Source and Target Region Discrimination on
Copy-Move Image Forgery Using SegFormer Model

Imam Ekowicaksono*f Rinaldi Munir* Masayu Leylia Khodra*
*Sekolah Teknik Elektro dan Informatika *Sekolah Teknik Elektro dan Informatika *Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung
Bandung, Indonesia
33220306 @std.stei.itb.ac.id
t Teknik Informatika, FTI
Institut Teknologi Sumatera
South Lampung, Indonesia
imam.wicaksono@if.itera.ac.id

Abstract—Copy-move image forgery is a type of image manipu-
lation where a part of an image is copied and pasted onto another
part of the same image. Detecting copy-move image forgery
involves identifying duplicated region and discriminating between
the source and target regions, which can provide investigators
with insights into the purpose of the forgery. This research
aims to discriminate between the source and target regions
in copy-move image forgery using SegFormer. SegFormer is a
transformer-based semantic segmentation model. This research
train SegFormer architecture from scratch to differentiate source
and target regions. Experiments on the CoMoFoD dataset show
that the SegFormer model achieved a mloU score over 60%,
demonstrating its effectiveness in discriminating source and
target regions on a publicly available dataset.

Index Terms—copy-move image forgery, image forgery, deep
learning, transformer, transfer learning.

I. INTRODUCTION

In today’s world, the rapid advancement of digital image
processing technology has made it increasingly simple, quick,
and affordable to manipulate digital images. The explosive
growth of social media platforms has made it easier than
ever to share these altered images, potentially blurring the
line between fact and fiction. This situation creates both
possibilities and obstacles in restoring the credibility of images
as accurate, factual, and trustworthy sources of information.

A study by Lumoindong et. al. [1] in 2020 found that
most people in Indonesia struggle to identify manipulated
images from genuine ones. The survey showed that 85%
of participants expressed a need for automated systems to
detect falsified image content. In the academic realm, research
[2] examining over 20,000 biomedical scientific publications
from 1995 to 2014 discovered that roughly 3.8% contained
problematic images. More than half of these papers with
questionable images showed signs of image manipulation.
This trend could potentially undermine academic integrity by
presenting altered images as authentic data.

There are multiple prevalent techniques for image forgery,
including image inpainting, image splicing, and copy-move.
Image inpainting alters an image by reconstructing specific
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region through pixel interpolation based on surrounding pix-
els [3]. Image splicing modifies images by inserting patch
from different sources [4]. Copy-move image forgery (CMIF)
involves duplicating a section of an image and placing it
elsewhere within the same image. The purpose of CMIF is to
either remove an object from the image or create the illusion of
multiple instances of an object within the same image. Figure
1 presents a visualization of image manipulation utilizing the
copy-move technique.

Fig. 1: Copy-move image forgery examples: (a) original image
(b) forged image (c) ternary mask.

CMIF detection techniques can be categorized into three
main approaches: block-based, keypoint-based, and deep
learning-based methods. The block-based approach involves
segmenting the image into smaller sections and analyzing
the correlation between these segments to identify duplicated
region [5]-[7]. In contrast, keypoint-based methods utilize
specific feature extraction algorithms such as scale-invariant
feature transform (SIFT) [8], speeded up robust features
(SURF) [9], and oriented FAST and rotated BRIEF (ORB)
[10] to extract image features.

Block-based CMIF detection generally employs a methodi-
cal approach. However, its process of patching and extracting
features is inefficient and time-intensive. Furthermore, block-
based techniques exhibit limitations in identifying CMIF in
manipulated images with substantial rotational and scaling



variations [11]. In contrast, keypoint-based detection methods
demonstrate resilience to affine transformations. Nevertheless,
these methods encounter challenges when analyzing images
containing homogenous textures, as keypoints are difficult
to extract in such instances. Consequently, keypoint-based
approaches prove ineffective for CMIF detection in images
characterized by homogeneous textures [12].

The progress in deep learning has enabled automated CMIF
detection. This approach employs a neural network structure
consisting of an encoder for extracting features and a decoder
for producing a mask that identifies copied region. Models
based on convolutional neural networks [13]-[15] and trans-
formers [18]-[20], which utilize deep learning techniques,
have shown effectiveness in accurately identifying CMIF
within images.

Distinguishing between source and target regions is a crucial
aspect of CMIF detection. This process involves dividing
the image into three distinct categories: source, target, and
unaltered region. The task of differentiating source from target
regions can be approached as an image segmentation problem.
SegFormer [21], a highly effective transformer-based model
for semantic segmentation, stands out in this field. This study
applies the SegFormer model to the challenge of source and
target region identification in CMIF.

This research has 2 main contributions:

« Employ the segformer model to differentiate source and

target regions in CMIF.

o Experimental results indicate that SegFormer model
demonstrates superior performance in terms of mean
Intersection over Union (mloU) compared to the state-
of-the-art model for the source and target region discrim-
ination task.

II. LITERATURE REVIEW
A. Copy-Move Image Forgery Detection

The primary objective in identifying CMIF is to localize the
duplicated region within the manipulated image. This process
involves categorizing the image into two distinct areas: the
duplicated region and the unaltered region. The duplicated
region refers to the section where content has been replicated
and inserted, while the unaltered region represents the original,
unchanged portion of the image. However, merely identifying
the duplicated region does not provide sufficient information
to comprehend the intent behind the image manipulation.
Consequently, distinguishing between the source and target
regions in CMIF plays a crucial role in effectively detecting
this type of forgery.

The differentiation between source and target region on
CMIF can be viewed as an image segmentation problem.
This process involves separating the image into three distinct
categories: the origin region, the destination region, and the
unaltered/pristine region. The origin region represents the
area from which content is copied, the destination region is
where this copied content is inserted, and the pristine region
encompasses the portions of the image that remain unchanged
by these copying and pasting actions.

B. Deep Learning-Based CMIF Detection

CMIF detection techniques can be broadly classified into
three categories: block-based, keypoint, and deep learning
approaches. The block-based and keypoint methods utilize
specific feature extraction techniques such as DCT, SIFT, and
SURF to obtain relevant features. These extracted features
are then compared to identify duplicated regions. In contrast,
deep learning approaches employ a neural network architecture
consisting of an encoder for feature extraction and a decoder
for generating a mask of the duplicated area.

1) CNN-Based CMIF Detection: A CMIF detection ap-
proach using deep learning to distinguish between source and
target region was introduced by [13] in 2018. This study
extracts CMIF image features using the first four blocks
of VGGI6. It also incorporates and combines ManiDet and
SimiDet branches to generate ternary masks for source, tar-
get, and unaltered regions. As auxiliary tasks, SimiDet and
ManiDet produce duplication region and target regions. Nev-
ertheless, this research employed several training strategies
before end-to-end training to create a more effective model for
differentiating between source and target region. The limitation
of BusterNet is that it relies on SimiDet and ManiDet. If one
of them fails, the model will not be able to detect CMIF.

In a separate investigation, researchers created a DOA-GAN
[16] (dual-order attentive module combined with GAN) for
CMIF detection. This model generates two types of attention
maps: copy-move region and co-occurrence, leading to a
more distinctive feature representation. The DOA-GAN also
incorporates the ASPP module from DeepLabV3+ [17] to
improve its CMIF detection capabilities. Nevertheless, the
model shows limitations in identifying CMIF in very small
images and in region with uniform background duplication.

2) Transformer-Based CMIF Detection: A CNN and
Transformer-based discrimination model for CMIF detection
was developed by Zhang [18]. Unlike previous studies that
emphasized encoder design based on resulting feature rep-
resentation, this research combines two existing encoders.
The first is from the Vision Transformer (ViT) [22], which
extracts global image features. The second is from the Fea-
ture Pyramid Network (FPN) [23], which uses a top-down
architecture to extract multi-scale local image features. While
this combination enhances model performance, it also leads
to a substantial increase in parameters, requiring significant
computational resources and time.

The research presented in [19] highlights the common
challenges faced by existing techniques, particularly in dealing
with significant dataset variations and accurately identifying
forged region. To tackle these issues, the study introduces an
innovative approach employing a convolutional neural network
(CNN) that aims to achieve a balanced performance in both
detecting forgeries and pinpointing source/target locations.
This method focuses on extracting the inherent characteristics
of manipulated regions rather than simply memorizing dataset
patterns, thereby improving its efficacy. The researchers com-
bine ResNetl8 for feature extraction with Twins [24] as a
decoder to emphasize altered region on the feature map.



They developed Decodery to generate binary ground truth
representing duplication region and Decodery to produce
ternary images showing source and target regions. While the
study successfully identified duplication region, there remains
room for developing a more robust and dependable model.

Another transformer-based model for detecting Copy-Move
Image Forgery (CMIF) was introduced by Liu [20]. The
research primarily focuses on identifying duplicated region
in manipulated images, which is essential in digital forensic
analysis. The proposed CMFDFormer employs a Transformer-
based framework, aiming to improve both the precision and
efficiency of copy-move forgery detection. To enhance its
detection capabilities, the model’s architecture integrates hier-
archical feature integration and self-correlation computation.
The implementation of continual learning allows the model
to adjust to new information and challenges without losing
previously learned knowledge, which is particularly beneficial
given the evolving nature of forgery techniques. Experimental
outcomes indicate that the CMFDFormer outperforms existing
methodologies in terms of detection accuracy, especially when
faced with various image alterations and attacks.

C. SegFormer Model

SegFormer, a semantic segmentation model based on trans-
former architecture, combines a transformer encoder with a
simplified multi-layer perceptron decoder [21]. The model’s
encoder employs hierarchical feature representation to create
multi-level feature maps. It processes input images with di-
mensions H x W x C, reshaping them into a sequence of
2D patches using overlap patch embedding. The Transformer
block, consisting of efficient self-attention, Mix-FFN, and
patch merging elements, generates multi-level features (F;)
with dimensions % X % Each Transformer block
output undergoes processing through an MLP layer to stan-
dardize the channel dimension. These unified features are then
upsampled by a factor of 4 and merged. The combined features
are further refined through an additional MLP layer. A final
MLP layer is used to predict the resulting segmentation mask.
The architecture of SegFormer is illustrated in Figure 2.
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Fig. 2: SegFormer Architecture

The efficient self attention method [25] reduces the spatial
scale of K and V, thereby decreasing computational com-
plexity. In the 7 — th stage, C; represents the feature map

channel, N; is the number of attention layer heads, and n;
is the corresponding head index. The dimension of each head
is given by d; = f, . The spatial scale reduction function I'(-)

for K and V is defined as:

I'(x) = Norm(Reshape(x, R;)W? ). )]

Here, x is the input sequence, and R; is the reduction ratio of

the stage ¢ attention layer. The Reshape(-) function transforms

. (hixwi R;xC}) . .
x € RMhwiC) into x € RV & X% W is a linear

projection that reduces the input sequence x dimension to
C;. Layer normalization is represented by Norm(-). Figure 3
illustrates the efficient self attention process. The self attention
function Att(-) can be expressed as:
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Fig. 3: Visualization of Efficient Self Attention [25].

SegFormer replaces the positional encoding (PE) used in
ViT with Mix-FFN, as PE is not necessary for semantic
segmentation tasks. Mix-FFN combines a 3 x 3 convolution
and a multi-layer perceptron (MLP) with GELU activation
function for each FFN. The Mix-FFN can be represented by
the following equation:

Xout = MLP(GELU(Convsy3(MLPxin))) + Xin, (3

In this equation, xj, is the feature map from the efficient
multi-head attention module, Convsy3(-) represents a 3 x 3
convolution, and MLP(-) indicates a multi-layer perceptron
with GELU activation function. SegFormer’s all-MLP decoder,
known for its lightweight design, operates through four distinct
phases. To begin, an MLP layer standardizes the channel di-
mensions of multi-layer features (F;) from each MiT decoder.
Next, these standardized features undergo a 4x upsampling
process before being merged. The combined features are
then integrated using an additional MLP layer. In the final
step, the ultimate segmentation mask is generated through the
application of a concluding MLP layer.

III. PROPOSED METHOD

The objective of this study is to employ deep learning
techniques to differentiate between source and target areas in
CMIF. This task can be classified as an image segmentation
problem. Among the various image segmentation models
available, SegFormer emerges as a particularly efficacious
transformer-based approach, demonstrating a superior IoU
rate compared to its counterparts. In this investigation, the



SegFormer model is adapted to effectively distinguish source
and target regions within CMIF.

Figure 4 delineates the research workflow employed in this
study. The first stage of this research is preprocessing the input
image. The input image is preprocessed by normalizing and
resizing it to 512x 512 x 3. The next step is to divide the image
dataset into training, validation and test images. The last stage
is to train the SegFormer model using the training data that
has been prepared beforehand so that the trained model can
discriminate the source and target regions.
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Fig. 4: The Reseach Workflow.

The initial step entails resizing the input images to dimen-
sions of 512 x 512 x 3 and normalizing them. Both authentic
and manipulated images that have undergone preprocessing
serve as input for the SegFormer model. Subsequently, the
image dataset is partitioned into separate sets for training,
validation, and testing purposes.

The SegFormer model processes the input image, which is
initially transmitted through the SegFormer encoder. This en-
coder comprises 4 hierarchically arranged transformer blocks,
each generating a distinct feature representation. This ar-
chitecture enables SegFormer to produce multi-level feature
representations. In the context of CMIF, models capable of
generating multi-level features exhibit superior performance in
differentiating source and target regions across various scales
compared to models utilizing deeper convolutional layers [15].

The SegFormer encoder generates multi-level features that
are subsequently processed by Multi Layer Perceptron (MLP)
blocks. These MLP blocks consolidate and integrate feature
maps from each level, resulting in the generation of a pre-
dicted mask. The accuracy of this predicted mask is evaluated
utilizing a cross entropy loss function, which quantifies the
discrepancy between the predicted mask and the groundtruth
mask.

In this investigation, the SegFormer decoder’s classification
head is modified to incorporate three categories: source, target,
and pristine region. The revised classifier head integrates
a softmax activation function and implements a 4x upsam-
pling. These modifications are executed to generate a high-
performance output mask that differentiates between source,
target, and pristine regions across three classes. Visualization
of the modified SegFormer classifier used in this research is
depicted in Figure 5.
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Fig. 5: Modified SegFormer’s classifier.

A. Evaluation Metrics

This research utilizes various evaluation metrics, including
precision, recall, F1-score, and Intersection over Union (IoU).
The assessment is performed for each category of source,
target, and pristine area. The calculations for precision, recall,
and F1-score are based on the following equation:

TP
- 4
P = Tp L Fp’ “)
TP
- 5
T TP RN ©)
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Intersection over Union (IoU) is an evaluation metric that
quantifies the accuracy of image segmentation models. IoU is
computed using the following formula:

TP

oU=—
TP + FP + FN

)

B. Experimental Setup

This research employs the CoMoFoD dataset [26], which
contains 200 groups of original images and 200 groups of
images altered using copy-move forgery. The manipulations
involve translation, rotation, scaling, distortion, and various
combinations of these techniques. Both original and forged
images undergo post-processing, resulting in a total of 10,000
images: 5,000 originals and 5,000 forgeries. For this study,
the CoMoFoD dataset is divided into three subsets: 80% for
training, 10% for validation, and 10% for testing.

This research employed various SegFormer models, includ-
ing SegFormer-BO through SegFormer-B5. The SegFormer
model trained from scratch. We also finetune using pretrained



models'. Adam optimization was used with a 6e — 5 learning
rate. The training process lasted 100 epochs, utilizing a batch
size of 64. To provide a basis for comparison, DOA-GAN?
[16] were also trained and tested using the same dataset.

IV. RESULT AND DISCUSSION

Among the various SegFormer models, the pretrained BS
variant exhibits the best performance in terms of train and
validation losses with mloU score of 64.94% on average of 3
classes (source, target and pristine region). However, from the
5th to the 100th epoch, both loss values began to converge
while remaining notably high. This trend indicates that the
SegFormer model might not be learning effectively. Several
factors could account for this suboptimal learning process,
including a lack of diversity in the data, an insufficient dataset
size, or an overly complex model architecture.

Unlike SegFormer, DOA-GAN show reduced train and val-
idation loss values. However, the DOA-GAN model exhibits
unstable train and validation loss patterns. This instability can
be attributed to the separate objective functions of the gener-
ator and discriminator, which leads to a slower convergence
rate in the GAN-based model compared to other deep learning
approaches. Figure 6 illustrates the train and validation loss
trends for the SegFormer and DOA-GAN models.

The performance of SegFormer and DOA-GAN models
in distinguishing source, target, and pristine region at the
pixel level is shown in Table I. DOA-GAN outperforms other
models in identifying the target region with F1 score of
65.74%. The SegFormer model proves effective in identifying
source and pristine regions with F1 score of 69.95% and 6.02%
on CoMoFoD dataset.

The mean Intersection over Union (mloU) scores for Seg-
Former trained from scratch and finetune using pretrained
ADE20K and other state-of-the-art models on the CoMoFoD
dataset are presented in Table II. Among trained from scratch
model, SegFormer-B2 achieves mloU of 35.03% in average
of 3 classes (source, target and pristine region). SegFormer-
B2 demonstrates superior performance in terms of mloU for
the source region of 53.24% while trained from scratch.
SegFormer-BO achieves 3.13% of mloU score in pristine
region and DOA-GAN acieves mloU score of 48.96% in target
region.

Among finetune with pretrained SegFormer Model using
ADE20K dataset, SegFormer-B5 achieves best mloU score of
64.94% of all classes. Almost all types of SegFormer model
outperforms DOA-GAN in terms of mloU using from scatch
training (SegFormer B1-B5) and also finetune pretained model
(SegFormer B0, B3-B5). Additionally, DOA-GAN exhibits the
most favorable performance with the highest mloU for the
source region of 34.32%.

V. CONCLUSION
This research introduces the application of SegFormer for
identifying source and target region in CMIF imagery. The

Thttps://github.com/NVlabs/SegFormer
Zhttps://github.com/asrafulashig/doagan_clean
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SegFormer model on the CoMoFoD dataset, effectively distin-
guishes between source and target regions in CMIF. The exper-
imental outcomes reveal that SegFormer outperforms current
state-of-the-art models in terms of IoU when differentiating
source and target region. The SegFormer model show promis-
ing results in identifying source and target region in CMIF.
Future research aims to enhance SegFormer’s capabilities to
perform multiple task, including localize duplicated regions
and discriminate source and target region.

REFERENCES

[1] C. W. D. Lumoindong, M. A. Aryadi, I. T. Wilyani, and A. Suhar-
tomo, “Effectiveness of Probabilistic Image Sampling Techniques to
Identify Hoax-related Images in Indonesia,” Int. J. Innov. Technol.



TABLE I: Baseline Model Performance on CoMoFoD dataset

Model Source Target Pristine
Prec Rec F1 Prec Rec F1 Prec Rec F1
SegFormer B0 | 0.5233 | 0.8940 | 0.6602 | 0.4882 | 0.9982 | 0.6557 | 0.9734 | 0.0310 | 0.0602
SegFormer B1 | 0.5428 | 0.9382 | 0.6877 | 0.4885 | 0.9987 | 0.6561 | 0.9803 | 0.0308 | 0.0597
SegFormer B2 | 0.5653 | 0.9171 | 0.6995 | 0.4877 | 0.9990 | 0.6555 | 0.9819 | 0.0306 | 0.0593
SegFormer B3 | 0.5634 | 0.9039 | 0.6941 | 0.4876 | 0.9990 | 0.6554 | 0.9844 | 0.0306 | 0.0593
SegFormer B4 | 0.5755 | 0.8563 | 0.6884 | 0.4866 | 0.9991 | 0.6545 | 0.9856 | 0.0299 | 0.0581
SegFormer B5 | 0.5590 | 0.9296 | 0.6985 | 0.4880 | 0.9990 | 0.6557 | 0.9845 | 0.0304 | 0.0590
DOA-GAN 0.5377 | 09117 | 0.6765 | 0.4897 | 0.9997 | 0.6574 | 0.9960 | 0.0310 | 0.0601

TABLE II: Mean Intersection over Union (mloU) on CoMo-
FoD Dataset

mloU mloU
Model Source | Target | Pristine | (Scratch) | (Finetune)
SegFormer B0 | 0.4991 | 0.4877 0.0313 0.3394 0.3744
SegFormer B1 | 0.5193 | 0.4881 0.0312 0.3462 0.2904
SegFormer B2 | 0.5324 | 0.4874 0.0310 0.3503 0.3367
SegFormer B3 | 0.5266 | 0.4873 0.0309 0.3483 0.5566
SegFormer B4 | 0.5173 | 0.4862 0.0302 0.3446 0.6346
SegFormer B5 | 0.5316 | 0.4877 0.0309 0.3500 0.6494
DOA-GAN 0.5087 | 0.4896 0.0312 0.3432 0.3432

[2]

[4]

(5]

(71

(8]

[9]

[10]

[11]

[12]

[13]

Explor. Eng., vol. 9, no. 3S, pp. 125-131, Feb. 2020, doi: 10.35940/iji-
tee.C1029.0193S520.

E. M. Bik, A. Casadevall, and F. C. Fang, “The prevalence of inappropri-
ate image duplication in biomedical research publications,” MBio, vol.
7, no. 3, 2016, doi: 10.1128/mBio.00809-16.

W. Li et al. "Mat: Mask-aware transformer for large hole image inpaint-
ing.” Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2022.

C. Yan, S. Li, and H. Li, ‘TransU 2 -Net: A Hybrid Transformer
Architecture for Image Splicing Forgery Detection’, IEEE Access, vol.
11, pp. 33313-33323, 2023, doi: 10.1109/ACCESS.2023.3264014.

S. Tinnathi and G. Sudhavani, ‘An efficient copy move forgery detection
using adaptive watershed segmentation with AGSO and hybrid feature
extraction’, Journal of Visual Communication and Image Representation,
vol. 74, Jan. 2021, doi: 10.1016/j.jvcir.2020.102966.

L. Darmet, K. Wang, and F. Cayre, ‘Disentangling copy-moved source
and target areas’, Applied Soft Computing, vol. 109, Sep. 2021, doi:
10.1016/j.as0¢.2021.107536.

A. Kashyap, B. Suresh, and H. Gupta, ‘Robust Detection of Copy-
Move Forgery Based on Wavelet Decomposition and Firefly Algo-
rithm’, Computer Journal, vol. 65, no. 4, pp. 983-996, Apr. 2022, doi:
10.1093/comjnl/bxaal37.

Y. Aydin, ‘Comparison of color features on copy-move forgery
detection problem using HSV color space’, Australian Journal
of Forensic Sciences, vol. 56, no. 3, pp. 294-310, 2024, doi:
10.1080/00450618.2022.2157046.

B. Soni, P. K. Das, and D. M. Thounaojam, ‘Geometric transformation
invariant block based copy-move forgery detection using fast and
efficient hybrid local features’, Journal of Information Security and
Applications, vol. 45, pp. 44-51, 2019, doi: 10.1016/j.jisa.2019.01.007.
X. Tian, G. Zhou, and M. Xu, ‘Image copy-move forgery detection
algorithm based on ORB and novel similarity metric’, IET Image
Processing, vol. 14, no. 10, pp. 2092-2100, Aug. 2020, doi: 10.1049/iet-
ipr.2019.1145.

C. Wang, Z. Huang, S. Qi, Y. Yu, G. Shen, and Y. Zhang, ‘Shrink-
ing the Semantic Gap: Spatial Pooling of Local Moment Invari-
ants for Copy-Move Forgery Detection’, IEEE Transactions on Infor-
mation Forensics and Security, vol. 18, pp. 1064-1079, 2023, doi:
10.1109/TIFS.2023.3234861.

X. Y. Wang, S. Li, Y. N. Liu, Y. Niu, H. Y. Yang, and Z. li Zhou, ‘A new
keypoint-based copy-move forgery detection for small smooth regions’,
Multimedia Tools and Applications, vol. 76, no. 22, pp. 23353-23382,
Nov. 2017, doi: 10.1007/s11042-016-4140-5.

Y. Wu, W. Abd-Almageed, and P. Natarajan, *BusterNet: Detecting copy-
move image forgery with source/target localization’, in Lecture Notes

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Springer Verlag,
2018, pp. 170-186.

A. Diwan, S. Member, and A. K. Roy, ‘CNN-Keypoint Based Two-
Stage Hybrid Approach for Copy-Move Forgery Detection’, IEEE
Access, vol. 12, no. March, pp. 4380943826, 2024, doi: 10.1109/AC-
CESS.2024.3380460.

S. Weng, T. Zhu, T. Zhang, and C. Zhang, ‘UCM-Net: A U-Net-
like tampered-region-related framework for copy-move forgery detec-
tion’, IEEE Transactions on Multimedia, vol. PP, pp. 1-14, 2023, doi:
10.1109/TMM.2023.3270629.

A. Islam, C. Long, A. Basharat, and A. Hoogs, ‘DOA-GAN: Dual-
Order Attentive Generative Adversarial Network for Image Copy-
Move Forgery Detection and Localization’, in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, IEEE Computer Society, 2020, pp. 4675-4684. doi:
10.1109/CVPR42600.2020.00473.

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, ‘Rethinking
Atrous Convolution for Semantic Image Segmentation’, Dec. 05, 2017,
arXiv: arXiv:1706.05587. Accessed: Sep. 24, 2024. [Online]. Available:
http://arxiv.org/abs/1706.05587

Y. Zhang et al., ‘CNN-Transformer Based Generative Adversarial Net-
work for Copy-Move Source/ Target Distinguishment’, IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 33, no. 5, pp.
2019-2032, May 2023, doi: 10.1109/TCSVT.2022.3220630.

S. Chang, ‘Can Deep Network Balance Copy-Move Forgery De-
tection and Distinguishment?’, May 2023, [Online]. Available:
http://arxiv.org/abs/2305.10247

Y. Liu et al, ‘CMFDFormer: Transformer-based Copy-Move
Forgery Detection with Continual Learning’, Mar. 10, 2024, arXiv:
arXiv:2311.13263. Accessed: Sep. 24, 2024. [Online]. Available:
http://arxiv.org/abs/2311.13263

E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
‘SegFormer: Simple and Efficient Design for Semantic Segmentation
with Transformers’, Oct. 28, 2021, arXiv: arXiv:2105.15203. Accessed:
Aug. 02, 2024. [Online]. Available: http://arxiv.org/abs/2105.15203

A. Dosovitskiy et al., ‘An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale’, International Confer-
ence on Learning Representations, Oct. 2020, [Online]. Available:
http://arxiv.org/abs/2010.11929

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,
‘Feature Pyramid Networks for Object Detection’, in 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI: IEEE, Jul. 2017, pp. 936-944. doi: 10.1109/CVPR.2017.106.

X. Chu et al., “Twins: Revisiting the Design of Spatial Attention in Vi-
sion Transformers’, Sep. 29, 2021, arXiv: arXiv:2104.13840. Accessed:
Aug. 29, 2024. [Online]. Available: http://arxiv.org/abs/2104.13840

W. Wang et al., ‘Pyramid Vision Transformer: A Versatile Backbone for
Dense Prediction without Convolutions’, in 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), Montreal, QC, Canada:
IEEE, Oct. 2021, pp. 548-558. doi: 10.1109/ICCV48922.2021.00061.
D. Tralic, I. Zupancic, S. Grgic, and M. Grgic, ‘CoMoFoD - New
database for copy-move forgery detection’, 2013. [Online]. Available:
http://www.vcl.fer.hr/comofod.



