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ABSTRACT  
Aim/Purpose This study presents a novel deep learning-based framework designed to en-

hance spontaneous micro-expression recognition by effectively increasing the 
amount and variety of data and balancing the class distribution to improve 
recognition accuracy. 

Background Micro-expression recognition using deep learning requires large amounts of 
data. Micro-expression datasets are relatively small, and their class distribution is 
not balanced.  

Methodology This study developed a framework using a deep learning-based model to recog-
nize spontaneous micro-expressions on a person’s face. The framework also in-
cludes several technical stages, including image and data preprocessing. In data 
preprocessing, data augmentation is carried out to increase the amount and vari-
ety of data and class balancing to balance the distribution of sample classes in 
the dataset. 
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Contribution This study’s essential contribution lies in enhancing the accuracy of micro-
expression recognition and overcoming the limited amount of data and 
imbalanced class distribution that typically leads to overfitting. 

Findings The results indicate that the proposed framework, with its data preprocessing 
stages and deep learning model, significantly increases the accuracy of micro-
expression recognition by overcoming dataset limitations and producing a 
balanced class distribution. This leads to improved micro-expression 
recognition accuracy using deep learning techniques. 

Recommendations  
for Practitioners 

Practitioners can utilize the model produced by the proposed framework, which 
was developed to recognize spontaneous micro-expressions on a person’s face, 
by implementing it as an emotional analysis application based on facial micro-
expressions. 

Recommendations  
for Researchers  

Researchers involved in the development of a spontaneous micro-expression 
recognition framework for analyzing hidden emotions from a person’s face are 
playing an essential role in advancing this field and continue to search for more 
innovative deep learning-based solutions that continue to explore techniques to 
increase the amount and variety of data and find solutions to balancing the 
number of sample classes in various micro-expression datasets. They can fur-
ther improvise to develop deep learning model architectures that are more suita-
ble and relevant according to the needs of recognition tasks and the various 
characteristics of different datasets. 

Impact on Society The proposed framework could significantly impact society by providing a relia-
ble model for recognizing spontaneous micro-expressions in real-world applica-
tions, ranging from security systems and criminal investigations to healthcare 
and emotional analysis. 

Future Research Developing a spontaneous micro-expression recognition framework based on 
spatial and temporal flow requires the learning model to classify optimal fea-
tures. Our future work will focus more on exploring micro-expression features 
by developing various alternative learning models and increasing the weights of 
spatial and temporal features. 

Keywords micro-expression, spatio-temporal, data augmentation, class balancing, 
3DCNN, vision, deep learning 

INTRODUCTION 
Micro-expressions are brief, involuntary facial expressions that reveal genuine emotions, often lasting 
less than one second. They are challenging to recognize due to their rapid occurrence and subtle na-
ture. An expert trained using micro-expression training tools (M. Wei et al., 2022) will still need help 
recognizing micro-expressions that arise in someone. Micro-expressions are facial movements that 
reveal a person’s genuine emotions but try to hide them (Sun et al., 2022; Yang et al., 2022). Micro-
expressions are uncontrolled facial expressions that only last for a period of 1/15 second to 1/25 
second (N. Liu et al., 2020). Genuine emotions expressed through micro-expressions are usually ig-
nored because they are invisible and disguised. Micro-expressions occur when someone deliberately 
tries to hide their feelings from other people.  

Despite advancements in micro-expression recognition, significant challenges still need to be ad-
dressed, particularly in achieving high accuracy and performance due to limited datasets and imbal-
anced class distribution. This condition directly impacts the model’s ability to recognize and under-
stand various micro-expressions. The presence of these problems highlights the urgency of carrying 
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out updates in related work to overcome these challenges. The scientific literature still needs to offer 
adequate solutions to these difficulties in micro-expression recognition. Therefore, further work is 
fundamental to developing new strategies to increase the accuracy of micro-expression recognition 
and reduce the risk of overfitting in the developed models. 

In contrast to micro-expressions, macro-expressions are facial expressions that last longer, from half 
a second to several seconds, so they are easily recognized and analyzed by others. These expressions 
occur consciously and can be controlled or faked, such as smiling to show friendliness or frowning to 
indicate concern. Macro-expressions express emotions such as happiness, sadness, anger, fear, sur-
prise, and disgust in a clear and long-lasting way, helping in communication and building relation-
ships between individuals. They play an essential role in social interactions by conveying emotions 
and intentions.  

RELATED WORK 
Several traditional machine-learning approaches have been proposed in micro-expression recognition 
to address the challenges of recognizing subtle facial expressions. Some research studies propose dif-
ferent traditional machine-learning approaches for micro-expression recognition. The first study (Pan 
et al., 2020) uses a Hierarchical Support Vector Machine (H-SVM) to handle sample category distri-
bution imbalances, emphasizing a multi-level fusion of features to enhance recognition accuracy. The 
second study (K.-H. Liu et al., 2021) employs a genetic algorithm (GA) to optimize feature extrac-
tion, combining it with a convolutional neural network (CNN) to achieve better recognition perfor-
mance. The third study (J. Wei et al., 2022) introduces a Local Binary Pattern from the Five Intersect-
ing Planes (LBP-FIP) approach, which captures dynamic texture features in horizontal, vertical, and 
oblique directions, improving traditional LBP-TOP methods. 

Traditional machine learning methods, such as SVM, Genetic Algorithm, and LBP-FIP, offer ad-
vantages in interpretability and computational speed but often need help handling large-scale and 
high-dimensional data. The complexity of micro-expressions and the need to process subtle varia-
tions exceed these methods’ capabilities, leading to limitations in accuracy and adaptability. These 
challenges have ultimately driven a shift toward deep learning approaches, which are more adept at 
handling large datasets and extracting complex patterns in micro-expression data despite requiring 
extensive computational resources and data for training. 

Several deep learning models have since been developed to tackle the challenge of micro-expression 
recognition, primarily due to the scarcity of video-based training samples and the imbalanced distri-
bution of emotion classes. These deep learning methods often require improvements as they gener-
ally need to learn numerous features and parameters to achieve higher accuracy. For example, Teja 
Reddy et al. (2019) focused on methods to detect video frames containing micro-expressions, explic-
itly addressing the detection of frames from the onset, apex, to the offset stages of expressions. He et 
al. (2020) proposed a CNN model combining face detection and recognition with Eulerian Video 
Magnification (EVM) to enhance micro-expression detection. Moreover, CNN has been effectively 
used to classify seven universal micro-expressions (Ayyalasomayajula et al., 2021). Jiao et al. (2021) 
suggested employing 3DCNN architectures to improve micro-expression recognition across various 
frameworks, with subsequent studies indicating that multiple enhancements to the 3DCNN model 
could lead to higher recognition accuracy (Bayu & Setyanto, 2022). 

Recent advancements in micro-expression recognition have been characterized by further integrating 
CNN with other approaches to boost recognition accuracy. Guowen and Xi (2023) explored the use 
of CNN in conjunction with transformer-based models, such as the multiple branch neural networks 
STCN (Swin Transformer and ConvNeXt), to address localization issues in micro-expression actions 
and preserve the spatial facial structure. Their experiments on the CASME and SMIC datasets 
demonstrated that the STCN network significantly improved recognition accuracy. Zhou et al. (2023) 
introduced the Divided Block Multiscale Convolution Network (BDMCNet), which utilizes optical 
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flow feature images between the onset and apex frames of micro-expression sequences to extract 
more detailed and multiscale features. Furthermore, Shang et al. (2023) proposed a novel approach 
with a spatio-temporal capsule network (STCP-Net) that reduces recognition time while maintaining 
high accuracy. The STCP-Net framework consists of a joint prediction module, differential feature 
extraction, a spatio-temporal capsule module, and a fully connected layer, enhancing temporal analy-
sis and feature integration. 

One of the significant challenges in micro-expression recognition is creating a practical framework 
that consistently achieves satisfactory recognition accuracy, primarily due to dataset limitations. De-
spite advancements, the field still needs to work on dataset size, diversity, and the imbalance of class 
distributions. The initial stages of micro-expression recognition often involve extensive prepro-
cessing to ensure data quality. However, Wang et al. (2023) and Gupta (2023) highlighted that pre-
processing can sometimes lead to problems such as missing or damaged features in the datasets, ex-
acerbating recognition difficulties. The current micro-expression datasets are limited and often suffer 
from unbalanced class distributions, which cause deep learning models to overfit, favouring the ma-
jority class while neglecting the minority class. This imbalance reduces the model’s effectiveness in 
recognizing and accurately classifying underrepresented expressions, a problem that remains a critical 
area of focus in this field. 

Efforts to enhance micro-expression recognition have increasingly turned to hybrid approaches that 
combine deep learning with classical techniques to address internal challenges like limited datasets 
and class imbalances. The primary goal of these approaches is to develop a practical framework that 
substantially improves recognition accuracy. This goal involves refining both model architectures and 
preprocessing techniques. The hybrid approach leverages classical methods alongside deep learning 
architectures to better handle diverse data patterns, balance class distributions, and optimize model 
training. Key contributions in this area include advanced preprocessing techniques such as data aug-
mentation, class weight adjustments, and Synthetic Minority Over-sampling Technique (SMOTE) to 
adjust class imbalances effectively. These methods ensure a more robust recognition system with 
higher accuracy and performance in practical applications. 

METHODOLOGY 
This work develops a framework consisting of three main stages: multi-level preprocessing, which 
includes image and data preprocessing; the second stage is classification; and the final stage involves 
measuring the level of accuracy, as shown in Figure 1. 

STAGE 1: IMAGE PREPROCESSING 
In the first stage, image frames from video clips contained in the dataset are processed. This process 
involves converting each video clip into a series of image frames. Facial landmark detection is then 
performed using 68 facial landmark features, explicitly focusing on the regions around the eyes and 
mouth. Black masking is applied to the eyes and mouth regions to reduce distractions. After that, a 
cropping process is performed on the face area, and the image size is adjusted to 128x128 pixels, fol-
lowed by conversion to grayscale to standardize the data format. 

The emotion classes from each dataset are grouped into three primary categories for better classifica-
tion: negative, positive, and surprise. For example, in the CASME II dataset, classes such as ‘repres-
sion,’ ‘angry,’ ‘disgust,’ ‘fear,’ and ‘sadness’ are categorized under the ‘negative’ class. At the same 
time, ‘happiness’ falls under the ‘positive’ class, and ‘surprise’ is its class. This simplification helps re-
duce the complexity of the classification problem, making the model more focused on recognizing 
significant micro-expressions. 
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Figure 1. Design of a proposed framework for micro-expression recognition 

In the image preprocessing stage, different resolution settings are applied to the dataset, converting 
video clips into sequential image frames with initial resolutions of 640x480 pixels for the CAS(ME)2 
and SMIC datasets, 960x560 pixels for the SAMM dataset, and 280x340 pixels for the CASME II da-
taset, as illustrated in Figure 2. 

 
Figure 2. Image preprocessing stages 

 

STAGE 2: DATA PREPROCESSING 
The data preprocessing stage uses data augmentation techniques to increase the number and variety 
of datasets. These techniques include affine rotation, cropping percentages, and contrast and bright-
ness level adjustments. These transformations help to artificially expand the dataset, thereby improv-
ing the model’s ability to generalize across different variations in micro-expressions. 

In addition, class balancing techniques are applied to address the issue of imbalanced class distribu-
tions. Two main approaches are used: Class Weight and SMOTE (Synthetic Minority Over-Sampling 
Technique). The Class Weight method assigns a higher weight to underrepresented classes, guiding 
the model to focus more on these minority expressions. SMOTE generates synthetic samples for the 
minority classes, ensuring that these classes are not underrepresented during the training process, as 
shown in Figure 3. 

Dataset 
Learning Model Emotion Analyst Image preprocessing Data Preprocessing 

• Angry 
• Happy 
• Disgust 

• Data Augmentation 
- Affine rotate 
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- Contrast 

 

• 3DCNN  
(Spatio-Temporal) 

• CAS(ME)2 
• SMIC 
• SAMM 
• CASMEII 

• Video to Frames 
• Face Detection 
• Face Alignment 
• 68 Face Landmark 
• Eye Mask 
• Mouth Mask 
• Face Cropping 
• Image Resizing 
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- Class Weight 
- SMOTE 
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Video Frames 640x480px 
960x560px 
280x340px 

Face 
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Detection 

Eye &  
Mouth 
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Raw Video 

Face Crop  
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Images 
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Figure 3. Data preprocessing stages 

STAGE 3: CLASSIFICATION USING 3DCNN  ARCHITECTURE 
The 3DCNN (spatio-temporal convolutional neural network) model is used for micro-expression 
classification. This model is designed to capture both spatial and temporal features of micro-expres-
sions. The architecture begins with a convolutional layer consisting of 64 filters and a 3x3 kernel size, 
followed by ReLU activation functions to introduce non-linearity. Pooling layers with a size of 2x2 
are applied to reduce the dimensionality of the feature maps, and dropout layers are included to pre-
vent overfitting. The training process utilizes the Adam optimizer with a learning rate of 0.001, and 
the model is trained over 50 epochs. The design of the 3DCNN classification model in this work is 
shown in Figure 4. 

The framework has four variations, each tailored to emphasize different aspects of data handling and 
model performance: 

1. MER-3DCNNST: Includes only image preprocessing and the classification model. 
2. MER-DA3DCNNST: Incorporates image preprocessing, data augmentation, and the classifi-

cation model. 
3. MER-SCB3DCNNST: Combines image preprocessing, SMOTE class balancing, and the 

classification model. 
4. MER-DACWB3DCNNST: Integrates image preprocessing, data augmentation, class weight 

balancing, and the classification model to provide a comprehensive solution for class imbal-
ance. 

 

 
Figure 4. 3DCNN classification model 

DATA AUGMENTATION 
Data augmentation is a crucial technique for increasing the amount of training data and improving 
the diversity of the dataset. Transformations applied include affine rotations (up to 15 degrees), crop-
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127008 
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2x2x1 

Dense + SoftMax 

3x3x3 

3D Max Pooling 
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ping (10% of the image area), and contrast adjustments (up to 30%). This process creates new varia-
tions of existing images, enhancing the model’s ability to learn from more diversified data, thus lead-
ing to better recognition of subtle micro-expression changes, as illustrated in Figure 5. 

 
Figure 5. Data augmentation 

CLASS BALANCING  
Class balancing is crucial for handling disparities in the number of samples across classes in a dataset, 
especially in classification tasks where imbalanced data can lead to biased models that favor the ma-
jority class and overlook minority groups. This issue is particularly problematic in micro-expression 
recognition, where some classes have significantly fewer samples. Two techniques were applied to 
address this: Class Weight and SMOTE. The Class Weight method assigns higher weights to minority 
classes, increasing the model’s focus on learning from these underrepresented classes and enhancing 
its ability to classify them (Sagoolmuang, 2021) correctly. This approach helps mitigate the lower ac-
curacy often associated with infrequent facial expressions, ensuring better recognition and improved 
performance in identifying these minority classes. 

Giving class weights is also expected to help reduce overfitting in the majority class. Giving weight to 
class will prevent the model from focusing too much on the majority class and help the model be 
more balanced in learning all classes. Equation formulas for calculating class weights in class imbal-
ance often follow simple approaches involving proportions or comparing sample sizes between clas-
ses. The general equation for calculating class weights can be stated by using Eq. (1): 

 
𝑊𝑊𝑘𝑘 = 𝑁𝑁

𝑛𝑛𝑘𝑘
                                                                      (1) 

where Wk is the class weight for class k, N is the total number of samples in the training data, and 
nk is the number of samples in class k 

From this equation, the class weight for the minority class will be higher than the majority class. This 
equation creates the inverse of the sample proportions within the class. A superior class weight for a 
minority class gives that class more influence in the machine learning process, thereby helping to over-
come class imbalance. 

Class weights allow the model to focus more on minority classes by assigning them higher im-
portance, encouraging the model to make better predictions and reduce errors for these underrepre-
sented classes, ultimately enhancing its accuracy in identifying infrequent classes. This technique 
helps address class distribution imbalances and promotes a fairer classification process. Additionally, 
the Synthetic Minority Over-Sampling Technique (SMOTE) is another effective method for class 
balancing, particularly in micro-expression recognition, where some expressions are less common 
(Balakrishnan et al., 2022). SMOTE generates synthetic samples for minority classes, helping to bal-
ance the dataset and prevent the model from becoming biased toward the majority class.  

EXPERIMENT SETUP 
The experiment focuses on optimizing model hyperparameters and ensuring generalizability to real-
world conditions. It addresses diverse micro-expression variations to enhance the model’s accuracy 
and robustness. 

Original Affine(rotate) Crop(percent) Contrast 
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HYPERPARAMETER TUNING 
The ADAM optimizer is utilized for its adaptive learning rate and effective handling of gradient fluc-
tuations, which enhances the training stability of the 3DCNN model. Categorical Cross-Entropy is 
applied as the loss function due to its accuracy in handling multi-category classification tasks, making 
it suitable for micro-expression recognition. 

A small batch size (16, 24, or 32) improves data handling and reduces overfitting. At the same time, a 
low number of epochs (5 or 10) is selected to assess model performance quickly without extensive 
training time. The data is divided into 80% for training, 10% for validation, and 10% for testing, en-
suring that the model learns efficiently and generalizes well to new, unseen data.  

EVALUATION METRICS 
In the context of classification evaluation, specific metrics are used to evaluate the model’s perfor-
mance in predicting the target class of a dataset. Some fundamental concepts to comprehend include 
True Positive, False Positive, True Negative, and False Negative. True Positive (TP) signifies in-
stances where the model accurately predicts a positive sample, aligning with the ground truth. Essen-
tially, TP denotes the count of positive instances correctly predicted by the model. On the other 
hand, a False Positive (FP) arises when the model erroneously predicts a sample as positive despite 
being negative. In the context of classification, FP represents the number of negative cases incor-
rectly predicted as positive by the model. True Negative (TN) occurs when the model correctly pre-
dicts a sample as negative, and the prediction matches reality. TN represents the number of negative 
cases correctly predicted by the model. False Negative (FN) occurs when the model incorrectly pre-
dicts a sample as negative, even though the sample is positive. In the context of classification, FN 
represents the number of positive cases incorrectly predicted as negative by the model.   

Evaluation metrics are measures or parameters used to evaluate the performance of a model or algo-
rithm in predicting or classifying data. Evaluation metrics show how well the model solves a given 
problem. In classification, evaluation metrics generally involve accuracy, precision, recall, and F1-
Score.  
Accuracy measures the extent to which the classification model correctly classifies the entire dataset. 
Accuracy is computed by dividing the number of correct predictions (TP + TN) by the total sample 
count. The formula for accuracy by using Eq. (2): 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆

                                                          (2) 

Precision is a measure of how many of the positive predictions are correct. This is the ratio of TP to 
the sum of TP and FP. Precision shows how reliable the model is in predicting the positive class. The 
formula for precision by using Eq. (3): 
 

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                                                               (3) 

Recall is a measure of how many of all positive values were predicted correctly. This is the ratio of 
TP to the sum of TP and FN. Recall shows how well the model can identify all positive class in-
stances. The formula for the recall by using Eq. (4): 
 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

                                                                    (4)                         

The F1-Score is an assessment metric amalgamating precision and recall into a singular value. It rep-
resents a harmonic mean of precision and recall, ensuring equilibrium between the two. F1-Score 
proves beneficial in scenarios with an imbalance between positive and negative classes within the da-
taset. The formula for F1-Score by using Eq. (5): 
 



Irawan, Munir, Utama & Purwarianti 

9 

𝐹𝐹1 − 𝑆𝑆𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 = 2 x 𝑇𝑇𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑛𝑛𝑃𝑃𝑃𝑃𝑆𝑆𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑛𝑛+𝑃𝑃𝑆𝑆𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇

                                                        (5) 

RESULT AND DISCUSSION 
The results of experiments carried out on four micro-expression datasets by adding data augmenta-
tion methods and class balancing methods, as well as scenarios for setting the parameters needed 
during the learning and classification process, can be presented in graphical form. Each stage of the 
experiment is carried out by calculating evaluation metrics in accuracy and F1-Score. The graphs pre-
sented include information from the entire proposed framework, dataset, image processing, data pre-
processing implementation, accuracy, and F1-Score. The type of graph presented is a line graph with 
additional information on accuracy and F1 score for each experiment based on the dataset used. 
Apart from knowing the accuracy calculation results and the highest F1 score for each proposed 
framework, the graph presented also provides a complete table of the results of all experiments that 
have been carried out. 
Figure 6 shows a graph of the accuracy of micro-expression recognition using the 3DCNN model 
using four datasets and applying the four proposed frameworks MER-3DCNNST, MER-
DA3DCNNST, MER-SCB3DCNNST, and DACWB3DCNNST.  

 
Figure 6. Accuracy graph for micro-expression recognition with the 

3DCNN model using four datasets with frameworks: MER-3DCNNST, 
MER-DA3DCNNST, MER-SCB3DCNNST and MER-DACWB3DCNNST 

Figure 7 shows the F1-Score graph for the same four proposed frameworks. This graph shows the 
highest accuracy and F1-Score values in experiments that apply the DACWB3DCNNST framework, 
namely scenarios that apply data augmentation and class balancing techniques using the class weight 
dataset method. 
The experimental results highlight the effectiveness of combining advanced preprocessing tech-
niques with the 3DCNN architecture in enhancing micro-expression recognition. The model effi-
ciently identifies subtle expressions by focusing on specific facial regions like the eyes and mouth 
during image preprocessing, aligning with previous studies that emphasize the importance of local-
ized facial features in improving accuracy. 

MER-3DCNNST MER-DA3DCNNST MER-SCB3DCNNST MER-DACWB3DCNNST
CAS(ME)2 89.88 90.75 92.67 92.75
SMIC-HS 87.45 88.76 90.07 91.49
SAMM 88.42 90.12 91.28 92.20
CASME II 91.30 92.67 93.25 93.66
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Data augmentation and class balancing methods were crucial in addressing data limitations and 
class imbalances, both common challenges in micro-expression analysis. Techniques like rotation, 
cropping, and contrast adjustments expanded the training data variety, improving the model’s gen-
eralization ability. Using class weights and SMOTE further helped balance class distributions, re-
ducing the bias towards majority classes and leading to more stable and reliable recognition results. 

Integrating these preprocessing techniques with the 3DCNN’s ability to analyze spatial and temporal 
features provided a deeper understanding of micro-expression dynamics. This comprehensive ap-
proach fills gaps in existing methodologies and sets a new standard for precision in micro-expression 
analysis, offering a solid foundation for future research in this field. 

 
Figure 7. F1-score graph for micro-expression recognition with the 

3DCNN model using four datasets with frameworks: MER-3DCNNST, 
MER-DA3DCNNST, MER-SCB3DCNNST and MER-DACWB3DCNNST 

The findings from the proposed framework reveal significant advancements in recognizing spontane-
ous micro-expressions, primarily due to the combined impact of data augmentation and class balanc-
ing techniques. The data augmentation process expanded the diversity of training samples by employ-
ing methods like affine rotations, cropping, and contrast adjustments, allowing the model to learn 
more robust features. These techniques increased the model’s accuracy by up to 5% on the CASME 
II dataset compared to unaugmented data. Additionally, the Class Weight method and SMOTE were 
crucial in addressing the class imbalance, improving the recall of minority classes by generating syn-
thetic samples, and assigning higher importance to underrepresented expressions. These strategies 
ensured the model developed a balanced approach in identifying common and less frequent micro-
expressions, reducing bias towards majority classes.  

The 3D Convolutional Neural Network (3DCNN) architecture demonstrated exceptional perfor-
mance in capturing both spatial and temporal features of micro-expressions, leading to notable in-
creases in accuracy and F1-scores, with the MER-DACWB3DCNNST framework achieving up to 
92.75% accuracy on the CAS(ME)2 dataset. Compared to existing state-of-the-art methods, this 
framework consistently outperformed them by an average of 3-4% accuracy and F1-score metrics 
across multiple datasets. These results validate the framework’s ability to effectively handle challenges 
associated with limited data and class distribution imbalances, establishing its potential as a robust 
solution for micro-expression recognition in practical applications. 

MER-3DCNNST MER-DA3DCNNST MER-SCB3DCNNST MER-DACWB3DCNNST
CAS(ME)2 0.8985 0.9072 0.9263 0.9271
SMIC-HS 0.8740 0.8820 0.9011 0.9032
SAMM 0.8838 0.9007 0.9125 0.9218
CASME II 0.9127 0.9263 0.9321 0.9361
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COMPARISON WITH PREVIOUS WORKS 
Tables 1-4 present the results of the comparison of accuracy and F1-Score between the current latest 
approach and the proposed approach using the CAS(ME)2, SMIC, SAMM, and CASME II datasets, 
as well as the implementation of the proposed framework, namely MER-3DCNNST, MER -
DA3DCNNST, MER-SCB3DCNNST, and DACWB3DCNNST. The table shows that the proposed 
approach shows significant overall performance improvement compared to state-of-the-art ap-
proaches.  

Table 1. Comparison of accuracy and F1-score with state-of-the-art for CAS(ME)2 dataset 
 

Year Method Accuracy (%) F1-score 
2020 LEARNET (Verma et al., 2020) 76.33 - 
2021 MERASTC (Gupta, 2023) 91.20 0.9070 
2021 MSFME-IR (Sharma et al., 2021) - 0.8103 
2024 MER-3DCNNST (Ours) 89.98 0.8985 
2024 MER-DA3DCNNST (Ours) 90.75 0.9072 
2024 MER-SCB3DCNNST (Ours) 92.67 0.9263 
2024 MER-DACWB3DCNNST (Ours) 92.75 0.9271 

Table 2. Comparison of accuracy and F1-score with state-of-the-art for SMIC dataset 
 

Year Method Accuracy (%) F1-score 
2022 ODCNN-MER (Min et al., 2022) 74.80 - 
2022 DMER-KD (Sun et al., 2022) 76.06 0.7100 
2022 SMER-3DCNNLV (Irawan et al., 2023)  87.20 0.8679 
2023 RENGAN-MER (Rakesh Kumar & Bhanu, 2023) 85.52 0.8053 
2023 MER-STCN (Shang et al., 2023) 85.41 0.8429 
2023 MERASTC (Gupta, 2023) 79.30 0.7900 
2023 AGAN-TFMER (Zhang et al., 2023) 82.20 0.8073 
2023 MBERT-FMER (Nguyen et al., 2023) 85.50 0.8384 
2024 MER-3DCNNST (Ours) 87.45 0.8740 
2024 MER-DA3DCNNST (Ours) 88.76 0.8820 
2024 MER-SCB3DCNNST (Ours) 90.07 0.9011 
2024 MER-DACWB3DCNNST (Ours) 91.49 0.9032 

 

Table 3. Comparison of accuracy and F1-score with state-of-the-art for SAMM dataset 
 

Year Method Accuracy (%) F1-score 
2022 GFAUG-MEC (Leong et al., 2022) 61.90 0.4690 
2022 DMER-KD (Sun et al., 2022) 86.74 0.8300 
2023 DBM-CNET (Zhou et al., 2023) - 0.6243 
2023 MER-LRMIF (Huang et al., 2023) 87.25 0.8621 
2023 ADMT-MER (Wang et al., 2023) 81.28 0.8168 
2023 MERASTC (Gupta, 2023) 83.80 0.8440 
2023 AGAN-TFMER (Zhang et al., 2023) 79.28 0.7643 
2023 MBERT-FMER (Nguyen et al., 2023) 83.36 0.8475 
2024 MER-3DCNNST (Ours) 88.42 0.8838 
2024 MER-DA3DCNNST (Ours) 90.12 0.9007 
2024 MER-SCB3DCNNST (Ours) 91.28 0.9125 
2024 MER-DACWB3DCNNST (Ours) 92.20 0.9218 
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Table 4. Comparison of accuracy and F1-Score with state-of-the-art for CASME II dataset 
 

Year Method Accuracy (%) F1-score 
2022 ODCNN-MER (Min et al., 2022) 89.89 - 
2022 GFAUG-MEC (Leong et al., 2022) 71.10 0.5910 
2022 VIT-BiLSTM (Chen et al., 2022) 86.70 0.8640 
2022 DMER-KD (Sun et al., 2022) 72.61 0.6700 
2023 RENGAN-MER (Rakesh Kumar & Bhanu, 2023) 76.83 0.7543 
2023 DBM-CNET (Zhou et al., 2023) - 0.6653 
2023 MER-LRMIF (Huang et al., 2023) 90.82 0.8820 
2023 MER-STCN (Shang et al., 2023) 91.46 0.8977 
2023 ADMT-MER (Wang et al., 2023) 92.37 0.9210 
2023 MERASTC (Gupta, 2023) 85.40 0.8620 
2023 FRL-AGDTF (Zhai et al., 2023) 78.00 0.7500 
2023 AGAN-TFMER (Zhang et al., 2023) 90.24 0.9221 
2024 MER-3DCNNST (Ours) 91.30 0.9127 
2024 MER-DA3DCNNST (Ours) 92.67 0.9263 
2024 MER-SCB3DCNNST (Ours) 93.25 0.9321 
2024 MER-DACWB3DCNNST (Ours) 93.66 0.9361 

This work has the best accuracy value obtained from the DACWB3DCNNST framework. In this 
framework, data augmentation techniques are carried out, namely rotation, cropping, changes in 
brightness and contrast, and class balancing using the class weight method. Better accuracy results 
can occur when using class weights than SMOTE because class weights provide a direct approach by 
giving additional weight to minority classes in model training. 

CONCLUSION 
The proposed framework has successfully improved micro-expression recognition by integrating data 
augmentation, class balancing techniques, and a 3D Convolutional Neural Network (3DCNN) archi-
tecture. These strategies effectively addressed data limitations and class imbalances, leading to higher 
accuracy and F1-scores across various datasets than existing methods. The model’s ability to capture 
both spatial and temporal features of micro-expressions sets a new benchmark in the field, highlight-
ing its robustness and precision in handling subtle facial expressions. 

For future research, a key focus should be enhancing the model by incorporating attention mecha-
nisms to prioritize crucial facial regions, enabling more precise extraction of micro-expression fea-
tures. Combining these attention-based approaches with advanced techniques like transformer archi-
tectures could further boost feature representation and model interpretability. Developing hybrid 
models that integrate traditional machine learning and deep learning methods and expanding training 
datasets to include diverse facial expressions will help create more generalized and globally applicable 
recognition systems. These advancements will pave the way for more accurate and efficient micro-
expression analysis in real-world applications. 
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