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Abstract— A framework different CNN has been proposed 

to solve image classification. The power of CNN and the ability 

to extract demanding features has to be a target for proposed 

the new ideas.  In the geology domain, issues in ascertaining 

igneous rock from volcanic eruptions often contrast in 

classification when explored from the location of the rocks. 

These domain problems must be resolved, contemplating to 

have consistency and accelerate rock classification.  CNN has 

used to figure out the problem by expanding in multilayer 

convolution. Besides, parameter tuning has anointed to get the 

high accuracy to enhance the CNN model. This study has 

exploited many parameters tuning such as rescaling, cropping, 

size of inaccurate filter prediction. The exploration has shown 

that CNN(64,5) achieves a high accuracy of 98.9% and 

validation carries out accuracy of 81.1%. This study has 

confirmed that enumerating the tuning parameter on rescaling 

and cropping does not boost accuracy, even modifying the filter 

size and stride. Some results have shown still have an inaccuracy 

class, specifically in the diorite and limestone. The error forecast 

is 31.7% of 41 predicted diorite images and 30% of 50 predicted 

limestone images, respectively. (Abstract) 

Keywords—multilayer, convolutional, tuning, parameters, 

classification (keywords) 

I. INTRODUCTION  

Detection of objects in exact conditions has completed 
with the help of computer vision and the knowledge acquired 
by an expert. This effort associates image processing and 
domain knowledge maintained by experts in a particular 
domain. Nevertheless, it is not accessible to develop because 
of the narrow ability achievement of an expert to classify 
rocks. The estimate is very diverse, specifically when 
involving the color and structure of rocks around the same but 
have distinctive classifications. What is more, it has supported 
by other regions and lighting on where the geological rocks 
have located, which regularly causes problems in classifying 
the types of geological rocks. For example, ascertaining 
igneous rock from volcanic eruptions regularly differs in 
classification when viewed from the location of the rock. 
These problems are issues that must be resolved, intending to 
have coherence and expedite rocks classification. Geologists 
need an artificial annotation method to identify rocks more 
quickly with the help of rock samples observed with a 
microscope [1]. 

The accessibility of digital cameras, handheld equipment, 
and the expansion of computer-aided image study afford 
technical backing for a different range of applications. This 
peripheral allows some rock characteristics to be stored and 
evaluated digitally. Photos can represent the features of the 
color, grain size, and texture of the rock. Despite rock images 
do not represent homogeneous format, textures, or colors, 
computer image analysis can divide several categorize of rock 

images [2]. Rock is the essential component of the earth and 
contains the basic material for almost all modern construction 
and manufacturing requiring rock. In extension to the conduct 
utilize of rock, mining, drilling, and quarrying afford 
substantial provenances for metals, plastics, and fuels. Types 
of ordinary rock have a diversity of source and purpose. The 
three main classes of rocks (igneous, sedimentary, and 
metamorphic) are subdivided into subtypes according to 
distinct of peculiarities [2]. 

Rocks can be identified in assorted forms, such as visibly 
with a helped magnifying glass, microscope, or by chemical 
analysis. Taking rocks sample on the field is a difficult 
identified when using a visual looking, especially for fine-
grained rock. Inspection visual assess the rocks has identified 
by nature as color, composition, grain size, and structure. 
Rock properties that can reflect genesis, formation 
environment, mineral, and chemical composition. The color 
of the rock can reflect the age of the rock and its chemical 
composition [2]. Fan and his friends succeeded in making rock 
image recognition models with CNN in detecting color by 
making thin slices of rocks and looking at these pieces to make 
a classification model. Fan method has successfully identified 
and classified 28 rock types. Through an exhaustive 
observation of the two designs, the accuracy of SqueezeNet 
and MobileNets is 94.55% and 93.27% on the dataset test, 
respectively. The average detection time of a single rock 
image was 557 and 836 milliseconds through these two 
models. Rock images with a detection accuracy of more than 
96% regard for 95% and 93% of all test data [1].   The CNN 
model identifies six prevailing rock types with an overall 
classification accuracy of 97.96%, thus exceeding other enact 
learning models and linear models [2]. Another CNN to 
classify the rocks achieves 98.5% accuracy for identifying 
rocks [3]. CNN with models ResNet 50, ResNet 101, 
Inception-V4, and Inception-Resnet-V2 are also used to 
classify rocks based on the type of structure, along with 
Mosaic Structure (MS), Granular Structure (GS), Layered 
Structure (LS), Block Structure (BS), Fragmentation Structure 
(FS) obtained an accuracy of 95.93%, 93.90%, 97.05%, 
98.12%, and 94.80%, respectively [4]. A probabilistic neural 
network (PNN) model in which histogram features of colors 
are leveraged as input was used to classifying limestone gets 
a classification error below 6% [5].  CNN, VGG16 
(standardization only), VGG16 (migration learning), and 
InceptionV3 models, using image input from preprocessing 
results such as random flipping and standardization of feature 
values get 85.38% accuracy, 95.16%, and 87.50%, 
respectively. CNN, which was used to classify images from 
aerial images, was successfully carried out and obtained an 
accuracy of 65.03% [6]. CNN for the identification of glacier 
rocks that were dip The earth's surface from aerial 
photography has succeeded in classifying glacier rocks with a 
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total of 6 layers and 1x1, 3x3, and 7x7 filters and obtained an 
accuracy of 87% [7]. Research on the analysis of geological 
structures using geological images with CNN is overfitting 
with an accuracy below 40%. However, the use of transfer 
learning techniques by utilizing Inception-V3 for image 
extraction obtains an accuracy of 92.6% with RGB. CNN has 
been successfully applied in various image classification tasks 
to obtain feature extraction to obtain high accuracy [8].  

CNN can operate by using several advantages, especially 
in rock classification problems. First, the detection method 
can directly use pixels, then the reading pattern for each pixel 
can be limited by a bounding box in the form of a filter that 
can be 3x3, 5x5, and 7x7. Second, the number of convolution 
layers becomes very influential on the success of an image 
extraction. Third, direct touch on the color intensity causes the 
level of color analysis to be more powerful; the detection 
pattern by relying on a particular feature in the image becomes 
more accurate [7]. However, CNN also sometimes gets low 
accuracy as geological images show its geological structure 
with constraints such as tiny image sizes and using a small 
number of convolutions [4]. Therefore, every proposed model 
CNN has advantages and disadvantages. This study offers a 
CNN-based igneous rock classification method, namely by 
tuning parameters related to image preprocessing, number of 
convolution layers, filters, pooling strategies, ReLU, and 
activation functions. The main contribution of this research is: 
1) provides a method of classification of rock to igneous rocks 
of various photo rocks obtained, 2) the object image is a photo 
of igneous rocks taken from the image field, 3) treatment of 
modifications classification methods are directed from various 
aspects of the CNN architecture such as image input size, 
number of convolutions, number of filters, pooling methods, 
activation functions, and logistic regression functions. 

To convenient and straightforward read, this paper writes 
on systematic sections. This paper constructs a separable 
section such as the introduction. Data collection includes 
image acquisition and data preprocessing, a proposed method 
like the CNN model and evaluation metric, experiment and 
result, discussion, and conclusion. 

II. DATA COLLECTION 

A. Image Acquisition 

The models are made using digital photos of various sizes, 
and some are taken from websites. The Photographs is taken 
from the front of the object. Photographs were taken only of 
igneous rock types, namely andesite, basalt, pumice, siltstone, 
mudstone, sandstone, breccia, diabase, diorite, gabbro, 
limestone, granite, conglomerate, marl, and chert. Fig. 1 is an 
example of a rock photo. The Photographs were taken in 
Indonesia in an area containing igneous rocks. 

B. Data Processing  

In this study, a dataset of 1296 images was used. The size 
of this image is varied then resized to an altitude of 224x224 
pixels. The image used is divided into 15 labels which are the 
names of the igneous rocks. Table I shows the number of 
impressions divided into the training dataset and the validation 
dataset. The number of training datasets is 1001 samples 
divided into 15 igneous rock label classes, while the validation 
dataset is 296 samples divided into 15 label classes. A 
validation dataset is used with 296 images with 15 label 
classes as validation on the finished model. The dataset is 

worked out by directly dividing the number of pictures for the 
model is worked on. 

Limestone Diabase Basalt

Sandstone Gabbro Pumice

Andecite Andecite Breccia

 

Fig. 1. Image acquisition an example photo 

TABLE I.  DATASET COLLECTION 
Rock label Training Validation 

andesite 65 14 
basaltic 84 25 
pumice 63 19 
siltstone 38 4 
mudstone 11 4 
sandstone 51 10 
breccia 127 36 
diabase 103 38 
diorite 93 33 
gabbro 97 29 
limestone 140 35 
granite 101 36 
conglomerate 10 5 
marl 10 4 
chert 8 4 

Total 1001 296 

 

III. METHOD  

A. CNN Methods 

The pipeline classification process carried out in this 
research can be shown in Fig. 2. The pipeline describes the 
step-by-step process is done in making the classification 
models. In the image acquisition section, the actual image is 
first used with varying sizes, then preprocessing is carried out 
by rescaling it to 224x224 pixels. The next preprocess is to 
crop the image with cropping2D size ( (30,2),(30,2)), which 
means that the picture will be taken in a specific part so that 
the image becomes smaller. In this study, research is designed 
by many models, as shown in Table II and Table III. Choosing 
models is fundamentally based on research [1].  

1) Convolutional Layer 

The CNN architecture consists of different unique layers: 
convolution, activation, pooling, dropout, and Softmax layers 
with diverse functions. As a baseline model, this study uses 
the CNN architecture developed by [2]. Ran has used two 
convolutional layers with a 5x5 filter. In Fig.2, the first 
convolutional layer uses a 5x5 filter with stride one and 
padding = same. Then a pooling operation is performed using 
MaxPooling(3,2), namely the 3x3 filter and stride two. The 
first convolution result then each value of the map feature will 
be activated with the ReLu function. The convolution 
operation process itself uses (1), and the ReLu function (3).  
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Fig.  1. Pipeline classification igneous rocks baseline model 

TABLE II. PARAMETERS AND OUTPUT SHAPES OF THE MODEL FIG. 1 

Layer Name Function Filter Sizes / Kernel Padding Stride Output Tensor 

Rescaling - - - - 224x224 

Cropped Image random_crop - - - 192 x 192 x 3 

Conv1 conv2d 5 x 5 x 3 / 64 SAME 1 192 x 192 x 3 

Pool1 max_pool 3 x 3 SAME 2 96 x 96 x 3 

Conv2 conv2d 5 x 5 x 64 / 64 SAME 1 96 x 96 x 3 

Pool2 max_pool 3 x 3 SAME 2 48 x 48 x 64 

Output softmax - - - 15 x 1 

 
TABLE III. TUNING PARAMETER ARCHITECTURES 

Model Input Rescaling Cropping Conv2D Pooling Dense 

A  224x224 1./255 (30,2),(30,2) 
(3,5), Padding = SAME, ReLu 

(64,5), Padding = SAME, ReLu 
MaxPooling 

(3,3) 
Dense (64) 
Dense (15) 

B 224x224 1./255 - 
(3,5), Padding = SAME, ReLu 

(64,5), Padding = SAME, ReLu 
MaxPooling 

(3,3) 
Dense (64) 
Dense (15) 

C 224x224 1./255 (30,2),(30,2) 
(3,7), Padding = SAME, ReLu 

(64,7), Padding = SAME, ReLu 
MaxPooling 

(3,3) 
Dense (64) 
Dense (15) 

D 224x224 1./255 - 
(3,7), Padding = SAME, ReLu 

(64,7), Padding = SAME, ReLu 
MaxPooling 

(3,3) 
Dense (64) 
Dense (15) 

ℎ��
� = ∑ ��	� ×  ��� + ����∈��                                       (1) 

At the letter of k perform of the kth layer, ℎ��
�  show of the 

value of the feature, (i, j) organizes as a point of pixels, 	� 
means of the convolution kernel of the current layer, and �� 
is the bias. The parameters of CNNs, such as the bias ( ��) 

and convolution kernel (	� ), are customarily trained without 
supervision [9].  In addition to the baseline model, this study 
also develops parameter tuning by eliminating cropping 
operations and trying 3x3 and 7x7 filters. 

2) Activation Layer 

The ReLU activation function is a nonlinear function that 
maps the convolution layer output graph to operate neurons 
while ward off overfitting and exceed of learning. This 
function has proposed by AlexNet [10]. The model leverages 
the ReLU activation function (2) for the output feature maps 
of every convolutional layer: 

��� = max�0, �                                         (2) 

3) Pooling Layer 

The pooling layer used is to perform nonlinear down-
sampling, feature map size reduction, convergence 
acceleration, and boost computational performance [11]. 
Max-pooling is chosen over mean-pooling because it aims to 
increase the texture features [12]. Calculation of the max-
pooling operation using the following formulation: 

h� =  max�
�∈��

α�                                       (3) 

where R� is an area j in feature map for pooling α, i is the 

indicator of each element inward of the area, and h is the 
pooled feature map. 

4) Fully Connected Layer 

A fully connected layer has a task to connect to entire the 
nodes of the uppermost layer. The fully connected layers are 
operated to fusion the features extracted from the image, and 
another task is to reconstruct the two-dimensional feature 
map into one-dimensional feature vectors [11]. The fully 
connected layers have a task to map the distributed feature 
portrayal to the fragment of label space. The fully 
corresponding operation is codified by (4): 

"� =  ∑ 	�� ∗  �� +  ��
$∗%∗&'(
�)*                         (4) 

5) Softmax Layer 

As a second fully connected layer, the Softmax layer has 
an output probability distribution over the fifteen classes. The 
preeminent value of the output vector of the Softmax is 
recognized as the precise indicator type for the igneous rock 
images. The Softmax operation has supported by logistic 
regression. The Softmax is formulated by (5): 

���+ =  ,-�

∑ ,-..
                                 (5) 



B. Evaluation Metric 

The study uses the accuracy measure to see the model's 
performance. As a measure of the evaluation of the model 
that has done. The accuracy metric can be written as follows: 

 

"//01"/2 =  34 5 3%
34 5 3% 5 645 6%

                      (6) 

     

IV. EXPERIMENT AND RESULTS 

The model training is carried out using software and 
hardware configurations, as shown in Table IV.  

TABLE IV. SYSTEM CONFIGURATIONS 

Configuration Item Value 

CPU  Processor  Intel(R) Core(TM) i7-
10700K CPU @ 3.80GHz, 3792 Mhz, 8 
Core(s), 16 Logical Processor(s) 

Graphic Processor Unit NVDIA GeForce 950Ti, 640 CUDA 
cores, 2 GB 

Memory 8 GB 

Harddisk 1 TB 

Solid Stated Disk 512 GB 

Pyhton 3.8.5 

Tensorflow 2.5.0 

A. Training, and Validation Result 

The training has carried out using the model in Fig. 1 and 
models in Table III. All input images are resized to the same 
size, which is 224x224. The model was compiled with 
Adaptive Moment Estimation (ADAM) gradient descent 
[13], and sparse categorical entropy as a determinant of loss 
and model accuracy, while fitting has performed for 200 
epochs. In Fig. 3, it has shown that when epoch-60, training 
reaches a high accuracy of 98.9%, and validation reaches an 
accuracy of 81.1%. As for loss, training is close to the value 
starting from epoch-60, which is 0.04, while validation 
accuracy reaches 0.94 loss. The model shows convergence 
values for training and validation and achieves the highest 
accuracy and lowest loss at epochs above 150. At a final 
curation at epoch-200, training accuracy reaches 97.9%, 
while validation accuracy reaches 83.11%, loss value for 
training accuracy at epoch-200 is 0.049, and validation loss 
is 0.94. 

 
(a) (b) 

Fig. 3. Average accuracy (a) and Loss curves (b) for the training and 
validation dataset using samples of 224x224. 

The evaluation model in Table VI uses an accuracy 
measure. Meanwhile, Fig. 4 shows the validation results 
using model Fig.1, which is presented in a confusion matrix. 

In Fig. 4, row and column labels are igneous rock class labels, 
namely andesite, basalt, pumice, siltstone, mudstone, 
sandstone, breccia, diabase, diorite, gabbro, limestone, 
granite, conglomerate, marl, and chert, respectively, and 
presented in section 2 on image acquisition. The number of 
validation datasets is 296 images spread over 15 rock classes. 

 

Fig.  4. Confusion Matrix model Fig. 1 

Considering the values in Fig. 4, model A managed to 
predict precisely as many as 246 images, and there were still 
errors of 50 images. In Table V, there are still erroneous 
prediction classes, especially in andesite, basalt, siltstone, 
mudstone, sandstone, breccia, diabase, diorite, gabbro, 
limestone, and granite classes. In the diorite class, the error 
that occurred was 31.7% of the 41 predicted images. Then the 
limestone class occurs 30% wrong predictions from a total of 
50 predicted images. If the total prediction errors are 
calculated, 16.7% of the 296 images are predicted to be an 
error. 

TABLE V. TRUE AND FALSE PREDICTION 

 

The comparison between the models in Table VI shows 
that model A has better validation accuracy than models B, 
C, or D. The parameter tuning performed on B, C, and D still 
cannot exceed model A. The cropping process on the image 
in the specified area is still a strength in the classification of 
igneous rocks [2]. When viewed, the accuracy of model D is 
almost close to model A. However, model D still has a            
more significant loss than model A, and the difference in loss 
is 0.1676. 

TABLE VI. ACCURACY AND LOSS VALIDATION DATASET 

Metric 

Model 

A B C D 

Acc. 0.831 0.814 0.8068 0.8271 

Loss 0.942 1.122 1.1057 1.1098 

B. Evaluation Execution Time 

Evaluation of time is also a consideration in determining 
results. Time is often used as a backup for applications to be 
efficient. In convolution-based models, the number of 
convolution layers, rescaling, cropping, flatten, and Softmax 
layers will affect a model's time and predictive output. In 
Table VII, it can see that there is an execution time until the 
prediction results have obtained. The time shown in Table VII 
is for training and validation time with a total dataset of 1297 
images. 

CNN architecture changes will affect the execution time 
to get the training model with the best accuracy [21]. The 

andesite basalt pumice siltstone mudstone sandstone breccia diabase diorite gabbro limestone granite conglomerate marl chert

True Prediction 14 12 13 3 4 9 32 20 28 28 35 35 5 4 4

False Prediction 1 2 0 1 0 4 2 4 8 13 15 0 0 0 0

Total 15 14 13 4 4 13 34 24 36 41 50 35 5 4 4



addition of a convolutional layer also does not always get 
good accuracy for the working domain. Likewise, tuning 
filter size does not necessarily get high accuracy. This 
accuracy is evidenced by the experiment, results in the 
accuracy in Table VI, and execution time in Table VII. 

TABLE VII. EXECUTION TIME COMPARISON 

Time 
Modela 

A B C D 

Execution Time (minute) 10.8 14.56 11.02 107.67 
                             a based on configuration system in Table IV 

 

V. DISCUSSION 

In Fig. 3, it has noted that the model still has difficulty 
getting fittings; the difference in accuracy at the training and 
validation stages is still significant, which is around 14.49%. 
In the graph Fig. 3, it has seen that the training reaches 
convergent accuracy when the epoch-30. In contrast, the loss 
reaches a convergent value at epoch-40. This evidence is 
described by research from which makes a model with 
several convolutions as many as two layers and uses rescaling 
and cropping techniques [2]. Another study that supports this 
research uses many layers of convolution to get high accuracy 
[14]. Model B, C, and D obtain high accuracy, although not 
yet exceeded model A. The model without rescaling and 
cropping are also in the study [15], which uses VGG16 [16] 
as a model classification. In this case, VGG16 takes a long 
time to get good accuracy. The convergence of accuracy 
during training at the beginning of the epoch has 
demonstrated by research [17], which used the same image 
model to predict mineral images in rocks. Comparing with 
Fig. 5, Fig. 6, and Fig. 7, the accurate measurement is almost 
the same; the convergence reaches less than epoch-50. For 
models A, B, C, and D still have difficulty achieving high 
accuracy. If we used a naked eye to differentiate on 
geological rocks, it is hard to identify and detect the object. It 
caused the rocks almost to have the same color, texture, and 
pattern.  The geologist tries to identify the rocks by 
microscope aid and make a thin section of rocks [15]. It is 
possible to identify the rock because the thin section has a 
sharp surface about texture, color, and pattern.  

 
(a) (b) 

Fig. 5. Average accuracy (a) and Loss curves (b) for the training and 
validation dataset using samples of 224x224 for model B. 

The model also still got prediction failures of 16.7% and 
only reached 83.3% correct; this is evidenced in Table VI. 
Some classes are still challenging to predict, such as andesite, 

basalt, siltstone, mudstone, sandstone, breccia, diabase, 
diorite, gabbro, limestone, and granite [2].     The size of the  

 
(a) (b) 

Fig. 6. Average accuracy (a) and Loss curves (b) for the training and 
validation dataset using samples of 224x224 for model C. 

 
(a) (b) 

Fig. 7. Average accuracy (a) and Loss curves (b) for the training and 
validation dataset using samples of 224x224 for model D. 

image pixels, the similarity of colors, and the image structure 
make the model that is being worked on the need to be 
improved. Especially in precise image sizes, many layers of 
convolution, considerations using regularization, size filters, 
and pooling. Another consideration is using the dropout 
function to avoid overfitting too high and far from the training 
accuracy [8], [19], [22]. Same as models B, C, and D, the 
difficult to identify, the class has a higher error like gabbro 
and limestone. The high error on class gabbro and limestone 
considers the number of pictures, pixel size, and cropping 
technique. It can be proved by the experiment in Fig. 3, Fig. 
5, Fig. 6, and Fig. 7 that use model in Table 3. Using tune 
parameters like rescaling, cropping, many layers of 
convolutional did not guarantee to reach a high accuracy, 
especially in this domain. Some experiment to change the 
parameter has the same problem that is at the CNN part 
especially on layer function. The investigation tries to delete 
the cropping and change the filter, see Table 3; the result has 
the same that there is no influence on cropping, rescaling, and 
filtering to high accuracy [16]. Convolutional layer, 
regularization, and normalization are the best impact on the 
CNN process [16].  

If we see Table VIII, every model has different number of 
trainable parameters or feature extraction. Model B and 
model D are the models that construct without cropping. 



Table VIII shows that even though the process does not use 
cropping method, the model still has difficulty making a high 
accuracy. The number of trainable parameters bigger than 
models A and C is not guaranteed to reach high accuracy. 
Indeed, the error has made more increase than with the 
cropping process, see Table VI. Color prediction using CNN 
has proven the ability to increase accuracy. Several things can 
improve accuracy, as shown in Table VI, namely by making 
parameter tuning involving many layers of convolution, 
resizing, rescaling, cropping, pooling technique, ReLU 
function, and Softmax Function [18] [19] [20]. The use of 
ADAM as an optimizer for gradient descent helps to focus 
more on feature search to represent specific features when 
used in the prediction model [13]. 

TABEL VIII. EXECUTION TIME COMPARISON 

Model Number of Trainable Parameter 

A  9,443,315 

B 12,851,187 

C 9,448,139 

D 12,856,011 

 

VI. CONCLUSION 

Fashioning CNN with contrasting layers has influenced to 
achieve high accuracy. Encouragement of filter, stride, and 
cropping has helped make a diverse feature, then alteration of 
a constituent has trained to classify for this domain. Model A 
composed of rescaling, copping, conv(3,5), and Maxpooling 
have an accuracy of 0.831 and loss is 0.942. This outcome is 
more noteworthy than models B, C, and dan D, which have 
an accuracy of 0.814, 0.8068, and 0.8271. Nevertheless, the 
figure still has difficulty attaining high accuracy, especially 
identifying diorite class and limestone class. Error prediction 
to this confirmation around 31.7% and 30%, respectively. If 
the total prediction errors are learned, then there is 16.7% of 
the error predicted class. This fact has caused by the failure 
to identify objects when conducting the CNN framework. 
The diverse of color, shape, texture, and pattern makes it 
difficult to decipher the feature.  

Several challenges are employed on CNN framework, 
like the length of convolution, filter, stride, dropout, 
regularization, and normalization to improve CNN's 
identification of igneous rocks. Generally, the architecture 
CNN to be dominant reconstruct to get better accuracy.  
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