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Abstract

Blood pressure is a vital indicator of cardiovascular health and plays a crucial role in the
early detection and management of heart-related diseases. However, current practices for
recording blood pressure readings are still largely manual, leading to inefficiencies and
data inconsistencies. To address this challenge, we propose a deep learning-based method
for automated digit recognition and measurement-type classification (systolic, diastolic,
and pulse) from images of blood pressure monitors. A total of 2147 images were collected
and expanded to 3649 images using data augmentation techniques. We developed and
trained three YOLOv8 variants (small, medium, and large). Post-training quantization
(PTQ) was employed to optimize the models for edge deployment in a mobile health
(mHealth) application. The quantized INT8 YOLOv8-small (YOLOv8s) model emerged
as the optimal model based on the trade-off between accuracy, inference time, and model
size. The proposed model outperformed existing approaches, including the RT-DETR
(Real-Time DEtection TRansformer) model, achieving 99.28% accuracy, 96.48% F1-score,
641.40 ms inference time, and a compact model size of 11 MB. The model was successfully
integrated into the mHealth application, enabling accurate, fast, and automated blood
pressure tracking. This end-to-end solution provides a scalable and practical approach for
enhancing blood pressure monitoring via an accessible digital platform.

Keywords: blood pressure; digit recognition; seven-segment digits; deep learning; mHealth

1. Introduction
Blood pressure is one of the most widely used and informative clinical metrics for

assessing cardiovascular health [1,2]. It comprises two key values: systolic pressure, mea-
sured during heart contraction, and diastolic pressure, measured during heart relaxation [3].
Regular monitoring of these values enables the early detection of cardiovascular conditions
such as hypertension, heart attacks, and strokes [4]. Often referred to as a “silent killer,”
elevated blood pressure can lead to serious complications without showing obvious symp-
toms [2], making routine monitoring essential for prevention. This is particularly important
given that cardiovascular diseases remain the leading cause of death globally [5].

The rapid advancement of information and communication technologies has reshaped
healthcare delivery through mobile health (mHealth) applications [6]. These applications
empower users to track their health data and engage with healthcare providers remotely,
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promoting proactive and preventive care [7]. Mobile health applications have emerged
as a key enabler of accessible and real-time health monitoring, contributing to improved
personal health and wellness.

Despite these technological advances, the process of recording blood pressure read-
ings—whether in clinical settings or through mHealth applications—still relies heavily
on manual input. In healthcare facilities, readings are often written on paper before be-
ing transferred to digital systems, while users at home typically enter values manually
into mHealth applications [8]. This approach is impractical, inefficient, and error-prone,
with common issues including incorrect data entry and loss of physical records.

A potential alternative involves the use of wireless communication technologies, such
as Bluetooth or Wi-Fi, to transfer measurements directly from blood pressure monitors to
mobile applications. However, such features are uncommon in current commercial devices.
According to the British & Irish Hypertension Society, fewer than 3% of the 176 recom-
mended digital blood pressure monitors are equipped with Bluetooth connectivity [8].
Replacing existing monitors with newer models that support wireless transmission would
be costly and impractical on a large scale, especially in low-resource settings.

To overcome these limitations, we propose a deep learning-based solution for auto-
mated digit recognition and measurement-type classification (systolic, diastolic, and pulse)
from images of blood pressure monitors. Instead of relying on manual input or Bluetooth-
enabled devices, users simply take a photo of the monitor’s seven-segment display using
a smartphone. Our proposed model, integrated into a custom-developed mHealth appli-
cation, automatically extracts and records the measurements. This approach provides a
practical, scalable, and cost-effective alternative to enhance the usability and reliability of
digital blood pressure tracking.

The rest of this paper is structured as follows. Section 2 reviews related works, identi-
fies research gaps, and summarizes our contributions. Section 3 describes the proposed
method, including dataset preparation, model training, model quantization, and mHealth
application development. The evaluation results and discussion are presented in Section 4.
Finally, conclusions are drawn in Section 5.

2. Related Works
Several studies have investigated methods for accurately detecting and interpreting

seven-segment digits, which are commonly used in medical devices to display numerical
information. Hjelm and Andersson [9] demonstrated that deep learning-based object
detection models such as Faster Region-Based Convolutional Neural Network (Faster
R-CNN) and You Only Look Once (YOLO) outperform traditional OCR-based approaches
like Tesseract in detecting seven-segment digits on odometers, particularly in challenging
image conditions affected by noise, blur, poor lighting, and oblique viewing angles. This
result is relevant, as both odometers and blood pressure monitors employ seven-segment
displays to present measurements.

Finnegan et al. [8] focused specifically on detecting and recognizing seven-segment
digits in blood pressure monitors using conventional image-processing techniques. Their
method achieved a digit localization F1-score of 80% and a classification accuracy of 89.70%.
However, the blob extraction component of the algorithm occasionally misclassified visually
similar digits, particularly between 0 and 8, and between 1 and 7. Moreover, the study
was limited to model development and did not include deployment or integration into an
mHealth application.

Another related work [10] proposed a mobile application-based system for reading
seven-segment digits on various medical devices, including blood pressure monitors, blood
glucose meters, and weight scales. The approach utilized computer vision techniques to
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extract digit features, followed by a random forest classifier for interpretation. The method
achieved an overall accuracy of 98.20%. However, the input images used in the study were
not realistic for practical use, as they were pre-cropped and contained only a single mea-
surement type. Furthermore, the system faced classification challenges due to insufficient
training data, particularly between digits 0 and 8, and performed poorly on blurry images.
The model was not embedded within the mobile application but instead deployed on a
remote server, which introduced reliance on internet connectivity and additional latency in
the detection process.

In this work, we address the aforementioned limitations by proposing an end-to-end
deep learning approach integrated into an mHealth application for accurate, efficient,
and scalable digit recognition and measurement-type classification from blood pressure
monitor images. The main contributions of this study are as follows:

• End-to-End Deep Learning Pipeline: We design a unified YOLOv8-based architecture
that automatically detects the region of interest (ROI), without requiring manual
cropping or selection, and performs accurate digit recognition. Subsequently, these
digits are grouped and mapped to the corresponding measurement types (systolic,
diastolic, and pulse) through a spatial-based postprocessing mechanism, utilizing the
intersections of the bounding boxes.

• Model Optimization for Edge Deployment: To support real-time inference on mobile
devices, we apply post-training quantization (PTQ) to compress the model. We
evaluate the trade-offs between different YOLOv8 variants (small, medium, large) in
terms of precision, recall, F1-score, accuracy, inference time, and model size under
both float32 and INT8 configurations.

• Mobile Health Application Integration: We develop a fully functional Android-based
mHealth application that integrates the optimized model. The app enables real-time
camera capture, digit recognition, and classification, storing results for continuous
blood pressure tracking without the need for manual input.

3. Methods
3.1. Dataset Preparation

The data preparation process consisted of data collection, data labeling, dataset split-
ting, and data augmentation stages. The data used in this study are images of blood
pressure monitor measurement results that were collected through a combination of public
datasets and image-scraping algorithms. Details about the sources of these datasets can
be found in Table 1. Data sorting was performed to eliminate irrelevant or poor-quality
data. Once the data was filtered, the labeling process was conducted using Roboflow [11]
by applying bounding boxes to the input data (images), covering a total of 11 classes that
included 10 classes for digits (0 to 9) and 1 class for indicating systolic pressure, dias-
tolic pressure, or pulse rate. Figure 1 displays the class distribution of the whole dataset.
In the dataset, Class 10 has the highest occurrence, as each image typically contains three
objects from Class 10, representing the three blood pressure metrics: systolic, diastolic,
and pulse rate. Following Class 10, Class 1 has the second-highest occurrence because
systolic pressure values generally fall in the range of hundreds. The relatively high frequen-
cies of Classes 7 and 8 can be attributed to diastolic pressure and pulse-rate values, which
commonly fall within the 70 s to 80 s range.
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Table 1. Distribution of dataset sources.

Source Amount Percentage (%)

Data Scraping 441 20.50
Public Dataset 1: AH (2024) [12] 225 10.50
Public Dataset 2: Ega (2022) [13] 187 8.70
Public Dataset 2: Finnegan et al. (2018) [8] 1294 60.30

Total 2147 100.00

Figure 1. Class distribution across training (purple), validation (blue), and test (yellow) sets in
the dataset.

The labeled data was then divided into three sets: training, validation, and testing,
with percentages of 70%, 20%, and 10%, respectively. To ensure the robustness of the trained
model, the validation and test sets were carefully curated to be representative of the overall
dataset in terms of image quality and real-world variability. Images exhibiting variations in
blur levels, lighting conditions, and other artifacts commonly found in real-world settings
were deliberately included in all sets. The final stage was data augmentation, which aimed
to increase the volume and variety of training data twofold. This was intended to improve
the model’s accuracy and flexibility in real-world conditions. The data augmentation
process included rotations of ±15◦, shearing of ±15◦, brightness adjustments of ±15%,
blurring of up to 3.5 pixels, and adding noise up to 5% of the total pixels. The dataset splits
before and after the augmentation process can be seen in Table 2.

Table 2. Dataset splitting before and after augmentation.

Split
Before Augmentation After Augmentation

Amount Percentage (%) Amount Percentage (%)

Training 1502 70 3004 82
Validation 430 20 430 12
Test 215 10 215 6

Total 2147 100 3649 100

To further assess the model’s robustness in real-world scenarios, we also performed
cross-validation using 10 additional images captured directly from a physical digital blood
pressure monitor. These images were collected independently from the original dataset and
were not part of the training, validation, or test sets. They reflect authentic variations in
image quality, including lighting conditions, viewing angles, and device display differences
that may occur during practical usage.

3.2. Model Development

We employed a deep learning model with the YOLOv8 architecture [14]. The YOLO
(You Only Look Once) architecture was selected due to its typically superior performance in
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AP (average precision) and inference time compared to other object detection models [15].
YOLO has been in development since 2015 as an open-source algorithm, thereby providing
accessibility to researchers and developers globally. Its popularity has led to a large
community, resulting in thorough documentation, easier troubleshooting, and knowledge
sharing among users [16]. YOLOv8, the eighth version of the YOLO architecture, exhibits
enhancements in mAP over its predecessor [17].

YOLOv8 has five variants: nano, small, medium, large, and extra-large. A comparison
of these five variants can be found in Table 3. As the model size increases, its network com-
plexity and accuracy also improve, but its inference time is longer. In this study, the training
process was conducted only for the small, medium, and large variants. The nano variant
was not selected due to its relatively lower accuracy than the other variants. Meanwhile,
the extra-large variant was not chosen because of its complexity and large size, making it
unsuitable for use on smartphones with limited computational capabilities.

Table 3. Performance benchmarks of YOLOv8 variants [18].

Model Size (MB) mAPval Speed (ms) Params (M) FLOPs (B)

YOLOv8n 6 37.3 80.4 3.2 8.7
YOLOv8s 21 44.9 128.4 11.2 28.6
YOLOv8m 49 50.2 234.7 25.9 78.9
YOLOv8l 83 52.9 375.2 43.7 165.2
YOLOv8x 131 53.9 479.1 68.2 257.8

The three variants were trained using the following parameters: epochs = 500, pa-
tience = 50, batch size = {8, 16, 32}, image size = 640, IoU = 0.5, optimizer = auto. The auto-
matic option for optimizer parameters resulted in the use of the best optimizer, SGD, with
a learning rate of 0.01 and a momentum of 0.9. Meanwhile, other parameters that are not
mentioned used the default configuration.

The model was developed using several Python (v3.10.12) libraries, such as OpenCV
(v4.8.0.76), PyTorch (v2.3.0) [19], TensorFlow (v2.13.0) [20], TensorFlow Lite (v2.13.0) [21],
etc. The Google Colab [22] environment was used to develop the model, while a laptop was
used to develop the mHealth application. Smartphones, on the other hand, were used as
the platform to deploy and run the mHealth application. In this study, 2 smartphones were
utilized to evaluate performance across different hardware capabilities: a Xiaomi Redmi
9A, representing a low-end device, and a Samsung Galaxy A30S, representing a mid-range
device. For clarity in the subsequent sections, these are referred to as Smartphone 1 (Xiaomi
Redmi 9A) and Smartphone 2 (Samsung Galaxy A30S). The specifications of the working
environments used in this work are shown in Table 4.

Table 4. Specifications of the working environment.

Specification Google Colab Laptop Smartphone 1 Smartphone 2

CPU Intel® Xeon® CPU @ 2.20 GHz Intel® Core™ i5-1035G1
CPU @ 1.00 GHz Xiaomi MediaTek Helio G25 Samsung Exynos 7904

GPU NVIDIA Tesla T4 15 GB NVIDIA® MX110 2 GB PowerVR GE8320 2 GB Mali-G71 MP2 2 GB
RAM 15 GB 12 GB 2 GB 4 GB
OS Ubuntu 22.04.3 Windows 10 Android 10 Android 11

In addition to the YOLOv8 model, which serves as our focus in this study, two other
object detection models were selected for comparative analysis: YOLOv11 and RT-DETR.
YOLOv11 represents the latest advancement in the YOLO (You Only Look Once) family,
introducing architectural improvements that focus on enhancing both accuracy and infer-
ence speed through adaptive re-parameterization and improved feature aggregation [23].
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Although our study primarily focuses on YOLOv8, YOLOv11 was included to provide in-
sight into the ongoing evolution and potential performance ceiling of the YOLO framework.
Meanwhile, RT-DETR (Real-Time DEtection TRansformer) is a recent transformer-based
detector designed for real-time performance, incorporating a one-stage pipeline and query-
based object decoding that eliminates the need for non-maximum suppression [24]. Its
inclusion offers a perspective on how convolutional models like YOLO compare with
transformer-based architectures in the specific task of digit recognition from medical device
displays, especially those that use seven-segment digit representation.

3.3. Model Compression

Model compression employed a quantization technique aimed at enhancing detec-
tion speed and reducing the computational load of the model, given its deployment on
smartphones, which typically have lower computational capabilities than computers. Quan-
tization techniques were applied to convert model weights into 16-bit floating-point (FP16)
and 8-bit-integer (INT8) precision. The FP16 quantization process was conducted using
the export feature of the Ultralytics YOLOv8 library by specifying the format parameter to
‘tflite’ and enabling the ‘optimize’ and ‘half’ options. The ‘optimize’ parameter optimizes
the model for mobile devices, while the ‘half’ parameter implements FP16 half-precision
quantization. In addition to producing models in the FP16 format, the export results also
yielded models in the 32-bit floating-point (FP32) TensorFlow format, which was used for
quantization to INT8 precision using the TensorFlow library.

During INT8 quantization, a calibration process is necessary to estimate the range
of all floating-point values in the model. Constant values such as weights and biases are
easily calibrated. However, variable values like inputs, activations, and outputs require
cycles of the inference process to be calibrated. Consequently, a dataset of approximately
100 to 500 samples is needed for this calibration process. In this study, a validation dataset
consisting of 430 images was used as the calibration dataset. These validation samples
were carefully selected to ensure representativeness in terms of class diversity, image
quality, and real-world variability. This subset covered a broad range of image conditions,
including different lighting levels, degrees of focus, and background complexities, typically
encountered in practical mHealth environments. The representativeness of these calibration
samples contributes to maintaining the robustness and accuracy of the quantized YOLOv8-
small INT8 model despite the precision reduction inherent to quantization.

3.4. Evaluation Metrics

The trained models were evaluated using the following performance and efficiency
metrics to assess their effectiveness in digit recognition tasks:

• Accuracy: Measures the overall proportion of correctly predicted digits out of all
predictions, providing a general sense of model performance.

• Precision: Quantifies the proportion of true positive predictions among all predicted
positives, indicating the model’s ability to avoid false positives.

• Recall: Also known as sensitivity, which evaluates the proportion of true positives
captured out of all actual positive cases, reflecting the model’s ability to detect all
relevant digits.

• F1-score: The harmonic mean of precision and recall, offering a balanced metric that is
especially useful when dealing with class imbalance.

• Model size: Used to assess the memory footprint of each trained model, which is
crucial for deployment on resource-constrained devices.
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• Inference time: Refers to the amount of time the model takes to process an input
and produce an output, highlighting the model’s efficiency and suitability for real-
time applications.

Accuracy, precision, recall, and F1-score are formulated below. TP, TN, FP, and FN
refer to true positive, true negative, false positive, and false negative, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-score =
2 · Precision · Recall
Precision + Recall

(4)

3.5. Development of mHealth Application

The mHealth application features three main functionalities: capturing blood pressure
readings using the camera, recording historical blood pressure data, and visualizing this
data in graphical form. Additionally, there is an authentication feature that binds these data
to a user account. The deep learning model developed in the previous stage is integrated
into the mHealth application for the blood pressure reading feature.

This mHealth application encompasses a total of 9 use cases, as depicted in Figure 2.
The first three use cases—login, register, and logout—are part of the authentication feature.
Subsequently, the blood pressure data visualization feature is represented as the display
measurement history use case. With this use case, users can see the blood pressure mea-
surement history in the form of a line chart and a list of measurement logs. Furthermore,
users can record their blood pressure measurements through the use case to add new
blood pressure measurement results. Recording blood pressure data can be performed
in two ways: by directly capturing measurement results or by uploading photos of the
results from the smartphone’s image gallery. Meanwhile, user management features can
be accessed through the last 4 use cases: view profile, add new user, delete user, and edit
user information.

Login

Register

Logout

Display Measurements History

Add New Measurement Result

Display Profile

Add New User

Delete User

Edit User Information

M-Health Application

Figure 2. Use-case diagram of the mHealth application.
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The workflow of the blood pressure reading feature is illustrated in Figure 3. Generally,
this process is divided into two main parts, digit detection and digit grouping, to derive
blood pressure values. In the digit detection process, a deep learning model is utilized to
detect and classify the digits present in the photo. Subsequently, in the grouping process,
these digits are grouped and categorized into systolic pressure, diastolic pressure, and pulse-
rate values. Then, the resulting data is stored in a database for use by the visualization
feature. Data storage is implemented using a non-relational database, Cloud Firestore. This
choice ensures that the data is not just stored locally, allowing users to access it even if their
local data is deleted. Additionally, Cloud Firestore supports caching, eliminating the need
for constant internet access to perform data reading and writing operations. The data on
the user’s phone is automatically synchronized with the data stored in the cloud once the
phone is connected to the internet. This design allows it to operate both online and offline,
making it suitable for clinical settings where network connectivity may be limited.

Blood Pressure 
Measurement Photo

Seven-Segment 
Digit Detection

Seven-Segment Digit 
Detection Model

Seven-Segment
Digit Grouping

Detection Result Image, 
Systolic Pressure, Diastolic 
Pressure, and Heart Rate

Saving DataData Base 
(Phone Cache and Cloud

Firestore)

Displaying
Measurement History

as Graph and Log

Figure 3. Workflow of mHealth’s blood pressure measurement reading.

The grouping process of the detected digits into meaningful values is performed by
considering the intersection percentage of a digit’s bounding box (represented by Classes
‘0’ to ‘9’) with a value’s bounding box (represented by Class ‘10’). An illustration of these
classes and their corresponding bounding boxes is depicted in Figure 4. Value classes
are displayed as purple boxes, while digit classes are displayed as boxes of other colors.
A digit class is grouped into a value class (i.e., systolic, diastolic, or pulse) if its bounding
box intersects with at least 75% of the corresponding value’s bounding box area along
the vertical axis. This 75% threshold was determined empirically through controlled
experiments under commonly observed real-world image conditions, including slight
skew and display angle variations. The objective was to select a threshold that achieves
reliable grouping accuracy while maintaining computational efficiency. This heuristic also
accommodates occasional overextensions of digit bounding boxes beyond the expected
value region.

Once grouped, the digits within each group are sorted based on their positions from
left to right. Then, concatenating these digits results in a meaningful value. As a result,
three values representing the three blood pressure metrics are obtained. Subsequently,
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categorization into systolic pressure, diastolic pressure, or pulse-rate values is determined
by sorting the values’ positions in the image from top to bottom.

Overall, this mHealth application consists of 5 pages: login page, register page, home
page, camera page, and profile page. The user interface of the home, camera, and profile
pages is displayed in Figure 5. In the implementation, these pages are divided into 3 activi-
ties: main activity, login activity, and register activity, with the main activity handling 3
fragments: home, camera, and profile.

Figure 4. Illustration of intersection of bounding boxes.

Figure 5. The UI of the mHealth application.

On the login page, users are required to enter their registered email and password,
while on the registration page, users are asked to provide personal information, including
their name, email, password, weight, height, and date of birth. The name, email, and pass-
word are used for authentication purposes, while the weight, height, and date of birth are
used to determine the categorization of blood pressure values.
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The homepage serves the primary function of visualizing recorded blood pressure
data within the application. On the homepage, there is a dropdown menu for selecting the
user whose blood pressure data will be displayed. Meanwhile, on the profile page, users
can view and modify their account details. Additionally, the profile page displays a list
of other user profiles registered under the same account, allowing for user management
operations such as adding, modifying, and deleting user data.

On the camera page, there is a camera view displaying live frames captured by the
camera. This section also includes an overlay to draw bounding boxes surrounding the
detected seven-segment digits. The detection results, such as inference time, systolic
pressure, diastolic pressure, pulse rate, and blood pressure category, are displayed below
the camera view. After capturing an image, users can confirm the detection results or retake
the picture. In addition to using the camera, users have the option to use images from the
phone’s image gallery by pressing the gallery button.

4. Results and Discussion
4.1. Evaluation of Model Training

The evaluation metrics for the training results of the three variants of the digit detection
model (YOLOv8) are presented in Table 5. Based on these results, the training configuration
with a batch size of 8 was found to be optimal for each variant. This is evidenced by the
highest accuracy, precision, recall, and F1-score values achieved with this setting. The
YOLOv8 model employs a deep learning technique that does not require manual feature
extraction; it can automatically extract relevant features from data and improve accuracy
over time with training. This capability allows the model to be more adaptable in managing
data variability, such as blur, perspective, rotation, and lighting factors. The YOLOv8 model
was trained with a sufficiently large dataset and showed good generalization capability,
enabling it to recognize objects, specifically seven-segment digits in this context, in unseen
situations during training [25].

Table 5. Evaluation metrics for the training results of the three YOLOv8 variants across different
batch sizes (8, 16, and 32). Bold values indicate the best performance for each metric.

Metric
YOLOv8s YOLOv8m YOLOv8l

8 Batch 16 Batch 32 Batch 8 Batch 16 Batch 32 Batch 8 Batch 16 Batch 32 Batch

Accuracy (%) 99.70 99.64 99.62 99.73 99.66 99.69 99.70 99.71 99.65
Precision (%) 97.77 97.85 97.94 98.14 97.45 97.89 98.19 98.16 97.87
Recall (%) 98.40 98.01 97.84 98.58 98.13 98.40 98.22 98.13 97.98
F1-Score (%) 98.08 97.93 97.89 98.36 97.79 98.14 98.21 98.06 97.83
Size (MB) 21.51 21.50 21.51 49.65 49.65 49.65 83.61 83.61 83.61
Inference (ms) 974.50 1032.80 722.10 1996.60 1762.20 1740.60 4299.50 3408.20 3411.60

Among the three trained YOLOv8 variants, the medium variant achieved the highest
accuracy, recall, and F1-score, even though there were no significant differences in their
metrics. Significant differences were observed only in the model size and inference time.
The size and inference time of the YOLOv8-small variant were approximately half that of
the medium variant and one-fourth that of the large variant. This is due to the simpler
network structure of the YOLOv8-small variant compared to the YOLOv8-medium and
YOLOv8-large variants.

Figure 6 shows the training curves of the YOLOv8-small variant. The training and
validation losses (box loss, classification loss, and distribution focal loss) steadily decreased
throughout the training epochs, indicating proper convergence. The evaluation met-
rics—precision, recall, mAP@0.5, and mAP@0.5:0.95—consistently improved and stabilized
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near the end of training. This shows that both variants were able to learn effectively and
maintain high detection quality.

Further insight into the performance of the YOLOv8-small variant is provided in
Figure 7, which compares the confusion matrices of models trained with and without
data augmentation. The matrix for the augmented model (right) exhibits stronger di-
agonal dominance and fewer misclassifications overall, indicating better digit detection
and classification.

Notably, the augmentation strategy (including rotation, shearing, and brightness
adjustments) led to substantial improvements across most digit classes, particularly those
that were previously underrepresented or prone to confusion. For instance, the number
of correct predictions for digit ‘1’ increased from 274 to 352, those for digit ‘3’ improved
from 64 to 74, and those for digit ‘10’, which appeared far more frequently due to its
representation of grouped digits, increased from 618 to 639. This confirms that data
augmentation not only benefits overall performance but also helps mitigate the effects
of class imbalance, improving the recognition of both frequent and less frequent digits.
Although Class ‘10’ was overrepresented, the model maintained high precision and recall
across all classes, with minimal false positives and false negatives. These observations
suggest that the augmented model generalizes well, even under skewed class distributions.

Figure 6. Training results of the YOLOv8-small model.

Figure 7. Confusion matrix of the YOLOv8-small model.



Algorithms 2025, 18, 377 12 of 18

4.2. Evaluation of Model Quantization

The evaluation metrics for the results of the quantization process of the digit detection
model are presented in Table 6. Based on the results of 16-bit quantization, there were
no significant changes in accuracy, precision, recall, F1-score, and model size. In fact,
the changes in these five metrics were almost negligible, approaching 0%. However,
there was a significant reduction in inference time, particularly for the small variant,
which exhibited a decrease of 36.60%. Model size remained relatively unchanged because,
as stated before, the base model is a PyTorch model, so they are already stored in 16-bit
floating-point precision. Overall, the FP16 version of the YOLOv8-small variant proved to
have the smallest size and the fastest inference speed.

Table 6. Evaluation metrics for quantization results on three YOLOv8 model variants.

Metric
YOLOv8s YOLOv8m YOLOv8l

Base FP16 ∆(%) INT8 ∆(%) Base FP16 ∆(%) INT8 ∆(%) Base FP16 ∆(%) INT8 ∆(%)

Accuracy (%) 99.70 99.70 0.00 99.28 −0.40 99.73 99.74 +0.01 99.47 −0.30 99.70 99.70 0.00 99.27 −0.40
Precision (%) 97.77 97.77 0.00 94.89 −2.90 98.14 98.21 +0.07 96.69 −1.50 98.19 98.19 0.00 94.31 −4.00
Recall (%) 98.40 98.40 0.00 98.11 −0.30 98.58 98.65 +0.07 98.55 −0.04 98.22 98.22 0.00 98.60 +0.40
F1-Score (%) 98.08 98.09 +0.01 96.48 −1.60 98.36 98.43 +0.07 97.61 −0.80 98.21 98.21 0.00 96.41 −1.80
Size (MB) 21.51 21.40 −0.50 11.00 −48.90 49.65 49.49 −0.30 25.22 −49.20 83.61 83.40 −0.30 42.36 −49.30
Inference (ms) 974.50 617.90 −36.60 661.40 −32.10 1996.60 1866.40 −6.50 1926.50 −3.50 4299.50 3794.40 −11.80 3918.70 −8.90

In contrast, with 8-bit quantization, there was a significant reduction in both model
size and inference time. Model size was successfully compressed to half that of the base
model. The INT8 version of the YOLOv8-small variant had the smallest size, at only
11 MB. Generally, there was a slight decrease in precision for models quantized to INT8
precision, ranging from 2.50% to 4.00%. The YOLOv8-medium (YOLOv8m) model was
the best-performing INT8 model in terms of accuracy, precision, and F1-score, although
compared to other INT8 models, the differences were insignificant.

So, based on the results, it can be concluded that quantization was effective in com-
pressing the model. This is demonstrated by the fact that quantization generally reduces
model size and inference time without significant drops in accuracy, precision, recall,
and F1-score. When considering all quantized variants, the FP16 version of the YOLOv8-
medium (YOLOv8m) model achieved the best accuracy, precision, recall, and F1-score.
However, the differences in these four metrics were not significant compared to the other
quantized models. Since the model is intended for deployment in a mobile (mHealth)
application, model size and inference time are the primary considerations in selecting the
final model. Based on the data, the INT8 version of the YOLOv8-small (YOLOv8s) variant
had the smallest size compared to the other quantized models. Additionally, its inference
time was not significantly different from that of the FP16 version of the YOLOv8-small
variant, which had the fastest inference time.

To formalize the selection of the final model, we conducted a Pareto analysis incor-
porating four criteria: accuracy, F1-score, inference time, and model size. In this analysis,
predictive performance is represented as the mean of the accuracy and F1-score, while
computational cost is defined as the mean of the normalized inference time and model
size. These metrics were plotted in two-dimensional space, with performance on one axis
and computational cost on the other. Prior to visualization, inference time and model size
were each normalized to the range [0, 1], where 0 corresponds to the minimum and 1 to the
maximum observed value across all models. Models located on the Pareto frontier are con-
sidered optimal, as they achieve a favorable trade-off—maximizing predictive performance
while minimizing computational demands.

As shown in Figure 8, YOLOv8-small INT8, YOLOv8-small FP16, and YOLOv8-
medium FP16 lie on the Pareto frontier, representing models that offer the best trade-off
between predictive performance and computational efficiency. This analysis highlights
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their potential for deployment in resource-constrained mHealth applications, where both ac-
curacy and runtime efficiency are critical. Although the differences in accuracy and F1-score
among the three models were marginal, YOLOv8-small INT8 demonstrated the highest
normalized computational efficiency due to its quantized architecture. The INT8 precision
significantly reduced model size and inference latency, making it particularly suitable for
real-time deployment on mobile or embedded devices. This efficiency, combined with its
strong predictive performance, makes YOLOv8-small INT8 the optimal model, effectively
balancing high detection quality with the practical requirements of mHealth applications.
Therefore, considering these factors, the INT8 quantized version of the YOLOv8-small
(YOLOv8s) variant was chosen as the final model for use in the mHealth application.

Figure 8. Model performance and efficiency trade-off.

4.3. Performance Comparison with Other Models

To further validate the performance of our proposed model (YOLOv8-small), we
conducted a comparative study with two other deep learning models: RT-DETR (Real-Time
Detection Transformer) and YOLOv11-small. RT-DETR represents a transformer-based
detection framework, while YOLOv11 is the latest evolution of the YOLO family. All
models were evaluated on the same training and test datasets under identical experimental
conditions to ensure fair benchmarking.

As shown in Table 7, YOLOv8s attained a strong accuracy of 99.70%, outperforming
RT-DETR (98.27%) and nearly matching the performance of YOLOv11s (+0.08%). Notably,
YOLOv8s achieved a higher F1-score than RT-DETR, with a delta of 3.85%, reflecting a well-
balanced trade-off between precision and recall. While YOLOv11s marginally exceeded
YOLOv8s in raw accuracy and recall, the differences were minimal and may be negligible
in practical applications, particularly in resource-constrained environments. In terms
of efficiency, YOLOv8s performed better than RT-DETR, as it has a smaller model size
(21.51 MB) and faster inference times (974.50 ms). RT-DETR, although competitive in
recall, suffered from a large model footprint (63.10 MB) and significantly slower inference
(2391.70 ms), making it less suitable for real-time deployment.
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Table 7. Evaluation metrics for the training results of three deep learning models.

Metric
YOLOv8s RT-DETR YOLOv11s

Value Value ∆(%) Value ∆(%)

Accuracy (%) 99.70 98.27 −1.44 99.78 +0.08
Precision (%) 97.77 90.13 −7.81 98.97 +1.23
Recall (%) 98.40 98.88 +0.49 98.63 +0.23
F1-Score (%) 98.08 94.31 −3.85 98.80 +0.73
Size (MB) 21.51 63.10 +193.35 18.30 −14.92
Inference (ms) 974.50 2391.70 +145.43 952.40 −2.27

The confusion matrices in Figure 9 further illustrate model behavior. Both YOLOv8
and YOLOv11 show strong diagonal patterns, indicating high prediction accuracy across
all digit classes. YOLOv8 maintains low false positive (FP) and false negative (FN) rates,
and only occasional confusion occurs between visually similar digits. in contrast, RT-DETR
demonstrates more frequent misclassifications and false predictions, especially on digit ‘1’.

Figure 9. Confusion matrix of the test results of 3 models.

In comparison, RT-DETR illustrates the promise of transformer-based detection but
currently lacks the computational efficiency needed for edge-level applications. Mean-
while, YOLOv8s provides a better trade-off between accuracy, speed, and model size for
deployment in our mHealth application, especially considering the resource-constrained
environment of mobile devices.

4.4. Performance Comparison with Other Works

A comparison of the proposed seven-segment digit detection model with other works
is presented in Table 8. Overall, the developed model successfully detected seven-segment
digits automatically and accurately without requiring manual ROI selection. The model
presented in this study achieved higher accuracy (99.28%) and F1-score (96.48%) compared
to other works [8,10,26]. Additionally, it detected blood pressure measurement images
containing shadow reflections and illumination effects by leveraging data variability and
augmentation techniques. This demonstrates that the developed model has effectively
addressed the challenges faced by Finnegan et al. [8] and Shenoy and Aalami [10]. Fur-
thermore, the model has been compressed to INT8 precision, resulting in a smaller model
size and inference time. Therefore, this model can run efficiently with low latency on edge
devices such as mobile phones. Consequently, there is no need to deploy the model on
servers like the implementation by Wannachai et al. in their research [26].
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Table 8. Performance comparison with other works.

Reference Model/Algorithm Accuracy (%) F1-Score (%)

Finnegan et al. [8] Image Processing 89.70 80.00
Wannachai et al. [26] CNN 90.00 -
Shenoy & Aalami [10] Random Forest 98.20 -
This work YOLOv8s (INT8) 99.28 96.48

4.5. Evaluation of mHealth Application

The outcomes of the model’s detection process include bounding boxes for each
defined class. Hence, further processing within the mHealth application is required to
categorize and identify the detected digits as blood pressure values: systolic pressure,
diastolic pressure, and pulse rate. Subsequently, an evaluation of these processes was also
necessary to assess their effectiveness and accuracy.

To verify its performance, the model was tested on 40 samples of blood pressure
measurements. These samples included 30 images from a test dataset and 10 images
directly captured from a digital blood pressure monitor. The inclusion of 10 directly
captured images was intended to validate that the model had not overfit. Based on the test
results, the accuracy of digit grouping was found to be 96.67%, indicating that only 4 out of
120 blood pressure metrics were incorrectly identified.

To evaluate performance scalability on mobile platforms, inference tests were con-
ducted on two Android smartphones: Smartphone 1, representing a low-end device,
and Smartphone 2, representing a mid-range device. The hardware specifications of the
devices used are detailed in Table 4. The average inference times were 1976.50 ms for
Smartphone 1 and 1867.60 ms for Smartphone 2, both showing approximately a threefold
increase compared to the measurement on Google Colab (CPU). This increase is attributed
to differences in device specifications between Google Colab as the model development
platform and the mobile phone as the mHealth deployment platform. Mobile phones
typically have limited computational capabilities compared to the hardware of Google
Colab, thus resulting in longer inference times for model execution. However, while there
was a performance difference between the two smartphones, the results indicate that even
low-end devices are capable of running the model seamlessly, albeit with slightly longer
inference times. The performance of the model in terms of accuracy was also the same on
both devices.

Additionally, the model within the mHealth application was tested on five general
cases, including LCD color variations, variations in the layout of blood pressure monitor
values, the distance and angle of image capture, and image disturbances such as blur
and light reflections. A sample of the test results is shown in Figure 10 where the upper
panel shows the input images captured from various blood pressure monitors, while the
middle panel shows the corresponding output images with digit predictions generated
by the proposed deep learning model. The lower panel presents the extracted systolic,
diastolic, and pulse values along with the classification category. Based on the results in
the table, the model successfully detected blood pressure values across these defined cases
with satisfactory performance. For cases a and b, the model accurately recognized blood
pressure values across various digital blood pressure monitor layouts. In cases d and e,
the model also successfully detected images taken from a distance and slightly blurred,
as long as they remained within reasonable limits for manual readability by the average
person. The model only failed to detect digits in some images from the test case involving
an extreme angle (more than 45 degrees) of image capture, where the angle was too steep
for the model to accurately recognize the seven-segment digits. Overall, the mHealth
application has proven capable of accurately reading blood pressure measurement results.
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Figure 10. Sample of the test results for the mHealth application on several cases: (a) digit color and
lighting conditions, (b) monitor layout, (c) capture angle, (d) capture distance, and (e) blurred condi-
tions. The upper panel represent the input images whereas the middle panel represent the output
images predicted using the proposed deep learning model.

5. Conclusions
In this study, we proposed and developed an efficient deep learning-based method

for automated digit recognition and measurement-type classification (systolic, diastolic,
and pulse) from images of blood pressure monitors. The core of the system is a lightweight
YOLOv8s model optimized using post-training quantization (INT8 precision) to enable
deployment on edge devices. The model achieved a high digit detection accuracy of 99.28%,
with an inference time of 661.4 ms on a Google Colab CPU and 1867.6 ms on a mid-range
mobile phone while maintaining a compact model size of only 11 MB. The proposed model
outperformed the Real-Time DEtection TRansformer (RT-DETR) across multiple metrics,
including accuracy, F1-score, model size, and inference time.

The proposed model was further evaluated through integration into a mobile health
(mHealth) application, demonstrating practical performance with 96.67% accuracy on a
set of 40 test samples. These results confirm the model’s robustness and feasibility for
real-world use, especially in scenarios where manual data entry or Bluetooth-enabled
devices are impractical or unavailable. Overall, the proposed deep learning approach offers
a scalable, accurate, and resource-efficient solution for automated digit recognition for
blood pressure monitoring.
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