
 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Informa

Available in the SSRN eLibrary: http://ssrn.com/link/ITES-2018.html

tion Technology,
Engineering, Science, and its Applications

 45

Rubikstega: A Novel Noiseless Steganography
Method in Rubik’s Cube

Ade Yusuf Rahardian1,*, Rinaldi Munir2,*
, and Harlili Harlili3,*

1,2,3School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

Abstract. Steganography is the art and science of hiding messages in such
a way that no one is aware that there is a secret message. In this paper,
Rubikstega, a new steganographic method in Rubik’s Cube, is proposed. By
utilizing Rubik’s Cube scramble notation, a steganography scheme is
created to hide messages without creating any noise (noiseless
steganography). Previously, noiseless steganography in the game domain
has been applied in chess games, Tetris, and Minesweeper. Those researches
have concerns such as the need for authentic data, message hiding capacity
for one game, and inefficient long message extraction process. Therefore,
Rubik’s Cube is proposed to overcome those shortcomings. Experimental
results show that the proposed method is undetectable and have large
messages capacity per game.

1 Introduction
With the current advancement of technology, the exchange of information can be made
easier. This is due to the growing media of intermediaries such as telephone, electronic mail,
and social media. However, with this advancement, it is possible that the information sent
can be tapped and misused by unauthorized parties. Various way of tapping can be overcome
by hiding the information with steganography.

Steganography is a technique of securing the message by embedding the message to a
cover such as images, audio, and video. Fundamentally, the purpose of steganography is not
to deter enemies from translating secret messages, but to prevent the enemy from suspecting
the existence of hidden communications [2].

According to Desoky, steganography is divided into two types, namely noisy
steganography and noiseless steganography (Nostega) [2]. In noisy steganography, messages
are hidden inside a cover as noise, whereas noiseless steganography is not hiding the
messages inside a cover, but the message is the cover itself. With Nostega, the process of
exchanging messages between parties can be done with the certain approved domain without
others suspecting if the two parties exchange messages.

One of Nostega’s methodologies in the game is chess steganography or Chestega [1].
Desoky wrote that there are several ways to hide messages, such as the use of chess
movements, tournament names, tournament results, and player names. However, although
hidden messages may be long, there are still some shortcomings in the use of cover in

* Corresponding author: 1ade.yusuf.r@gmail.com, 2rinaldi@informatika.org,

3harlili@informatika.org

 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Information Technology,
Engineering, Science, and its Applications

 46

Chestega. For example, the illegal movement of chess will increase the suspicion of the
enemy. Thus, using the movement of the chess as a parameter is limited only to legal
movement. In addition, the availability of authentic data plays an important role in
determining the encoding parameters.

Ou and Chen introduced a steganography method, which suits with the definition of
Nostega, using the Tetris game [5]. In this method, the secret message is hidden within the
tetrimino series. Ou and Chen’s research requires the recipient to play Tetris to get the
message sent. Although it can extract messages while playing, this results in an inefficient
message extraction process because it takes a long time to get the entire tetrimino sequence
needed, especially if the message is very long.

Other noiseless steganography in the domain of game is also proposed by Mahato, Yadav,
and Khan [4]. Mahato et al. proposed a new method to hide data in a Minesweeper game. In
this method, the position of mines on the Minesweeper grid is used to hide data. However,
because of the current data hiding capacity (17.6 bits/game for beginner level and 214
bits/game for the hard level) [4], it takes a lot of games if the sender wants to send a long
message.

The shortcoming of the use of noiseless steganography paradigm in the aforementioned
game can be overcome by using more flexible game within its boundaries (such limitation of
legal moves or flexibility in creating fictitious data), more efficient in extracting the message,
and better data hiding capacity per game. One such eligible game is Rubik’s Cube. Rubik’s
Cube is a mechanical puzzle game found in 1974 by Erno Rubik. The purpose of the game is
to solve random Rubik’s Cube state and return it to the solved state. Utilizing many notations
that exist in Rubik’s Cube is one thing that can be used to hide messages with the Nostega
paradigm.

2 Rubik’s Cube basic

2.1 Rubik’s Cube notation

To describe the movement in Rubik’s Cube, a notation is used to tell which side is moving.
Each face of the puzzle is marked with a letter F (Front), B (Back), R (Right), L (Left), U
(Up), and D (Down). The Rubik’s Cube movement is referred to as Singmaster notation [7].
Rubik’s Cube with 3x3x3 dimensions has 18 types of half-turn metric notation [9], namely:

1. F, B, R, L, U, and D (turn 90 degrees clockwise)
2. F’, B’, R’, L’, U’, and D’ (turn 90 degrees counterclockwise)
3. F2, B2, R2, L2, U2, and D2 (turn 180 degrees)

The 18 types of notations in Fig. 1 are used as a reference in the movement of the Rubik’s
cube, both for scrambling and solving. In Rubik’s Cube, a series of notations are applied to
the puzzle to get a random/scrambled state.

2.2 Diameter of Rubik’s Cube

Based on research by Rokicki et al., the diameter of Rubik’s Cube is 20 [6]. In other words,
with 4.3 x 1019 possible state positions, any state can be solved with the number of movement
less than equal to 20 half-turn metric notation. Therefore, the current range of random
scrambling generator for 3x3x3 Rubik’s Cube will produce (more or less) 20 moves for a
scramble.

 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Information Technology,
Engineering, Science, and its Applications

 47

Fig. 1. Rubik’s Cube notation [8].

3 Proposed method

There are some parameters in Rubik’s Cube that can be used as a parameter to conceal data
without creating noise (e.g. state of the puzzle, color position, solution algorithm, scramble
notation). State of puzzle and color position have limitations in its possible position, while
the solution algorithm may arouse suspicion because of strange movements. Therefore,
scramble notation is chosen because its capability to embed a very long message and its
easiness to create fictitious data.

As a note, the selection of sequences of random notation (scramble notation) can’t be
separated from its constraints. For example, R can’t be continued with R, R2, or R’ because
it can be merged to one R face notation. Fundamentally, there are two constraints to make
scramble notation:

1. A notation must be followed by another notation on a different face.
2. Notation on a face is valid if it cannot be merged with the same face notation in

some previous notation. In other words, before the face is turned, there must be a
face on the other axis that is turned before this face is turned again. For example, R
U2 R is valid but R L2 R is not valid.

Fig. 2. Faces (left) and axes (right) on Rubik's Cube [10].

Illustration on the faces and axes of the Rubik’s cube is shown in Fig. 2. Due to the
limitations of scramble notations, face groupings by the axis are required to meet the
previously mentioned constraints. This grouping can be seen in Table 1.

With the grouping of faces based on the axis, the 18 unique notations in the Rubik’s Cube
can be reduced into nine groups, each of which consists of two alternative notations, which
will be randomly selected on the basis of one or two previous notation to meet the constraints.
Group selection of nine is the maximum number of possible groups in order to obtain the
most optimum message capacity. One example of this grouping result can be seen in the

 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Information Technology,
Engineering, Science, and its Applications

 48

default encoding table (Table 2). This table is known to the sender and the receiver through
a secure private channel and will be used in the generation and extraction of the cover.

Table 1. Rubik’s Cube notation grouping based on the axis and the face.

Axis Face Notation

X
L L, L2, L’

R R, R2, R’

Y
F F, F2, F’

B B, B2, B’

Z
U U, U2, U’

D D, D2, D’

Table 2 Example of default message encoding table based on the base-9 digit.

Base-9 Digit Notation (axis) 1 Notation (axis) 2

0 L (X) F (Y)

1 R (X) B (Y)

2 U (Z) L2 (X)

3 D (Z) R2 (X)

4 F2 (Y) U2 (Z)

5 B2 (Y) D2 (Z)

6 L’ (X) F’ (Y)

7 R’ (X) U’ (Z)

8 B’ (Y) D’ (Z)

However, sending a message with only the encoding table is not safe. This is because a

user will always get the same scrambles before the message is changed. To ensure that the
scrambles will be generated like a standard timer or scrambles generator, then embedding a
message into a scramble should fulfill two requirements. Firstly, when generating a scramble,
the generated notations must be always different regardless of the secret message is changed
or not. Secondly, after all scrambles which contain a secret message are generated, more
scrambles should be generated randomly as a normal scrambler. So, permutation information
value – to shuffle the encoding table – and length information value – to decide where the
scrambles will continue randomly – are used.

Each time a cover is generated, permutation information value will be randomly
generated. This will ensure the cover is always different even if the message is the same.

Cover that will be generated is a collection of scrambles with first and second scramble
as a header which contains permutation information value and length information value
respectively. Then after the full message which embedded into scrambles are fully generated,
normal scrambles will be generated as game preserving.

 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Information Technology,
Engineering, Science, and its Applications

 49

2.1 Embedding algorithm

The embedding process has three basic steps. Firstly, the permutation information is
embedded in the first scramble. Secondly, the length of a secret message after being encoded
into Rubik’s Cube notation is embedded in the second scramble. Lastly, the third scramble
and so on save the encoded message.

2.1.1 Embedding the permutation information

The algorithm to generate the first scramble (h1) which embed a permutation information
consists of the following steps:

- Step 1: Generate a permutation information (P) for the encoding table. P consists of
nine unique digits that are one of permutation of a series of numbers 0 through 8.

- Step 2: Generate decimal number (h1,10) as a header with the length of n around 20 (Fig.
3.a). Choose randomly the first digit i with a value in the range of 0-9. This number
is used to determine the number of sub1 digits (the length of random number digits
to be filled before inserting P). The last part sub2 is inserted after P. Each digit of
both sub1 and sub2 is random.

- Step 3: Convert h1,10 into base-9 (h1,9).
- Step 4: Convert each digit of h1,9 to the corresponding notation in default encoding table.

The value of P here will be used to permute the encoding table for next scrambles.

Fig. 3. (a) The header structure of a permutation information for the encoding table in decimal. (b) An
example of a permutation information header in decimal.

2.1.2 Embedding the secret message

Because the second scramble has a length notation information, then the scrambles which
embed the secret message (M) as a secret message notation (m) will be generated first. The
algorithm to generate m consists of the following steps:

- Step 1: Convert each character from the secret message (M) into its corresponding
binary string.

- Step 2: Merge all binary string into a long binary string.
- Step 3: Convert a long binary string into base-9 (m9).
- Step 4: Convert each digit of m9 into its corresponding notation in the permuted

encoding table.
The result of m will be used for the third and later scramble.

 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Information Technology,
Engineering, Science, and its Applications

 50

2.1.3 Embedding the length information

The algorithm to generate the second scramble (h2) which embed the length information
consists of the following steps:

- Step 1: Get the value of the length information (lenm) which is the length of m.
- Step 2: Generate decimal number (h2,10) as a header with the length of n around 20 (Fig.

4.a). Choose randomly first digit j with value in the range of 0-9. This number is
used to determine the length of sub3 (length of random number digits to between k
and sub3). k shows the length of lenm. The last part sub4 is inserted after lenm. Each
digit of both sub3 and sub4 is random.

- Step 3: Convert h2,10 into base-9 (h2,9).
- Step 4: Convert each digit of h2,9 into its corresponding notation in the permuted

encoding table.

Fig. 4. (a) The header structure of the length information in decimal. (b) An example of the length
header in decimal.

2.2 Extracting algorithm

From the generated cover, the receiver needs to extract the secret message.

2.2.1 Extracting the permutation information

The algorithm to extract P from the first scramble (h1) consists of the following steps:
- Step 1: Convert h1 into h1,9 by converting each notation into its corresponding base-9

digit in default encoding table.
- Step 2: Convert h1,9 into decimal (h1,10).
- Step 3: Get the first digit of h1,10 (i). By knowing i as the length of sub1, the position and

the value of P are obtained.
- Step 4: Use P to permute default encoding table.

The permuted notation table will be used to convert each notation for next steps.

2.2.2 Extracting the length information

The algorithm to extract lenm from the second scramble (h2) consists of the following steps:
- Step 1: Convert h2 into h2,9 by converting each notation into its corresponding base-9

digit in the permuted encoding table.

 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Information Technology,
Engineering, Science, and its Applications

 51

- Step 2: Convert h2,9 into decimal (h2,10).
- Step 3: Get the first and second digit from h2,10 as j and k respectively. Get the value of

lenm at position 2+j+1 to 2+j+k.

2.2.3 Extracting the secret message

The algorithm to extract M consists of the following steps:
- Step 1: Get m by taking lenm notations starting from the third scramble.
- Step 2: Convert m into base-9 number m9 by converting each notation into

corresponding base-9 digit in the permuted encoding table.
- Step 3: Convert m9 into binary (m2).
- Step 4: Add padding bits in front of m2 so it has the number of digits multiples of eight.
- Step 5: Partition m2 for each 8-bit.
- Step 6: Convert each 8-bit into corresponding ASCII character.

4 Experimental results

4.1 Case study

The following case study describes the embedding process of a sample secret message. The
first thing to do is generating the first scramble, which is a header that contains a permutation
information value P, as follows:

- Step 1: The random generated P is 380716425. It means base-9 with value 3 in the
default encoding table is changed to 0, base-9 with value 8 is changed to 1, and so
on. The result of this permutation is shown in Table 3.

Table 3 Modified default message encoding table with 380716425 as permutation value.

Base-9 digit (before) Base-9 digit (after) Notation (axis) 1 Notation (axis) 2

3 0 D (Z) R2 (X)

8 1 B’ (Y) D’ (Z)

0 2 L (X) F (Y)

7 3 R’ (X) U’ (Z)

1 4 R (X) B (Y)

6 5 L’ (X) F’ (Y)

4 6 F2 (Y) U2 (Z)

2 7 U (Z) L2 (X)

5 8 B2 (Y) D2 (Z)

- Step 2: The randomly generated value of i is 3. So, the first header in decimal (h1,10) is

3xxx380716425xxxxxxxx (where each x is a random number). One possible value is
3321380716425839100410 (Fig. 3.b).

- Step 3: Convert h1,10 to base-9 number h1,9. Thus we get 2652512846041767710379.
- Step 4: Convert each digit of h1,9 into its corresponding notation we get

 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Information Technology,
Engineering, Science, and its Applications

 52

L2 F' B2 U D2 B U D' F2 L' F U2 R U' L' R' U' B F D U'
Steps to generate the third scramble and so on:

- Step 1: The plain text message (M) is “I love Rubik’s Cube”. The binary representation
from M is
01001001 00100000 01101100 01101111 01110110 01100101 00100000
01010010 01110101 01100010 01101001 01101011 00100111 01110011
00100000 01000011 01110101 01100010 01100101

- Step 2: Merge all binary string into one long binary string.
010010010010000001101100011011110111011001100101001000000101001001
110101011000100110100101101011001001110111001100100000010000110111
010101100010011001012

- Step 3: Convert the merged binary string into base-9 (m9) yields
2267541851775011354487346174486036020681303358769

- Step 4: After converting each digit of m9 to its corresponding notation in the permuted
encoding table, one possible series of notations (m) is
F L U2 L2 F' B D' B2 L' B' U L2 F' R2 D' B' U' L' B R D2 L2 R' B F2 D' U R B D2
U2 R2 U' F2 R2 F D F2 B2 D' R' D R' U' F' B2 U F2

Steps to generate the second scramble:
- Step 1: The length of m or lenm is 48 notations.
- Step 2: The randomly generated value of j is 5. Because the length of lenm or k is 2. So,

the second header in decimal (h2,10) will be 52xxxxx48xxxxxxxxxxxx (where each x is
random number). One possible value is
52192444849575862281910 (Fig. 4.b)

- Step 3: Convert h2,10 to base-9 number h2,9. Thus we get
46832644545450523846569

- Step 4: Convert each digit of h1,9 into its corresponding notation we get
B U2 D2 R' F U2 B R L' B L' B L' D F' L U' B2 R F2 L' F2

Table 4. Generated scrambles with a message “I love Rubik’s Cube”.

No. Scramble Note

1 L2 F' B2 U D2 B U D' F2 L' F U2 R U'
L' R' U' B F D U'

First header: contain permutation
information value (P)

2 B U2 D2 R' F U2 B R L' B L' B L' D F'
L U' B2 R F2 L' F2

Second header: contain length
information (lenm)

3 F L U2 L2 F' B D' B2 L' B' U L2 F' R2
D' B' U' L' B R D2 Part of the secret message

4 L2 R' B F2 D' U R B D2 U2 R2 U' F2
R2 F D F2 B2 D' R' D Part of the secret message

5 R' U' F' B2 U F2 D R U L F U2 L2 D R
B D' B' U L U'

Part of the secret message with the
last fifteen notations are generated
randomly to preserve the game

 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Information Technology,
Engineering, Science, and its Applications

 53

From the generated scrambles (Table 4), the receiver will extract it from the first scramble to
get P:

- Step 1: By converting the first scramble to its corresponding base-9 digit (h1,9), we get
2652512846041767710379

- Step 2: Convert it into decimal (h1,10).
3321380716425839100410

- Step 3: By knowing the structure of the first header, we get i = 3 and P is
380716425

- Step 4: Use P to permute default encoding table.
Steps to get lenm:

- Step 1: By converting the second scramble to its corresponding base-9 digit (h2,9), we
get
46832644545450523846569

- Step 2: Convert into decimal (h2,10).
52192444849575862281910

- Step 3:We get the value of j = 5 and k = 2. Thus by taking the digit at position 2+j+1
to 2+j+k, we obtain the value of lenm is 48.

Steps to get the secret message (M):
- Step 1: Get m by taking 48 notations starting from the third scramble. We get

F L U2 L2 F' B D' B2 L' B' U L2 F' R2 D' B' U' L' B R D2 L2 R' B F2 D' U R B D2
U2 R2 U' F2 R2 F D F2 B2 D' R' D R' U' F' B2 U F2

- Step 2: Convert it into a base-9 number (m9). We obtain
2267541851775011354487346174486036020681303358769

- Step 3: Convert m9 into binary (m2).
100100100100000011011000110111101110110011001010010000001010010011
101010110001001101001011010110010011101110011001000000100001101110
10101100010011001012

- Step 4: Add padding bits in front of m2 so it has the number of digits multiples of eight.
010010010010000001101100011011110111011001100101001000000101001001
110101011000100110100101101011001001110111001100100000010000110111
010101100010011001012

- Step 5: Partition m2 for each 8-bit.
01001001 00100000 01101100 01101111 01110110 01100101 00100000
01010010 01110101 01100010 01101001 01101011 00100111 01110011
00100000 01000011 01110101 01100010 01100101

- Step 6: By converting each 8-bit into the corresponding ASCII character we obtain a
message “I love Rubik’s Cube”.

Beside text, by reading a file byte per byte, this proposed method also works well to any
type of file. According to our experiments, the average capacity of the proposed algorithm –
calculated by dividing the original file size by the number of generated scrambles – is 66
bits/scramble (higher than the easy level of Minesweeper, which is 17 bits/game) [4]. In other
words, the capacity can reach up to 330 bits/game in a game of Rubik’s Cube that usually
consists of five scrambles, which has a higher capacity per game than the hard level of
Minesweeper (214 bits/game) [4].

 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Information Technology,
Engineering, Science, and its Applications

 54

4.2 Communication Protocol

Communication protocol explains how the cover will be delivered to the receiver without
arousing suspicion against the enemy. Cover of a hidden message is a collection of scrambles.
One possible step is that the sender implements a scrambler or a timer to measure the Rubik’s
Cube playing time in which it contains a random scrambler generator such as qqTimer
(https://www.qqtimer.net) or csTimer (http://cstimer.net). From the implementation, the
sender invites the receiver to play the Rubik’s Cube with a scrambler or timer that has been
embedded with a message by the sender.

Scrambles can also be sent with other alternatives such as sharing it in an online forum
of the Rubik’s Cube. However, too many scrambles might arouse an enemy’s suspicion if
the scrambles are posted without any clear reason. Therefore, the use of online forums as a
communication protocol is more suitable for messages with small sizes (e.g. text).

4.3 Proposed simulator

To present the proposed method of noiseless steganography, there are two applications
developed with Flask microframework. The first is the application used as a cover for a
communication protocol, which is a web-based timer (Fig. 5), while the other is a decoder
(Fig. 6) for extracting a message from text-based scrambles. The sender will embed the
message/file via a secret page in the timer application.

Fig. 5. The interface of the proposed simulator, which is a timer.

The timer is designed to record user solving times from the Rubik’s Cube scrambles and
to display statistics such as the best time, the lowest time, the average time, and other features
of a standard timer for Rubik’s Cube. After the receiver gets a collection of scrambles, he/she
just need to copy the list of scrambles which is saved by application and paste it on the
decoder to get the secret message.

Fig. 6. The interface of the decoder application.

 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Information Technology,
Engineering, Science, and its Applications

 55

5 Security discussion

5.1 Statistical Analysis

A secure steganographic scheme is statistically undetectable [3]. If the cover’s parameter,
which is Rubik’s Cube notation, has similar distribution probabilities to that of a standard
cover, then it prevents any suspicion from the enemy. One statistical approach is to calculate
the value of entropy. In information theory, the value of entropy shows the degree of
uncertainty in the system. Entropy is used to measure the degree of uncertainty of a random
variable. Distribution similarities are tested by using entropy values, which measure the
relationship between sample distributions. Let X be a discrete random variable with n possible
samples (x1, x2, ..., xn). The value of entropy is defined as follows:

 𝐻 𝑋 = 	− 𝑝(𝑥))𝑙𝑜𝑔.𝑝(𝑥))
/

)01

 (1)

p(xi) denotes the probability of xi. If X is a uniform distribution, then the entropy value is
the maximum of log2 n [11]. If the value of entropy approaches the maximum possible value,
then the degree of uncertainty is higher, in other words, steganographic results are more
secure from attack.

5.2 Experiments

Scrambles generated from the proposed method are tested statistically by comparing the
results with other existing application, which is cTimer, csTimer, Cubemania, and qqTimer.
Those four applications are Rubik’s Cube timer that generates scrambles randomly. For each
application, 10,000 scrambles were taken for comparison. Then, those results were compared
to almost the same number of Rubikstega’s scrambles, which generated from an image file
that is embedded in a cover, including two header-scrambles.

The probability of each notation occurrence if the distribution is uniform is
100%/18=5.556%. Based on the test results in Fig. 7, it can be seen that the probability value
of Rubikstega is near 5.556%. The probability value of each notation of the proposed method
can also be within the range of other timer software, which means it is between the upper and
lower bounds.

Fig. 7. The probability of occurrence each notation in different Rubik’s Cube timer.

5,2

5,3

5,4

5,5

5,6

5,7

B B' B2 D D' D2 F F' F2 L L' L2 R R' R2 U U' U2

O
cc

ur
re

nc
e (

%
)

Notation
cTimer csTimer Cubemania qqTimer Rubikstega

 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Information Technology,
Engineering, Science, and its Applications

 56

The calculation of entropy with the formula that is written on the previous subsection also
gets a good result. With a maximum entropy value of log2 18 or 4.169925, Rubikstega has a
value of 4,169893, which is very close to the maximum possible value. The value is even
above three other timer application (cTimer, csTimer, and, cubeTimer). In other words, the
proposed Rubik’s Cube timer shows that this noiseless steganography method appears similar
to other standard Rubik’s Cube timer.

Table 5. The entropy values in different Rubik’s Cube application.

No. Application Entropy Value

1 cTimer 4.169890

2 csTimer 4.169875

3 Cubemania 4.169779

4 qqTimer 4.169896

5 Rubikstega 4.169893

6 Conclusion
In this paper, a novel noiseless steganography on Rubik’s Cube named Rubikstega has been
presented. It developed by using scrambles notation to embed the message. From 18 unique
notations in 3x3x3 Rubik’s Cube, it is divided into nine notation groups with each group
having a corresponding base-9 value. According to the theoretical proof and experimental
results, the proposed method is indistinguishable from other applications and has better per-
game-capacity with other noiseless steganography approaches on the game domain. Based
on the proposed scenario, extracting message is easy, the recipient just needs to collect the
scrambles and copy it to the decoder. Furthermore, with the approach of using notations as a
parameter, Rubikstega can be developed for other Rubik’s Cube dimension, such as 2x2x2,
4x4x4, 5x5x5, etc. It can also be done in other puzzle games that utilize notations like
Megaminx, Pyraminx, and Skewb.

References
[1] A. Desoky, M. Younis, Sec. Comm. Netw., Chestega: Chess Steganography

Methodology, 2, 555-566 (2009)
[2] A. Desoky, Noiseless Steganography - The Key to Covert Communication, (CRC Press,

Boca Raton, 2012)
[3] I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich dan T. Kalker, “Digital Watermarking

and Steganography, second ed., 54 (Morgan Kaufmann, Burlington, 2008)
[4] S. Mahato, D. K. Yadav, D. A. Khan, JISA, A Minesweeper Game-Based

Steganography Scheme, 32, 1-14 (2017)
[5] Z. Ou dan L. Chen, Inf. Syst., A Steganographic Method Based on Tetris Games, 276,

343-353 (2013)
[6] T. Rokicki, H. Kociemba, M. Davidson and D. John, SIAM, The Diameter of The

Rubik's Cube Group is Twenty, 27, 1082-1105 (2013)
[7] D. Singmaster, Notes on Rubik's Magic Cube (Enslow Pub Inc, Berkeley Heights,

1981)
[8] https://www.cubenama.com/beginner
[9] https://www.speedsolving.com/wiki/index.php/Half_Turn_Metric

 Electronic copy available at: https://ssrn.com/abstract=3248118

The 2018 International Conference on Information Technology,
Engineering, Science, and its Applications

 57

[10] https://www.iberorubik.com/tutoriales/3x3x3/notation
[11] http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf

