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ABSTRACT Autonomous vehicles rely on the accurate detection and recognition of objects in their
surroundings, a critical requirement for safe operation, especially in congested traffic with diverse vehicle
types. This study presents a novel dataset collected in various road conditions in Indonesia, and it focuses
on the detection and classification of visual objects around autonomous vehicles. Object recognition is
achieved through the use of YOLOv7-based deep learning, adapted to identify small, faint, and partially
concealed objects. Key enhancements include the integration of a deformable layer and the transition
from Non-Maximum Suppression (NMS) to Soft Non-Maximum Suppression (softNMS). The dataset
comprises eight predefined custom classes commonly encountered in Indonesian traffic. We collected
video data recordings of heavy traffic scenarios featuring a wide range of vehicle types as training and
testing data. The object detection model is fine-tuned through transfer learning, with multiple learning
configurations explored for comparison. Experimental results demonstrate that deep learning models trained
with transfer learning outperform those trained from scratch. Specifically, the modified YOLOv7, referred
to as YOLOv7-MOD, incorporates a deformable convolution layer for up-sampling, leading to a remarkable
performance of 94.68% in Recall, 96.87% in Precision, and 95.76% in F1-score. The modification resulted
in an additional performance increase of 1.05% on average compared to the original model. The findings
indicate that YOLOv7-MOD enhances the precision of object detection and recognition compared to the
original YOLOv7, making it a promising solution for autonomous vehicle perception systems.

INDEX TERMS Object detection, deformable convolution, autonomous vehicle, deep learning.

I. INTRODUCTION
In the last few years, self-driving car has been started up by
industry and the research community. It is designed to assist
the human life. Some of them, used for industrial purpose, and
the other are used for daily needed. There are several levels
in autonomous vehicle, it starts from partially manual control,
until automatically drive itself [1]. The most important ability
that vehicle needed is visual understanding in environment
information. Detecting and recognition object surrounding
the car is related in perception system on autonomous vehicle.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongjie Li.

In developed countries, most traffic is filled by cars. However,
in developing countries, such as Indonesia, traffic is more
congested and filled with various types of vehicles, most of
which are motorbikes. In addition, Indonesia has many types
of roads, such as one-way, two-way, and local. Each type has
a different object diversity and density. Therefore, to avoid
accidents under any road condition, autonomous vehicles
need to know their surroundings by detecting and recognizing
all objects in their surroundings, especially in crowded
areas.

Perception system in autonomous vehicle consists of
object detection and object recognition. Object detection
aims to understand location and the class of the object on
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the frame. Furthermore, deep learning is widely used in
various applications such as detecting and recognizing visual
objects. Different from original machine learning which
mostly use simple neural network, most of deep learning use
convolutional neural network (CNN). In traditional machine
learning, feature extraction from images often requires
in-depth domain knowledge and a manual approach to design
relevant features. This can be a complex and time-consuming
task, and the results are not always as good as those provided
by CNNs. There are many CNN models exists, but YOLO
is one of the most efficient deep learning models that have
both great precision and speed. This research will use deep
learning model based on YOLO for object detection.

Finally, training deep-learning models with datasets does
not always require large datasets. In addition, manual labeling
is costly. Transfer learning allows us to use knowledge from
well-known datasets such as the COCO datasets [4], [5].
Transfer learning aims to solve the problem of learning
different objects by extracting useful information from the
data of the associated object and transferring it for other
purposes [4]. Some information from an existing dataset may
be similar to that from a new one. For example, pedestrians in
an existing dataset have features similar to those of the new
dataset. To enrich the features of the model built for mixed
traffic environments, we collected data on the roads in the
city of Bandung, Indonesia.

YOLO is built on top of the darknet framework. However,
several deep learning frameworks are available in addition
to darknet. Tensorflow with keras was used as the deep-
learning framework. Tensorflow can also leverage the GPU
to accelerate the deep-learning computation process. YOLO
predicts multiple bounding boxes for each grid cell. During
training, we only want one bounding box predictor to be
responsible for each object. We assign one predictor to
be ‘‘responsible’’ for predicting an object, based on which
prediction has the highest current IOU with the ground truth.
This leads to specialization between bounding box predictors.
Each predictor improves the prediction of specific sizes,
aspect ratios, or classes of objects, thereby improving the
overall recall. This study used a modified YOLO-based deep
learning model for object detection. In this paper, we propose
a modified YOLOv7 for object detection in dense and mixed
traffic for autonomous vehicles. We also modified YOLOv3
and YOLOv5 as a baseline. The YOLOv7 can detect objects
quickly because YOLO built-in on the top darknet. However,
there are some cases where a small object can not be detected.
Meanwhile, the YOLO can be modified with an additional
deformable convolutional layer and the use of softNMS to
improve algorithm performance. The proposed algorithmwill
modify the YOLO-based deep learning model for object
detection. This is important to overcome the problem of
detecting small objects and overcomes the detection of
objects that look faint visually. As a result, it can increase
precision, recall, and F1 score. The proposed model is
referred to as YOLOv7-MOD. The main contributions of this
paper are as follows:

(1) We designed a deep learning network for object
detection (YOLOv7-MOD), where the constructed model is
capable of detecting small-sized and faintly visible objects.

(2) We compiled a local dataset for object detection in
low-light conditions collected on the streets of Bandung city
in the late evening, representing typical dense and mixed
traffic in developing countries.

(3) We demonstrated the performance of the designed
network architecture through various experiments. The
experimental results show that our network outperforms
existing methods on synthetic images both quantitatively and
qualitatively.

The remainder of this paper is organized as follows.
Related work and an overview of object detection meth-
ods is presented in Section II. Our main contribution,
YOLOv7-MOD to deal with small objects and objects
that appear blurry. presented in Section III. Section IV is
the generation of traffic datasets in urban areas and the
experimental results are presented and analyzed in Section V.
The summary and conclusion of the present work are drawn
in Section VI.

II. PRELIMINARIES
Numerous techniques are available for object detection,
one of which is the classical HOG algorithm that enjoyed
widespread use prior to the era of deep learning. HOG
finds application in computer vision and image process-
ing for object detection. This approach involves tallying
occurrences of gradient orientations within localized image
regions. It shares similarities with edge orientation his-
tograms and scale-invariant feature transformation (SIFT).
The HOG descriptor emphasizes the structural and shape
characteristics of objects, leading to object detection within
frames by assessing gradients across each frame segment.
However, it’s important to note that this technique is less
suitable for deployment in autonomous vehicles. A study
in [3] underscores that HOG’s performance lags behind
deep learning methods primarily due to issues related to
accuracy.

A CNN is a deep learning algorithm for detecting an object
from an image [6]. Instead of depending on the hand working
mathematically, the CNN algorithm is based on a neural
network. Currently there are a number of CNN-based models
commonly used for object detection and classification, e.g.,
ResNet, VGGNet, and Inception. CNN typically detects
and classifies only one object per image [7]. Consequently,
advancements in CNN have led to the development of
more sophisticated features. Various techniques have been
employed to enhance CNN’s ability to detect and classify
multiple objects within a single image. One of the earliest
methods for achieving this was RCNN, which employed
a two-stage detection approach to identify multiple objects
within a single frame [3]. RCNN utilizes region proposals
to detect objects, systematically scanning from the top-left
to the bottom-right corner of an image. The CNN is applied
within each of these proposal regions. However, RCNN’s
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drawback is its time-consuming nature, as it employs a
Region Proposal Network to segment the image, resulting
in approximately 2000 partitions per-image [8]. In response
to this speed limitation, Fast R-CNN and Faster R-CNN
were developed, offering incremental improvements and
significantly outperforming the original RCNN [4]. Fast
R-CNN streamlines the process by first applying CNN to
the original image and then generating region proposals.
Faster R-CNN follows a similar order to Fast R-CNN but
employs a neural network to determine the region of the
proposal. Notably, RCNN takes approximately 50 seconds to
process an image, whereas Fast RCNN processes an image
in just two seconds, and Faster RCNN can do so in a mere
0.2 seconds [5]. These neural network models are referred to
as two-stage detectors because they initially search for objects
within an image using region proposals before assigning their
respective classes.

Even though Faster R-CNN features faster inference time
compared to R-CNN and Fast R-CNN, it is not fast enough
to be implemented in an autonomous vehicle due to the rapid
dynamics of surrounding objects movement. Based on the
generated inference rate, YOLO produces a speed that can be
used for object detection in autonomous vehicles [3]. Faster
object detection is currently known as a one-stage detector.
YOLO and SSD are two of many one-stage detectors [9].
YOLO can process the image in one image without sliding
the region of the proposal. YOLO performs object detection
by predicting coordinates relative to the location of a grid
cell [10]. YOLO has several versions with better accuracy.
YOLO extracts feature at different scales and use anchor
boxes to predict bounding boxes [11]. By doing this, YOLO
can identify objects of various sizes and appearances, making
it versatile and effective in detecting objects under different
conditions. Anchor boxes are predefined boxes of various
shapes and sizes that serve as reference points during the
object detection process. YOLO uses these anchor boxes
to help predict the position and size of objects within an
image. By comparing the characteristics of detected objects
to the anchor boxes can make accurate predictions about the
location and dimensions of those objects. Bounding boxes
are rectangles that enclose objects within an image. YOLO’s
main goal is to predict these bounding boxes for each detected
object. By using the features extracted at different scales
and anchor boxes as references can accurately determine the
position and dimensions of objects in the image, creating
bounding boxes that tightly enclose the detected objects.
In this paper, we employ several performance evaluation
metrics, including precision, recall, F1-score, and average
precision, as referenced in [6].

III. MODIFIED YOLO MODEL
A. YOLOv3-MOD MODEL
In YOLOv3, the inserted layers play a crucial role in
enhancing the object detection capabilities of the model. One
of the types of layers used is the pooling layer, which is
commonly employed to reduce the feature dimensions within

TABLE 1. Advantages and disadvantages method.

the network. Pooling layers assist in extracting essential
features and reducing computational load. These layers can
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FIGURE 1. YOLOv3-MOD architecture.

shrink spatial resolution while retaining critical information.
Zero padding is a technique used to fill the area around
the edges of an image with zeros. It helps in preserving
information along the image’s edges and prevents the loss
of vital data. Often, zero padding layers are used before
convolutional layers to maintain consistent output sizes.
Additionally, concatenation is a merging operation used to
combine outputs from multiple layers at a single point within
the network. This allows the model to fuse information from
various levels of feature extraction, which can enhance object
detection capabilities in complex environments. Hence,
by utilizing inserted layers such as pooling, zero padding,
and concatenation in YOLOv3, the model can obtain
stronger feature representations, preserve edge information,
and integrate features from different extraction levels. This
contributes to improving the model’s performance in object
detection tasks within diverse environments.

There have been several efforts made to improve the
performance of YOLOv3, some of which are described
in [14]. Similarly, in this paper, we have developed YOLOv3-
MOD, YOLOv5-MOD, and YOLOv7-MOD. The network
on YOLOv3-MOD was slightly improved compared with
the basic YOLOv3. Compared to other detection algo-
rithms, YOLOv3 can run quite quickly without significantly

sacrificing detection accuracy. YOLOv3 uses darknet53 as
the backbone to perform feature extractors [15]. It contained
53 convolutional layers. Batch normalization is applied to
stabilize training, speed up convergence, and regularize the
model [10]. The last layer uses a linear activation function,
whereas the other layers use leaky rectification.

Model development on YOLOv3-MOD is shown in
Figure 1, where an additional layer consisting of zero
padding, 3 pooling, and concatenning is inserted. An addi-
tional layer was added after the backbone feature extraction
layer. The purpose of the incremental layer is to unify and
combine the multiscale local region features, which leads
to increased robustness. Hence, the network becomes more
robust to various object deformations and spatial layouts [10].

The additional layer contains a few max-pooling layers.
The filters of these pooling layers have sizes of 5 × 5,
9 × 9, and 13 × 13, and have one stride. All these
max-pooling layers have the same size because of the padding
operations. The outputs of the max pooling become the
input of the next convolutional layer. Furthermore, combining
different feature sizes allows the network to exploit more
spatial data in the convolutional layer [10].
Similar to YOLOv3, YOLOv3-MOD predicts the bound-

ing boxes at three different levels. The features extracted
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from the backbone and obtained through the additional layer
are extracted by these three levels using a concept similar
to that of feature pyramid networks [10]. There are three
steps in the up-sampling feature. Each step of the up-sampled
features is coupledwith features extracted from the backbone,
of the same size, allowing better detection of objects with
different sizes. In the same manner, YOLOv5-MOD was
developed following a similar approach as the development of
YOLOv3-MOD.

B. MODIFIED YOLOv7
1) DEFORMABLE CONVOLUTIONAL LAYER
Deformable Convolution (DC) is a variant of the Convolu-
tional Neural Network (CNN) which allows the convolution
to deform the convolutional kernel to adapt the kernel position
to the features in the image. In the context of feature
extraction, DC is useful for capturing more complex and
differently shaped features in images. Convolutional kernels
usually have a fixed shape, such as a box or circle, and cannot
model changes in the shape of the observed object. DC can
adjust its position and shape according to the distribution of
features in the image so that it can capture features that are
more complex and have different shapes.

The deformable convolution adds a spatial offset to each
point in the receptive field of the convolution operation. The
offset is learned from the featuremap input by the convolution
layer through a parallel network. The receptive field of
the convolution operation after offset can be consistent
with the actual shape of the object. Even if the target
is deformed, the convolution receptive field region can
still focus on the target. The Deformable Convolutional
Layer introduces a level of flexibility and adaptability to
the standard convolutional layers commonly found in deep
learning networks. Unlike traditional convolutional layers
that employ fixed and rigid kernels for feature extraction, the
deformable convolutional layer allows the network to adjust
its convolutional kernels or filters based on the characteristics
of the objects in the image.

This adaptability is particularly valuablewhen dealingwith
objects that may have varying shapes, sizes, or positions
within the image. In scenarios such as autonomous driving,
where the vehicle encounters diverse traffic conditions and
objects, the deformable convolutional layer can precisely
capture and analyze the details of these objects by flexibly
adjusting its convolutional kernels. For example, if the system
detects an object with a unique shape or orientation, the
deformable convolutional layer can deform its kernels to
align with the object’s characteristics, improving the feature
extraction process. This adaptability ensures that the model
can accurately identify and classify objects under challenging
conditions, ultimately enhancing the reliability and safety of
the autonomous vehicle’s perception system. In essence, the
Deformable Convolutional Layer in Figure 2 represents an
innovative feature that empowers the deep learning model
to adapt and better understand the complex and dynamic
visual information captured by the vehicle’s cameras. It plays

FIGURE 2. Deformable convolutional layer [27].

a crucial role in improving the model object detection and
recognition capabilities, making it a valuable component in
the quest for safer and more reliable autonomous driving
systems.

The comparison of sampling points of conventional
convolution and deformable convolution network is shown in
Figure 3.

FIGURE 3. Comparison of sampling points between conventional
convolution and deformable convolution [27].

(a) is the traditional 3 × 3 convolution kernel, where the
region containing green points is the receptive field of a
convolution operation, and you can see that the receptive field
is a fixed 3 × 3 rectangle. (b), (c) and (d) are deformable
convolutions. The blue points are the input pixels of the
migrated convolution kernel. On the basis of the original
convolution, a learning offset is added to each sampling point
of the convolution kernel, so that the convolution kernel is
irregular in shape, increasing the receptive field and adapting
the convolution kernel to different morphological changes
and scale changes. Assuming that there is a 3× 3 convolution
kernel R={(−1, −1), (−1, 0), · · · ,(0,1), (1,1)} with nine sets
of offsets, and two values in each set of offsets represent
the corresponding horizontal and vertical offsets, then R
represents a standard 3 × 3 convolution kernel. For the input
feature graph x and the output feature graph y, the traditional
convolution calculation process is as follows: for the value of
each position p0 on the output feature graph y, it is calculated
by the formula:

y (p0) =

∑
w

(
pnpn ∈ R

)
.x(p0 + pn) (1)
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FIGURE 4. YOLOv7-MOD architecture.

pn is an enumeration of all positions in R, and w(pn)
represents the weight of convolution kernel. The formula
represents a convolution operation in image processing,
where it’s used to process one signal (x) with another signal
(w) to produce an output signal (y). Here’s an explanation:
y (p0) : This is the value of the output signal at position p0.∑

: This symbol indicates that we are summing up values
over a range of positions.
w (pn) : This is the weight or kernel used in the convolution

operation. It represents the filter or mask that is applied to the
input signal x.
x(p0+pn): This is the input signal x shifted by the position

pn and evaluated at the position p0 + pn. In other words, it’s
the value of the input signal at a specific position determined
by adding p0 and pn.

pn is an enumeration of all positions in R: This means
that pn takes on different values corresponding to all possible
positions within the range R. R represents the set of all
positions where the convolution is applied.

The formula calculates the output signal y at position p0
by aggregating the weighted contributions from the input
signal x, originating from various positions determined by
adding p0 to different values of pn. These weights, denoted
as w(pn), govern the impact of each input signal value
on the resulting output, and the summation encompasses
all potential positions within the specified range R. This
operation finds widespread application in diverse signal
processing and image processing tasks, including but not
limited to edge detection, filtering, and feature extraction.

In reality, the formulas used not only appear at different
scales but are also located in various regions within a single
image, making it challenging to capture all the features
during training. To address this issue, [23] proposed the

use of a deformable convolutional network in the one-stage
object detection network YOLOv5 to enhance the modeling
capability of the geometric transformation of detected
objects. Furthermore, [24] the deformable convolution layers
can effectively detect key features with arbitrary scales,
aspect ratios, and rotation angles. However, deformable
convolution requires intensive memory usage due to the
explicit offset generation for each location in the feature map
[25]. Therefore, [26] simply added deformable convolutional
layers to the network after the ConvolutionBatch SiLU (CBS)
layers in the backbone of our detection model to assist in
multi-scale feature extraction.

2) YOLOv7-MOD MODEL
YOLOv7, as a key member of the YOLO model family,
is renowned for its excellence in object detection tasks.
This model harnesses the robust CSPDarknet53 network,
previously utilized in YOLOv4. The CSPDarknet53 is metic-
ulously crafted to capture features across various scales. This
remarkable architecture comprises a sequence of convolution
layers interconnected with shortcut connections and inter-
stage connections. In this study, we further developed
the YOLOv7 architecture by introducing the deformable
convolution layer, as depicted in Figure 4, which we refer
to as YOLOv7-MOD. Deformable convolution serves as the
cornerstone in the architecture of YOLOv7-MOD that we
have crafted. In contrast to traditional convolution, which
rigidly employs a fixed grid for point sampling, deformable
convolution endows the network with the remarkable capa-
bility to dynamically adjust the sampling grid to the unique
characteristics of the input data. This adaptability has proven
to be highly advantageous, particularly in the detection of
partially occluded objects or objects with irregular shapes.
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In YOLOv7-MOD, the Deformable Convolution (DC)
layer is strategically positioned within the network archi-
tecture. The DC layer is placed at multiple network levels,
including mid-level to near the end, allowing the network
to dynamically adjust the sampling grid based on the
characteristics of detected objects in the image. This enables
the network to better capture the details of objects that
may have irregular shapes or be partially occluded. The
careful and multi-level placement of the DC layer provides
additional flexibility in the object feature extraction process,
resulting in a significant improvement in object detection
and recognition capabilities in various complex and dynamic
environmental scenarios. The DC layer is a key component
that sets YOLOv7-MOD apart and enables it to be more
adaptive in handling a wide range of object detection
tasks.

Positioning DC after the backbone facilitates additional
feature extraction prior to the computation of the final
object positions. This strategically addresses potential early
interference during the feature extraction stage, ultimately
enhancing detection accuracy. DC empowers the model
to identify objects that could be partially obscured by
other objects, contributing to improved object detection
performance. Integrating DC after the backbone equips the
model with the capability to more effectively handle such
scenarios, even when these objects are not distinctly visible
to conventional convolutional layers.

IV. DATASET AND TRAINING
A. DATASET
In many fields, datasets that provide sufficient number of
samples for specific problems have proven to be important
catalyst for rapid improvement of solutions. They facilitate
fast iteration of algorithms based on quantitative evaluation
of their performance, expose potential weakness, and enable
fair comparison. In computer vision, there are always
datasets for individual fundamental problems, such as image
classification [17]. Instead of using an existing dataset from
the Internet, such as [18] and [19], the dataset is adopted
based on Indonesian traffic conditions, which have dense
and mixed traffic. The video was captured in Bandung
between two areas, around Institute Technology of Bandung
(ITB) and along the way from Cileunyi to ITB. Several
objects appeared frequently while the data were collected,
i.e., motorcyclists, pedestrians, cars, buses, trucks, mini pick
up, mini truck boxes, andmini busses. The number of datasets
for each class is not the same. Motorcyclists were the most
frequent objects appearing in videos, followed by cars. The
rarest objects in the dataset were mini truck boxes and mini
pickups.

The setting of the device was set to be as close as
the Berkeley deep drive dataset setting [19]. The detected
object was also adjusted, although the dataset geography,
environment, and weather were not as diverse as those of
the Berkeley dataset. The dataset was collected in Bandung
City during fine weather. Similar to the Berkeley dataset,

a single camera was placed on the car’s dashboard. The
camera used was the FLIR blackfly camera with a resolution
of 1.3 Megapixels. The labels were placed in two ways. For
object detection, bounding box annotation was provided for
each image. Each bounding box was labeled with a specific
class. The dataset contained eight class categories. The labels
for object detection and tracking were annotated using a
labeling tool [20]. One of the processes for labeling and
creating datasets is shown in Figure 5.

FIGURE 5. Labeling images for object detection and classification.

Images are labeled in the VOC format for models other
than YOLO. The total image annotated for the object
detection dataset comprised 15717 images. The annotation
XML files are converted to keras format files that contain
directory images, bounding boxes, and classes for detection
that can utilize this dataset. This text file can then be used to
train the YOLO model.

B. TRAINING
Several techniques have been tested for training multiple
versions of YOLO and their modifications. The difference
between the original YOLO and the modified YOLO lies in
the number of layers used. In the modified YOLO, additional
layers are used to improve accuracy. These models are
trained in two ways: training without pre-trained weights;
and training with pre-trained weights. All methods used
200 epochs and 16 batches with different training separations.
For the first category, the model without pre-trained weights
was trained, and all layers were unfrozen for 200 steps.
Two methods were utilized for the following categories:
(1) transfer learning with a frozen backbone and (2) transfer
learning with fine-tuning. Darknet53 pre-trained weights
from [15] were applied as our backbone layer weights for
these two models.

In the training process binary cross-entropy is applied as
the loss function. Another loss function, Focal Loss, handles
dense object detection. It was introduced [21] to handle
dense object detection. However, based on the experiment
conducted in [22], the performance decreased significantly
when the focal loss was implemented. Therefore, the focal
loss is unsuitable for YOLO because it only has a single-stage
detector. This is more suitable for using a two-stage detector,
such as the RCNN family.
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V. EXPERIMENT
The object detection dataset comprises 15,717 images catego-
rized into eight classes, including motorcyclists, pedestrians,
cars, trucks, buses, mini truck boxes, mini pickups, and
mini busses. To facilitate model training, the dataset was
thoughtfully divided into training, validation, and testing
subsets, with 12,719 images allocated for training, 1,413
for validation, and 1,585 for testing. A variety of learning
methods were explored to train both the YOLOv7 and
YOLOv7-MODmodels, with the goal of identifying the most
effective training approach that balances precision, dataset
compatibility, and epoch optimization. Once the models were
adequately trained on the dataset, they underwent rigorous
testing using the designated test dataset, applying an IOU
threshold of 0.5 and a confidence score of 0.1 to assess their
performance.

The test scenario involved four distinct categories of
objects: evident objects, small objects, ambiguous objects,
and occluded objects. Evident objects were characterized
by medium-sized, clearly visible images. Small objects
encompassed instances where objects appeared either small
or were situated at a considerable distance from the camera.
Ambiguous objects exhibited reduced visibility due to factors
like high noise or inadequate lighting conditions. Lastly,
occluded objects denoted situations in which the object to
be detected was partially concealed by other objects. The
test aimed to evaluate and compare the performance of the
modified YOLO method against the original YOLO method.
To assess performance, metrics such as F1 scores and area
under the precision-recall curve were employed. The results
of these tests are presented in Figures 6 to 13 for detailed
analysis.

Figures 6 to 9 depict the performance measurements
using the F1 Score for the YOLOv3, YOLOv5, YOLOv7,
and YOLOv7-MOD models, respectively. Notably, when
comparing the measurements of the modified YOLOv7
model, as illustrated in Figure 10, it becomes evident that the
addition of layers results in higher F1 scores. Furthermore,
in Figure 9, where the modified YOLOv7 model incor-
porates a deformable layer, superior measurement results
are observed compared to the original YOLO model. This
enhancement can be attributed to the specific layers within the
YOLOv7-Mod model designed to extract and handle subtle
and small objects.

These F1 Score results are consistent with precision-recall
measurements, revealing that the inclusion of additional
layers leads to an increase in precision-recall values,
as indicated in Figure 13. The performance measurements
for the original YOLOv7 are presented in Figure 13. The
precision-recall visualization of detection and classification
results for the four methods—YOLOv3, YOLOv5, YOLOv7,
and YOLOv7-MOD can be seen in Figures 10 to 13.
These figures illustrate instances where the original YOLO
model fails to detect certain objects, while YOLOv7-MOD
successfully identifies them. Detection results are provided
in the form of bounding boxes and object class names. It’s

FIGURE 6. F1 score of YOLOv3.

FIGURE 7. F1 score of YOLOv5.

FIGURE 8. F1 score of YOLOv7.

important to note that YOLOv7-MOD faces challenges in
extracting frames with small and faint images, as compared
to the original YOLO model.

Subsequently, the precision-recall curves are calculated
to produce a single metric for object detection. This single
metric can be used to compare the best object detection
models. The calculation was based on the VOC challenge
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FIGURE 9. F1 score of YOLOv7-MOD.

FIGURE 10. Precision-Recall curve for YOLOv3.

FIGURE 11. Precision-Recall curve for YOLOv5.

2012metric [18].We compared our methods with the original
YOLOv3, YOLOv5, and YOLOv7 method for image object
detection. The results presented in Table 2 demonstrate that
YOLOv7-MODexhibits a notable improvement inmAP,with
an increase of 1.05%when compared to the original YOLOv7
algorithm. However, it is worth noting that this enhancement
comes at a cost of a 16 FPS decrease. This reduction in

FIGURE 12. Precision-Recall curve for YOLOv7.

FIGURE 13. Precision-Recall curve for YOLOv7-MOD.

frames per second indicates that the deformable convolution
module plays a crucial role in adaptively adjusting the
convolution kernel’s shape to effectively extract features,
consequently leading to higher detection accuracy. These
findings are further illustrated in Figure 14, which clearly
depicts YOLOv7-MOD outperforming other methods in the
test results.

Figure 15 shows comparison between the improved
YOLOv7-MOD target detection algorithm and the original
YOLO algorithm. From the comparison, it can be seen that
for target with large scale change, original YOLOv7 extracts
more background interference due to the low discrimination
between the target and the background, which leads to
the inaccurate detection box. YOLOv7-MOD can better
distinguish the background and the result is more accurate.
YOLOv7-MOD can successfully detect small targets. In the
left image (a) there are several objects that are not detected
by YOLOv7 but can be detected by YOLOv7-MOD, and the
detection results can be shown in the right image (b). With
the addition of a deformable layer, YOLOv7-MOD is able to
detect small and occluded objects. However, the introduction
of deformable convolution increases the calculation amount
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FIGURE 14. Object detection result using YOLOv3 (a), YOLOv5 (b), YOLOv7 (c), YOLOv7-MOD (d).

FIGURE 15. Object detection result using YOLOv7 (a) and
YOLOv7-MOD (b).

of the network, which will lead to the decrease of FPS. The
more the deformable convolution layers are added, the higher
the accuracy is and the slower the speed is. In general, the
overall performance of the YOLOv7-MOD is better.

The results of precision, recall, F1-Score and mAP metric
measurements obtained are shown in Table 2, where the
Yolo modification with the addition parallel pooling and
concatenation layer can improve F1-Score by 1.80% and
mAP by 1.67% onYOLOv3. The experimental results further
demonstrate that incorporating layer addition significantly
enhances the performance of YOLOv5 and YOLOv7,
yielding improvements of 0.33% and 0.49% in F1-Score, and
0.41% and 1.06% in mAP, respectively. With the addition of
a deformable layer on Yolov7 it can produce a significant
increase in performance when compared to the baseline of
the object detection model.

Given that the discussion revolves around autonomous
vehicles, in addition to using local datasets, we have
also implemented the BDD100K dataset. The use of
the BDD100K dataset with YOLOv7-MOD yields highly
satisfactory object detection results as shown in Table 3.
The extensive and diverse BDD100K dataset empowers the
model to recognize objects effectively under various weather
and traffic conditions. YOLOv7-MOD, with its efficient
object detection architecture, delivers fast and accurate
detections. During testing, the model exhibits resilience
to significant environmental variations, including heavy
traffic situations, adverse weather, and fluctuating lighting
conditions. Evaluation results demonstrate high precision and
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TABLE 2. Performance evaluation.

recall for various object classes, reflecting the model’s ability
to identify objects accurately. However, utilizing this dataset
also demands substantial computational resources for swift
training and inference. Additionally, fine-tuning of the model
may be necessary for highly specific tasks. Nevertheless,
the results of using the BDD100K dataset with YOLOv7-
MOD showcase significant potential for applications in
traffic monitoring, object recognition, and various other
computer vision tasks. In conclusion, this combination proves
effective for object detection in diverse real-world scenarios.
Table 3 presents a model comparison between YOLOv7
and YOLOv7-mod. It is evident from this table that the
YOLOv7-MOD model outperforms YOLOv7 when utilizing
the BDD100K dataset.

TABLE 3. Performance evaluation between YOLOv7 and YOLOv7-mod
using BDD100K.

VI. CONCLUSION
This paper proposes a method to detect and classify objects
in dense and mixed traffic areas based on YOLOv7-MOD,
which is trained using transfer learning. In addition, the
custom dataset was adapted to mixed and dense traffic, char-
acterising a typical traffic condition in developing countries.
The dataset was then used for object detection training,
validation, and testing. In summary, there are two steps used
for this experiment. First, object detection is performed using
the YOLOv7-MOD model. By adding deformable layers
and using the transfer learning that uses pre-trained kitty
dataset, the model can achieve a higher precision score than
by retraining the model from the beginning.

To enhance the accuracy of the YOLO algorithm in
detecting irregular targets with varying scales and shapes, and

to improve its capability in detecting small targets, we seek
to address these challenges. This paper proposes a YOLO
target detection algorithm with deformable convolution
kernel which can adaptively adjust the shape of convolution
kernel to extract features more effectively. The experimental
results show that the improved model proposed in this paper
has better effect than the original model, and effectively
compensates for the detection defects of the original model.
In the future, more efficient models can be explored to
improve the detection speed while ensuring accuracy. The
system can be trained with more dataset images to reduce
imbalance data. Because the YOLOv7-MOD model has a
few false positives, to increase the higher score on object
detection, we might further improve the deep learning model
to one that has better precision detection, in particular when
encountering visually small, severely occluded, and blurry
objects.
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