential messages must be protected from unauthorized access and
manipulation. Encryption is a technique used to transform the messages into a form that
cannot be interpreted by unauthorized parties.

Image encryption is designed to protect digital images from being interpreted by unau-
thorized individuals. Encrypted images cannot be understood or perceived unless a valid
key is used for decryption. Image encryption can be performed using traditional cryp-
tographic algorithms—either symmetric or asymmetric—such as AES, RC4, RSA, ECC,
ElGamal, and others, or by employing specialized encryption algorithms for images. Re-
cent advancements in image encryption involve utilizing chaotic systems, which provide
a high level of randomness essential for robust encryption. The chaotic systems have an
important characteristic: they are sensitive to initial parameter values. This sensitivity
means that even a slight alteration in initial values (such as the starting point or system
parameters) can produce a vastly different chaotic sequence, which results in a strong
diffusion effect in the encryption algorithm [1]. These chaotic systems exhibit random
behavior and are extremely difficult to predict, analyze, or control.
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Several chaotic maps have been applied in cryptographic algorithms, such as the Logistic
Map, Sine Map, Henon Map, Baker Map, Chebyshev Map, Lorenz 96 Map [2] and others.
In image encryption algorithms, these maps are typically used to generate sequences of
random numbers. These random numbers serve various purposes, such as generating
encryption keys, permuting pixels, and determining encryption parameters. Much work
has been done by researchers to design encryption algorithms for images based on chaotic
systems. Comprehensive reviews of image encryption algorithms using chaotic systems
can be found in [3, 4].

In cryptography, based on the type of key used, encryption algorithms are grouped
into two classes: symmetric and asymmetric algorithms. In symmetric algorithms, both
encryption and decryption use the identical key. Before sending and receiving messages,
the sender and receiver must share this key to encrypt and decrypt the message. In
contrast, asymmetric algorithms use different keys for encryption and decryption. The
sender encrypts the message using the receiver’s public key, while the receiver decrypts it
using his (or her) private key. There is no need to share a secret key between the sender
and receiver, as both have their own private and public key pairs. Asymmetric algorithms
are also referred to as public-key cryptography.

Therefore, image encryption algorithms that use chaotic systems are also grouped into
two classes: symmetric and asymmetric image encryption algorithms. However, most
research focuses on symmetric-key image encryption algorithms, with only a few papers
proposing asymmetric ones. Some of these are summarized as follows. Obbaid & Al Saffar
designed an asymmetric image encryption method by applying a cubic curve combined
with a standard map [5]. The method is considered asymmetric because it employs the
Elliptic Curve Diffie-Hellman (ECDH) algorithm, a public-key cryptography technique, to
produce the initial values of the map. Shakiba proposed an asymmetric algorithm using
the Chebyshev polynomial map and a one-time pad to encrypt color images, with the
Chebyshev map generating the same secret key for both the sender and receiver [6]. Ye
et al. introduced an asymmetric encryption method by applying a 3-D logistic map. The
algorithm used the RSA algorithm (an asymmetric cryptography technique) to generate
the initial keys for the 3-D logistic map [7]. Liu & Ye in [8] introduced an asymmetric
image encryption method based on a combination of the logistic map and sine map to
generate a secret key, with the RSA algorithm encrypting the secret key. Additional
asymmetric algorithms can be found in Geetha & Kumar [9] and Simon & Varghese [10].

The weakness of the proposed image encryption methods mentioned above is that they
do not truly perform encryption and decryption in the sense of public key cryptography,
where the image is encrypted using the public key and decrypted using the private key.
Instead, image encryption and decryption still rely on a shared secret key for the sender
and receiver. In these cases, the sender and receiver generate a shared secret key using
an asymmetric cryptography algorithm (RSA, ElGamal, ECDH, etc.) combined with
a chaotic system. The image encryption and decryption are then performed using the
shared secret key.

Therefore, using a public key cryptography algorithm to encrypt the secret key does
not make the image encryption algorithm truly asymmetric. In this paper, we introduce
an asymmetric image encryption method based on the Chebyshev Map and the Henon-
Sine Map. The algorithm is considered asymmetric because it uses the public key and
the private key to do encryption and decryption. In this method, the sender and receiver
only need to input their public and private keys during the encryption/decryption process.
The method will then generate a same key for encrypting and decrypting the image. The
Chebyshev Map is used to generate the public and private keys, as it is commonly applied
in asymmetric algorithms [11, 12]. The Henon-Sine map is used in secret key generation
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by adopting keystream generation in the Improved RC4 (IRC4) stream cipher [13]. The
Improved RC4 stream cipher is a modified version of RC4 to address the weakness of
the original RC4 which was vulnerable to correlation attacks. Therefore, the proposed
asymmetric image encryption method can overcome the problem of sharing secret keys
inherent in symmetric encryption methods.

This paper is organized into five sections. The first section is the introduction. The sec-
ond section describes the related work. The third section presents the proposed method.
The fourth section details the experiment and discussion of the results, and the fifth
section is the conclusion.

2. Related Work. The proposed method uses two chaotic maps, namely the Chebyshev
Map and the Henon-Sine Map. These maps form the basis for the asymmetric image
encryption algorithm. This section describes both chaotic maps.

2.1. Henon-Sine Map. The Henon-Sine map combines two chaotic systems: the Henon
map and the Sine map. This combination was designed to overcome the limitations of the
individual maps [14]. Despite their simplicity, both the Henon map and Sine map share
a significant weakness: their trajectories are relatively easy to predict. To address this
issue, Wu et al. [14] developed a hyperchaotic system known as the 2D Henon-Sine map,
described as follows: {

xn+1 = 1− a (sinxn)
2 + yn mod 1

yn+1 = bxn mod 1
(1)

where a and b are parameters of the map. The 2D Henon-Sine map shows chaos
behavior when a ≤ 0.71 or a ≥ 0.71 and b = 0.7. The trajectory of the 2D Henon-Sine
map is evenly distributed across the entire plane (see Figure 1).

Figure 1. Phase diagram of 2D Henon-Sine Map
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The 2D Henon-Sine map can also be written in the form one-dimensional Henon-Sine
map as

xn+1 = 1− a (sinxn)
2 + bxn−1 mod 1 (2)

This map needs two initial values (x0 and x1) which can be considered as the secret keys.

2.2. Chebyshev Map. The Chebyshev polynomial is a chaotic map known for exhibiting
random-like behavior under certain initial conditions. Mathematically, the Chebyshev
polynomial of degree n is defined recursively as follows:

Cn+1(x) =


2xCn(x)− Cn−1(x), n > 1

x, n = 1

1, n = 0

(3)

The Chebyshev polynomial maps Cn : R → R. The most important property of the
Chebyshev polynomial is the composition of

Cr(Cs(x)) = Crs(x) (4)

for arbitrary degree r and s. The composition is commutative, namely

Cr(Cs(x)) = Cs(Cr(x)) = Crs(x) (5)

If we restrict x in interval [−1, 1] only, then Cn(x) ∈ [−1, 1], thus the interval [−1, 1]
is invariant under mapping Cn : [−1, 1] → [−1, 1]. The Chebyshev polynomial is defined
in the interval [−1, 1], and for all n > 1 the Chebyshev polynomial is a chaotic map with
positive Lyapunov exponent of λ = lnn. For n = 2, Chebyshev polynomial becomes to a
logistic map, a well known chaotic map [12].

Based on property (4), Kocarev et al. designed an asymmetric encryption method as
follows [11]. Suppose Alice and Bob are communicating by sending messages. Alice selects
a large integer s as her private key. Next, Alice generates a random number x ∈ [−1, 1]
and then she computes Cs(x). Her public key is (x,Cs(x)), which she sends to Bob. On
Bob’s side, Bob selects a large integer r as his private key. He computes his public key
(x,Cr(x)) and sends it to Alice. Bob encrypts a message to Alice as follows: first, Bob
converts the message as number P ∈ [−1, 1]. Next, he computes Crs = Cr(Cs(x)), encrypt
the message as Ciphertext = P ∗ Crs, and sends it to Alice. Alice decrypts the message
as follows: at first Alice computes Csr = Cs(Cr(x)), then Alice recovers the plaintext by
computing M = Ciphertext/Crs.

According to the algorithm above, Crs is the shared secret key used Alice and Bob
to encrypt and decrypt message symmetrically. The shared secret key is common to all
asymmetric encryption algorithms based on the chaotic system. Therefore, the process of
computing the shared secret key is similar to the Diffie-Hellman key exchange algorithm.
Both Alice and Bob each generate their private keys, s and r, respectively. Alice computes
Cs(x), send (x,Cs(x)) to Bob. Bob computes Cr(x) and send it to Alice. Now, Alice and
Bob can compute the symmetric key: Alice computes Csr = Cs(Cr(x)), Bob computes
Crs = Cr(Cs(x)), and Csr = Crs . They use the symmetric key, Crs, to encrypt plaintext
M by

Ciphertext = M ∗ Crs (6)

and reversely decrypt ciphertext Ciphertext by

M = Ciphertext/Crs. (7)
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3. Proposed Method. Unfortunately, the asymmetric encryption algorithm based on
Chebyshev Map has a problem of computational precision. The algorithm operates on
real numbers, whereas computers represent real numbers in a finite number of digits,
depending on precision level. This representation introduces round-off error when the
real number cannot be specified within the finite number of digits. The precision problem
of real numbers can lead to security problem [15].

Since cryptography operates on integer arithmetics, we define the Chebyshev Map on
Zp = {0, 1, 2, . . . , p − 1} where p is a prime number. Therefore, we modify Chebyshev
map into an integer Chebyshev map as follows:

Cn+1(x) =


2xCn(x)− Cn−1(x) mod p, n > 1

x mod p, n = 1

1, n = 0

(8)

where x ∈ Zp. It can easily be verified that

Cr(Cs(x) mod p) = Crs(x) mod p (9)

Figure 2. Process diagram for image encryption and decryption

We now propose an asymmetric image encryption method based on the Chebyshev
map, Henon-Sine map, and Improved RC4. Figure 2 illustrates the process diagram for
image encryption and decryption using the proposed scheme. Suppose Alice sends the
secret image (plain image) to Bob. Alice encrypts the image using Bob’s public key
and her public key, sends the encrypted image to Bob, and Bob decrypts the encrypted
image using his private key and Alice’s public key. The scheme has three processes: key
generation (public key and private key), image encryption, and image decryption. Each
process is described in each sub-section below.

3.1. Generate Public Key and Private Key. The original Improved RC4 stream
cipher will be used to generates the encryption key. It accepts input of the secret key
with a maximum length of 256 characters. If the key length is less than 256 characters, the
characters in the key will be repeated. Assuming the key length is n (n ≤ 256), both Alice
and Bob generate n public keys and n private keys using the Chebyshev map. Initially
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Alice and Bob agree on n, a large prime number p, and sequence x of n elements. Both
n, p, and x are all public and can communicated over a public channel. Alice and Bob
generate their own public keys and private keys using Chebyshev map as in Algorithm 1.

Algorithm 1 Generates the public key and the private key of n elements

Input: length of key (n), prime number (p), and sequence of integer x[1..n]
Output: private key (r[1..n]) and public key (Cr[1..n])

1: input(r[1..n]) ▷ Choose n integers as private keys
2: for i← 0 to n do ▷ Initialize Chebyshev polynomial, C0(x) = 1, C1(x) = x mod p
3: C ← 1
4: C1← x[i] mod p ▷ Compute Chebyshev polynomial C(x) using recursive formula
5: for k ← 2 to r[i] do
6: Ck ← (2 ∗ x[i] ∗ C1− C) mod p ▷ Ck(x) = 2 ∗ x ∗ Ck−1(x)− Ck−2(x) mod p
7: C ← C1
8: C1← Ck
9: end for
10: Cr[i]← Ck
11: end for

3.2. Image encryption. Image encryption is carried out using the receiver’s public key.
However, to generate an encryption key, the sender’s private key is also required. There-
fore, Alice encrypts the image using Bob’s public key and her own private key. The details
of the image encryption methods are shown in Algorithm 2. In the algorithm, Alice’s pri-
vate key is denoted as r, and Bob’s public key as Cs. The algorithm generates the secret
key (SK[1..n]) using Eq. (9). Once the secret key is generated, the encryption key (U) is
produced by adopting the keystream generation in the Improved RC4 (IRC4). Here we
apply the Henon-Sine map in the table randomization process for keystream generation.
The Henon-Sine map uses two initial values taken from the average value of half of the
elements in the secret key normalized by the total of all elements.:

x1 = mean(SK[1..n/2])/sum(SK[1..n]) (10)

x2 = mean(SK[n/2 + 1..n])/sum(SK[1..n]) (11)

Based on the Improved RC4, we scramble the table State as follows:

for i← 0 to 255 do ▷ Scramble the table State
x← HenonSineMap(a, b, x1, x2)
x2← x1
x1← x
n1← Encode(x)
x← HenonSineMap(a, b, x1, x2)
x2← x1
x1← x
n2← Encode(x)
j ← (n1 + State[n2] + SK[n2 mod n]) mod 256
swap(State[i], State[j])

end for

Since the HenonSine map produces random floating-point numbers between 0 and 1,
the Encode function transforms these real numbers into integers between 0 and 255. Next,
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iterate M ×N times to generate the encryption key U . Finally, the encryption key U is
XORed with the plain image F , to yield the encrypted image:

O = F ⊕ U (12)

Pseudo-code of image encryption is shown on Algorithm 2 below.

Algorithm 2: Encrypts the image

Input: plain image (F ), prime number (p), length of key (n), receiver’s public key (Cs),
sender’s private key (r)
Output: encrypted image (O)

1: // Generate a secret key, SK
2: for i← 1 to n do

3: x[i]← Ts[i] // Initialize Chebyshev polynomial, C0(x) = 1, C1(x) = x mod p
4: C ← 1
5: C1← x[i] mod p
6: // Compute Chebyshev polynomial C(x) using recursive formula
7: for k ← 2 to r[i] do

8: Ck ← (2× x[i]× C1− C) mod p
9: C ← C1
10: C1← Ck

11: end for
12: SK[i]← Ck mod 256

13: end for

14: // Generate the encryption key, U, by using the secret key, SK
15: for k ← 0 to 255 do

16: State[k]← k
17: end for
18: j ← 0
19: x1← mean(SK[1 : ⌊n/2⌋])/mean(SK)
20: x2← mean(SK[⌊n/2⌋+ 1 : n])/mean(SK)
21: for k ← 0 to 255 do

22: x← HenonSineMap(a, b, x1, x2)
23: x2← x1
24: x1← x
25: n1← Encode(x)
26: x← HenonSineMap(a, b, x1, x2)
27: x2← x1
28: x1← x
29: n2← Encode(x)
30: j ← (n1 + State[n2] + SK[n2 mod n]) mod 256
31: swap(State[k], State[j])

32: end for

33: j ← 0
34: k ← 0
35: [v, w]← size(F ) // size of image F is v × w
36: for row ← 1 to v do

37: for col← 1 to w do
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38: // Produce the encryption key, U
39: j ← (j + 1) mod 256
40: k ← (k + State[j]) mod 256
41: swap(State[j], State[k])
42: U [row, col]← State[(State[j] + State[k]) mod 256]

43: end for
44: end for
45: O ← F ⊕ U

3.3. Image decryption. Unlike encryption, image decryption is carried out using the
receiver’s private key. However, to produce a symmetric key, the sender’s public key
is also required. In this scenario, Bob decrypts the image using his private key and
Alice’s public key. The details of the image decryption method are shown in Algorithm
3. In the algorithm, Bob’s private key is s, and Alice’s public key is Cr. Similar to
the encryption process, the decryption algorithm first generates the secret key SK using
Eq. (9). Once the secret key is generated, the decryption key (U) is produced by adopting
the keystream generation in the Improved RC4. Finally, we perform XOR operation
between the decryption key, U , and the encrypted image, O, to yield the decrypted
image:

F = O ⊕ U (13)

Pseudo-code of image decryption is shown on Algorithm 3 below.

Algorithm 3: Decrypts the image

Input: encrypted image (O), prime number (p), length of key (n), receiver’s private key
(s), sender’s public key (Cr)
Output: original image (F )

1: // Generate a secret key, SK
2: for i← 1 to n do

3: x[i]← Cr[i] // Initialize Chebyshev polynomial, C0(x) = 1, C1(x) = x mod p
4: C ← 1
5: C1← x[i] mod p
6: // Compute Chebyshev polynomial C(x) using recursive formula
7: for k ← 2 to s[i] do

8: Ck ← (2× x[i]× C1− C) mod p
9: C ← C1
10: C1← Ck

11: end for
12: SK[i]← Ck mod 256

13: end for

14: // Generate the decryption key, U , by using the secret key, SK
15: for k ← 0 to 255 do

16: State[k]← k
17: end for
18: j ← 0
19: x1← mean(SK[1 : ⌊n/2⌋])/mean(SK)
20: x2← mean(SK[⌊n/2⌋+ 1 : n])/mean(SK)
21: for k ← 0 to 255 do
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22: x← HenonSineMap(a, b, x1, x2)
23: x2← x1
24: x1← x
25: n1← Encode(x)
26: x← HenonSineMap(a, b, x1, x2)
27: x2← x1
28: x1← x
29: n2← Encode(x)
30: j ← (n1 + State[n2] + SK[n2 mod n]) mod 256
31: swap(State[k], State[j])

32: end for

33: j ← 0
34: k ← 0
35: [v, w]← size(F ) // size of image F is v × w
36: for row ← 1 to v do

37: for col← 1 to w do
38: // Produce the decryption key, U
39: j ← (j + 1) mod 256
40: k ← (k + State[j]) mod 256
41: swap(State[j], State[k])
42: U [row, col]← State[(State[j] + State[k]) mod 256]

43: end for
44: end for
45: F ← O ⊕ U

3.4. Security of the algorithm. The public key algorithm proposed above has the
following public parameters: a prime number (p), the key length (n), a sequence of
integers (x), the receiver’s public key sequence (Ts), and the sender’s public key sequence
(Tr). To decrypt the encrypted image, an attacker would need to know the receiver’s
private key sequence (s). Ts and Tr represent Chebyshev polynomials of orders s and
r, respectively. While computing (x, Ts) using Eq. (4) is straightforward, computing
s given x and Ts(x) is much more difficult. To recover s, the attacker would need to
compute Tu(x) for all u ≥ 2 until they find a u such that Tu(x) = Ts(x). This attack
becomes infeasible if s is a very large number. For example, if s is 2048 bits in length,
the attacker would need to compute Tu(x) for all u from 2, 3, . . . , 22048 − 1. Since s is
an integer sequence of length n, the attacker would have to repeat this process n times.
Hence, the algorithm is resistant to brute force attacks.

4. Experiments and Results. We have implemented the proposed algorithm as a pro-
gram in MATLAB platform. We tested the program on twelve standard images, both
grayscale and color images (RGB images), as shown in Figure 3. All images are 512 ×
512 in size.

The proposed method can be applied for encryption and decryption of both grayscale
and color images. For grayscale images, encryption and decryption are performed as in
Algorithm 1 and Algorithm 2 above. For color images in the RGB color space, encryption
is performed each color channel separately. Each channel uses the same keystream (U),
although it is possible to use different keystreams for each channel. Therefore, for color
images, the encryption and decryption parts in Algorithm 2 (line 42) and Algorithm 3
(line 42) are modified as follows:
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Figure 3. Twelve images used for testing

Encryption stage:
42: for channel ← 1 to 3 do
43: for row ← 1 to v do
44: for col ← 1 to w do
45: O[row, col, channel]← F [row, col, channel]⊕ U [row, col]
46: end for
47: end for
48: end for

Decryption stage:
42: for channel ← 1 to 3 do
43: for row ← 1 to v do
44: for col ← 1 to w do
45: F [row, col, channel]← O[row, col, channel]⊕ U [row, col]
46: end for
47: end for
48: end for

We conducted the experiments for all test image, and the results are explained in each
sub-section below.

4.1. Generating public key and private key. Think Alice and Bob want to commu-
nicate by sending a secret image to each other using the asymmetric version of the RC4
cipher described above. First, Alice and Bob must each have their public and private keys.
In these experiments, to produce the public and private keys, suppose Alice and Bob agree
on n = 8, p = 1051, and x = [1456, 7658, 2875, 9123, 5908, 1012, 2873, 8742]. Alice chooses
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her private key as s = [1540, 1430, 1234, 8765, 9081, 1542, 7432, 9235]. Using Eq. (1), Al-
ice computes her public key and obtains Ts = [71, 711, 487, 820, 730, 58, 433, 859]. On the
other hand, Bob chooses his private key as r = [1370, 7865, 9082, 1276, 2387, 8752, 8542, 9009].
Bob computes his public key using Eq. (1) and obtains Tr = [474, 690, 905, 235, 920, 739, 555, 519].
We use these private and public keys in the next experiments.

4.2. Histogram analysis. An image encryption algorithm must be secure against sta-
tistical attacks. The distribution of pixels in the encrypted image should make it difficult
for an attacker to use frequency analysis methods to deduce the key. Therefore, the pix-
els in the encrypted image should have a uniform distribution. The histogram of the
encrypted image should appear flat. Figure 4 shows the results for the grayscale image,
include plain image, the encrypted image, the decrypted image, and the histograms of the
corresponding images.

(a) Plain image (b) Encrypted image (c) Decrypted image

(d) Histogram of (a) (e) Histogram of (b) (f) Histogram of (c)

Figure 4. Histogram of the plain image and the encrypted image for a
grayscale image

Next, Figure 5 shows the results for for the color image. Since a color image has three
color channels (red-green-blue), a histogram is created for each channel. The decrypted
image is the same as the original plain image.

From Figure 4 and Figure 5 we can observe visually that the histograms of the encrypted
images (Figure 4(e) and Figure 5(g-i)) appear almost flat, indicating that the proposed
method is secure against statistical attacks. It makes it difficult for cryptanalysts to
deduce the secret keys or pixel values of the plain images.

4.3. Sensitivity analysis. An important characteristic of a chaotic map is its sensitivity
to even the smallest changes in the initial values. A single bit change in the initial
condition results in a significant change in the system. The proposed method exhibits
this sensitivity. If we change one bit of the key, decryption of the image failed to transform
it back to the original image. Figure 6 shows the effect of a slight change in the receiver’s
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(a) Plain image (b) Encrypted image (c) Decrypted image

(d) Histogram of plain image
(red)

(e) Histogram of plain image
(green)

(f) Histogram of plain image
(blue)

(g) Histogram of encrypted
image (red)

(h) Histogram of encrypted
image (green)

(i) Histogram of encrypted
image (blue)

Figure 5. Histogram of the plain image and the encrypted image for a
color image

private key. We change the least significant bit of an element in the private key s =
[1540, 1430, 1234, 8765, 9081, 1542, 7432, 9235], incrementing it (9235 becomes 9236) and
decrementing it (9235 becomes 9234). The decrypted images, shown in Figure 6, still
appear as random images.

4.4. Correlation analysis. Correlation in an image describes the linear relationship
between pixels. Neighboring pixels in a plain image have a strong correlation, while
pixels in an encrypted image have a weak correlation. Figure 7 shows the correlation
distribution of adjacent pixels in the plain image and the encrypted image of the ’house’
image. The correlation of pixels in the plain image is clustered around the diagonal line,
indicating a strong correlation, whereas the correlation of pixels in the encrypted image is
evenly distributed across the plane, indicating that the correlation between pixels has been
eliminated. The correlation between pixels in an image is measured by the correlation
coefficient, defined as
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(a) Plain image (b) Encrypted image

(c) Decrypted image (s = s− 1) (d) Decrypted image (s = s+ 1)

Figure 6. Sensitivity effect of the proposed method for a sample image

rXY =
cov(X, Y )√
D(X)

√
D(Y )

(14)

where X and Y are random pixels,

cov(X, Y ) =
1

n

n∑
i=1

[xi − E(X)][yi − E(Y )] (15)

D(X) =
1

n

n∑
i=1

[xi − E(X)]2 (16)

and

E(X) =
1

n

n∑
i=1

xi. (17)

In our experiment, we randomly selected 1,000 pixels from both the plain images and
the encrypted images, and then computed the correlation coefficients between horizontally,
vertically, and diagonally adjacent pixels in each image. The correlation coefficients for



A New Asymmetric Image Encryption Algorithm Use Integer Chebyshev Map and Henon-Sine Map 653

each image are shown in Table 1. From the table, the correlation coefficients of pixels in
the plain images, on all directions, are close to 1, indicating a strong correlation, whereas
the correlation coefficients in the encrypted images, on all directions, are close to zero,
indicating a weak correlation. We also comparative study with other methods [4-7] for
the common test images. Other methods also give similar results, namely the correlation
coefficients of the encrypted images, in all directions, is always close to zero. Comparison
of results with other methods can only be done if using the same test images, therefore
the empty part in the Table 1 (also Table 2) indicates that comparison of results with
other methods cannot be done.

Table 1. Correlation coefficients of the plain image and the encrypted
image, and comparison with other methods (for some common test images)

Image
Correlation coefficients Comparison with other methods

Hor. Vert. Diag. [4] [5] [6] [7]

Goldhill
P-image 0.9703 0.9599 0.9435

E-image -0.011 0.0305 0.0037

Roman
P-image 0.9702 0.9649 0.9410

E-image 0.053 0.0535 0.0505

Mandrill
P-image 0.8802 0.7836 0.7388

E-image 0.0140 -0.0456 0.0085

-0.0024

0.0053

0.0017

House
P-image 0.9536 0.9622 0.9169

E-image 0.0187 0.0242 -0.0070

Bird
P-image 0.9704 0.9598 0.9412

E-image 0.0463 -0.0145 -0.0201

Boat
P-image 0.9545 0.9773 0.9465

E-image 0.0096 0.0461 -0.0272

0.0079,

-0.0034,

-0.0037

Couple
P-image 0.9324 0.8625 0.8149

E-image 0.0247 0.0220 0.0007

Barbara
P-image 0.8940 0.9565 0.8845

E-image 0.0324 0.0210 0.0103

Pirate
P-image 0.9732 0.9818 0.9634

E-image 0.0221 0.0472 -0.0495

0.0033,

0.0055,

-0.0249

-0.0023,

-0.0071,

-0.0039

Cameraman
P-image 0.9837 0.9974 0.9772

E-image -0.009 0.0248 -0.0113

Peppers
P-image 0.9764 0.9699 0.9480

E-image 0.0251 0.0616 0.0081

0.0026,

-0.0004,

-0.0027

0.0105,

-0.0235,

-0.0212

0.0020,

-0.0041,

0.0085

-0.0043,

-0.0051,

0.0046

Clown
P-image 0.9780 0.9865 0.9681

E-image 0.0054 0.0159 -0.0502

Note: P-image = Plain image, E-image = Encrypted image
Hor = Horizontal; Ver = Vertical, Diag = Diagonal

4.5. Entropy analysis. Entropy refers to the disorder in a system. A message M con-
sisting of n symbols mi (where i = 0, 1, ..., n) and the probability of each symbol p(mi)
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Plain image Encrypted image

Horizontal
(a)

Horizontal
(a)

Vertical
(b)

Vertical
(b)

Diagonal
(c)

Diagonal
(c)

Figure 7. Correlation distribution of adjacent pixels on plain image (left)
and encrypted image (right)

has an entropy measured by the formula:

H(M) = −
n−1∑
i=0

p(mi) log2 p(mi) (18)
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For an image with 256 gray levels, the symbols are m0 = 0,m1 = 1, . . . ,m255 = 255
and p(mi) can be obtained from histogram. Therefore, the entropy of the image is

H(M) = −
255∑
i=0

p(mi) log2 p(mi) (19)

The higher the entropy value, the greater the disorder in a message, and the higher the
degree of unpredictability. Since an encrypted image can be viewed as a random message,
its ideal entropy should be equal to eight. A plain image, being non-random, has an
entropy less than eight. An entropy value lower than eight indicates a higher security risk
because it increases the predictability of the image.

The entropies of the plain images and the encrypted images are summarized in Table 2.
Note that the entropy of the encrypted images is close to eight, while the entropy of the
plain images is always less than eight. In Table 2 we also compare the results with other
methods for some test images. Our method is better than [4] and [5] and only slightly
different in results (about 10−4) with [7] and [8]. Overall, the experiment results shows
that the proposed method is secure against entropy-based attacks.

Table 2. Entropy of the plain images and the encrypted images and com-
parison with other methods (for encrypted images only)

Image
Entropy Comparison with other methods

Plain-image Encrypted image [4] [5] [6] [7]
Goldhill 7.4778 7.9992
Roman 6.1808 7.9993
Mandrill 7.3579 7.9992 7.9974 7.9991 7.9994
House 7.2416 7.9993
Bird 5.8484 7.9991
Boat 7.1238 7.9991 7.9994 7.9994
Couple 7.2010 7.9992
Barbara 7.6321 7.9991 7.9975 7.9998
Pirate 7.2367 7.9992 7.9998 7.9999

Cameraman 7.0480 7.9994
Peppers 7.5712 7.9994 7.9970 7.9992 7.9994 7.9994
Clown 5.3684 7.9991

4.6. Robustness analysis. We tested whether the encrypted images are robust to com-
mon image processing techniques, such as image noising and image compression. In
real-world applications, such image processing is common. Image noising was performed
by adding 1% salt and pepper noise to the encrypted image, followed by decryption. Im-
age compression was tested by compressing the encrypted images into JPEG format and
then decompressing them back into bitmap format. Figure 8 shows the encrypted image
of Clown’s image after noise addition and the encrypted image of Pirate’s image after
compression. The decrypted images contain noise, but they are still well recognizable.

We measured PSNR of the decrypted images using formula

PSNR = 20× log10

(
255

rms

)
(20)
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where

rms =

√√√√ 1

MN

N∑
i=1

M∑
j=1

(Iij − Îij)2 (21)

M and N are image size, I and Î are the original image and the decrypted image, respec-
tively. PSNR of the decrypted images are summarized in Table 3. All PSNRs are below
30 but the decrypted images can still be recognized well.

(a) Encrypted image (”Clown”)
with salt & pepper noise

(b) Decrypted of noisy encrypted
image

(c) Encrypted image (”Pirate”)
after JPEG compression

(d) Decrypted of compressed im-
age

Figure 8. Robustness of the encrypted image after noise attack and com-
pression attack
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Table 3. PSNR of the decrypted images after adding noise and after image
compression

Image
PSNR

Salt & pepper noise Compression
Goldhill 29.0306 22.4720
Roman 29.6095 22.8939
Mandrill 29.6874 22.7717
House 28.6620 22.4123
Bird 27.9335 22.0539
Boat 29.0515 22.9810
Couple 29.6134 22.2730
Barbara 28.9078 22.4215
Pirate 29.0527 22.7045

Cameraman 28.4679 21.5937
Peppers 28.7004 22.5151
Clown 26.7017 19.9667

5. Conclusion. An asymmetric image encryption algorithm based on the Chebyshev
map and the Henon-Sine map is proposed in this paper. The Chebyshev map over Zp,
where p is a prime number, is used to generate the public and private keys for the users.
The Henon-Sine map and the improved RC4 algorithm are employed to generate the
encryption and decryption keys. The proposed algorithm has been tested on a set of
sample images. Experimental results demonstrate that the algorithm is secure against
brute-force attacks, provided the key parameters are sufficiently large integers. It is also
resistant to entropy attacks, correlation attacks, and statistical attacks, while exhibiting
high sensitivity to even a one-bit change in the key. Furthermore, the algorithm is robust
against noise and compression attacks.
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