
978-1-6654-1697-9/21/$31.00 ©2021 IEEE

Insulator Detection via CNN for UAS Onboard

Computers

Alif Ijlal Wafi1, Rinaldi Munir2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: alif.iw@outlook.com1, rinaldi@informatika.org2

Abstract—This paper proposes the usage of single-stage CNN

models for detecting insulators in aerial images and measures

their applicability in low-power computing settings that often

found in UAS onboard systems. In addition to methods in

literature, we also design another network based on YOLOv2

modified with SPP (spatial pyramid pooling) block and CIoU loss

as our baseline. Our results shows that while both using SPP

block and optimizing the bounding box regression function

increases the overall detection accuracy without significant cost,

network architectures that is specifically designed for edge

devices are much more suitable on said environments. One of

such design is SF-YOLO, with computation cost of 3,842 BFLOP

(29% lower than YOLOv3 tiny, 86% lower than ours) while

retaining AP50 score higher than 0.9, and thus can be further

used for autonomous navigation subsystems with proper edge

devices.

Keywords—UAS; insulator; autonomous; object detection; deep

learning; onboard

I. INTRODUCTION

Unmanned aircraft system (UAS) has been utilized widely
in power grid inspections due to its cost effectiveness.
Recently, several studies have been made to further increase
the workflow efficiency by automating the whole inspection
procedure. Said systems are expected to be able to
autonomously navigate the transmission lines with minimal
instructions other than tower coordinates. To achieve this, the
UAV should be able to visually detect transmission towers [1],
power lines [2], and their individual components to make sure
all points of interest are captured. Captured images could then
be further analyzed in ground control systems readily available
in many UAS-based inspection services. In these inspections,
insulators are one of the critical components due to its nature as
both the physical construct support and the insulation
component in the electrical system.

Several insulator detection methods have been proposed in
various literature, each with overlooked caveats that we would
like to describe as follows. Binary images are used to localize
insulators by detecting their pattern resemblance to insulator
strings and discs, either heuristically [3] or with SVM based
learning [4]. Hewever, it is often found that insulator aerial
images are captured in angles such that the string inbetween
insulator caps are not visible. This case is much prominent

when inspecting disc faults, such as medial cracks and holes.
Keypoint based methods are also used by BoW (bag of words)
filtering and segmenting the remaining keypoints [5]. Because
of its heavy reliance to high number of initial keypoints, and by
extension, requires corner keypoint detectors, this method is
especially hard to replicate in scale invariant settings such as
aerial images. Active contour model is also proposed in [6] to
snap initial contours to insulators. Aside from the fact that it
shares the same weakness with binary images as neither of
them cannot differentiate foreground objects by themselves,
these models also need intial, manual input to proceed and thus
unsuitable for automation purposes.

CNN based methods were also proposed with VGG-16 [7]
and YOLOv3 modifier with with ResNet-50 and SPP blocks
[8], both reporting good performance in various conditions.
However, [7] suffers from data over-augmentation (stitching 60
insulator foregrounds into 1056 backgrounds). Both studies
also use desktop/server hardware which does not represent its
applicability to onboard computers on UAV, which have
limited computing power. This is especially important for
applications in which live video transmission to ground control
is not possible, such as rural areas without 4G coverage, and
thus require computations to be made in the airborne unit. In
this paper, we propose a modified YOLOv2 as a baseline
architecture for said onboard applications. Furthermore, our
resulting benchmarks can also be used as a suitable reference
for similar future research in low power computing
environments.

II. PROPOSED METHOD

A. Dataset Construction

To optimize the CNN training, a proper insulator image
dataset with varying types, sizes and colors is required.
Background variety is also equally important to ensure the
model could be operated in any inspection environments. The
dataset is made using the data from EPRI [9], Opole [10], and
CPLID [7] public dataset. The dataset is then randomly split
with stratified holdout validation scheme into training and
validation sets with a ratio of 9:1. Table I describes how many
samples were used for both training and validation in regards to
the total images available in each sources. This is due to
variance discrepancy between datasets, such as similar

20
21

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 IC

T
fo

r S
m

ar
t S

oc
ie

ty
 (I

C
IS

S)
 |

97
8-

1-
66

54
-1

69
7-

9/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

IS
S5

31
85

.2
02

1.
95

33
19

6

backgrounds and/or single insulator type as described in figure
1. This dataset is then further augmented by +30° rotation and
flipping in horizontal, vertical, and diagonal direction.
Furthermore, we also collect image samples from national
power grid company, PT PLN, as testing dataset to represent
the model performance in the actual inspection scenario.

TABLE I. DATA USAGE FROM RESPECTIVE SOURCES

Source
Image count

Used Total

EPRI 1600 1600

Opole 30 2630

CPLID 40 600

PLN 40 40

Fig. 1. From above, dataset source from EPRI, Opole, CPLID. Enlarge on the

digital document for clarity.

B. Modified YOLOv2 with SPP and CIoU

CNN architectures derived from YOLO [11] are single
stage models, meaning the the resulting output layer consists
both the bounding box of detected objects and their class
probability. On the contrary, double stage models such as
Faster-RCNN [12] separate the region proposal and class
inference into different networks. Hence, single stage models
are favored in cases that needs faster inference time while
retaining passable detection accuracy. Figure 2 illustrates the
single stage model.

We chose YOLOv2 [13] as the starting point of our
baseline architecture due to its significantly smaller layer depth
compared to its successors, namely YOLOv3 [14] and
YOLOv4 [15]. Since YOLOv2 and upwards are all aimed to be
able to handle datasets consisting thousands of object classes,
using earlier versions of these architectures should not mean it
would perform significantly worse in our single object class
problem. We then modify YOLOv2 to include SPP block at the
end of feature extraction as described in table II. Referring to
the work of [16], the addition of these pooling blocks are meant
to increase the network performance not by merely deepening
the network, but with combining local features from various
scale spaces.

TABLE II. SPP BLOCK CONFIGURATION ON YOLOV2

No. Type Filters Size/Stride Output Desc.

- Image

input

- - 416x416x3

1 Darknet-

19

 13x13x1024

2 Conv. 1024 3x3/1 13x13x1024

3 Conv. 512 1x1/1 13x13x512

4 Maxpool 5x5x1 13x13x512 SPP

5 Route 3 13x13x512

6 Maxpool 9x9/1 13x13x512

7 Route 3 13x13x512

8 Maxpool 13x13/1 13x13x512

9 Route 3,

4, 6, 8

 13x13x2048 SPP-end

10 Route-15 26x26x512

11 Conv. 64 1x1/1 26x26x512

12 Reorg. /2 13x13x256

13 Route 12,

9

 13x13x2304

14 Conv. 1024 3x3/1 13x13x1024

15 Conv 30 1x1/1 13x13x30 YOLO

detection

Fig 2. YOLO function model as a single stage function [11].

The default bounding box regression function often found
in YOLO implementations is known as IoU loss (1), which is a
simple loss function based solely on an overlap ratio between
predicted box and the ground truth. We instead used a recently
developed CIoU loss function [17] which handles cases such
that these bounding boxes does not intersect. Furthermore,
CIoU loss optimizes the regression by improving the penalty
function and taking aspect ratio difference into account. By
defining C as the minimum bounding box that covers both
prediction and ground truth boxes, v as the aspect ratio metric,
and α as the tradeoff parameter which prioritizes regression to
overlapping boxes, CIoU can be written as follows:

𝐿𝐼𝑜𝑈 = 1 −
 𝑝𝑟𝑒𝑑 ∩ 𝑔𝑟𝑡𝑟𝑢𝑡ℎ

 𝑝𝑟𝑒𝑑 ∪ 𝑔𝑟𝑡𝑟𝑢𝑡ℎ
 1

𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
 𝑑𝑖𝑠𝑡 𝑐𝑒𝑛𝑡𝑒𝑟 𝑝𝑟𝑒𝑑 ∩ 𝑐𝑒𝑛𝑡𝑒𝑟 𝑔𝑟𝑡𝑟𝑢𝑡ℎ 2

(𝑑𝑖𝑎𝑔(𝐶))2
+ 𝑎𝑣 2

𝑣 =
4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑖𝑑𝑡ℎ𝑔𝑟𝑡𝑟𝑢𝑡 ℎ

ℎ𝑒𝑖𝑔ℎ𝑡𝑔𝑟𝑡𝑟𝑢𝑡 ℎ
−

𝑤𝑖𝑑𝑡ℎ𝑝𝑟𝑒𝑑

ℎ𝑒𝑖𝑔ℎ𝑡𝑝𝑟𝑒𝑑
)2 3

𝑎 =
𝑣

 1 − 𝐼𝑜𝑈 + 𝑣
 4

III. EVALUATION

A. Implementation Environment

Both our proposed baseline network and others described in
literature are implemented in Darknet framework. Being the
framework on which YOLO was born, Darknet trivializes the
network setup with its configuration file systems. The
experiment can also be reproduced as easily via exporting said
files. Google Colabs environment was used to train and
evaluate the networks, while their performance benchmarks
were measured in a personal laptop with NVIDIA GTX950m
and a single board computer Nanopi-M4. Aside from the fact
that Google Colabs is a free cloud service in which available
GPU differs from time to time, the hardware mentioned is

much closer to the onboard computers. Respectively, they both
represent Mini-PCs (NUC form factor with mobile GPU) and
entry level onboard computers often carried by UAV. In this
context however, the use of industrial aerial vehicle capable of
payloads weighting no less than 3 pounds is mandatory.

B. Evaluation Metric

The networks are measured by their model accuracy and
performance in low power computing environment. AP
(average precision) is used as the overall correctness measure
between resulting and ground truth bounding boxes. Following
the COCO evaluation metric [18], we retrieve AP in multiple
IoU threshold to compute the final AP score. IoU can be
described as overlap-union ratio between bounding boxes:

𝐼𝑜𝑈 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ∩ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ∪ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
 5

For instance, an IoU threshold of 1.00 would mean only
positive detections with the exact box coordinates as the
ground truth would count as a true positive. The final AP score
is then computed as the average of AP taken in IoU threshold
of 0.50 to 0.95:

𝐴𝑃 =
1

10

𝐴𝑃50 + 𝐴𝑃55 + 𝐴𝑃60 + 𝐴𝑃65 + 𝐴𝑃70 +
𝐴𝑃75 + 𝐴𝑃80 + 𝐴𝑃85 + 𝐴𝑃90 + 𝐴𝑃95

 6

 With AP50 or AP@0.50 denotes the average precision on
0.50 IoU threshold. These scores are measured in each
threshold by averaging precision numbers on the PR-curve,
with the recall axis being the confidence score:

𝐴𝑃@𝐼𝑜𝑈 =
1

11
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑎𝑙𝑙 ∈ 0,0.1,..0.9,1

 7

 Figure 3 is an example of a PR-curve in the literature. It
should be noted that earlier studies often measure average
precision only on the 0.50 IoU threshold. While AP50 should be
enough in most usage cases such as autonomous navigation, it
does not represent the overall model performance.
Furthermore, strict measures such as IoU > 0.75 might be
useful to other cases, such as whether the model output can be
directly fed to a fault detection system.

 The performance benchmark of each network architecture
is measured by its inference time on each image frame,
memory requirement, and floating-point operations number.
The inference time is then compared to the minimum visual
navigation standard used in many robotic applications which is
30 FPS, or 33ms for each frame. Floating-point operations
(FLOP) and RAM usage can then be used as a feasibility
reference to whether the network can be applied to onboard
systems, and by extension as a reference to whether the
hardware used is suitable to use CNNs reliably.

Fig 3. A sample PR-curve in the work of [8] with an IoU threshold of 0.5.

C. Experiment Results

We compared our baseline network to the

architectures found in [8], namely YOLOv2, YOLOv3,

YOLOv3-ResNet50, and YOLOv3-tiny. For a fair

comparison to the YOLOv3-tiny network, we add another

comparison with SF-YOLO medium [19] as a network

specifically designed for use in embedded environments.

TABLE III. VARIOUS NETWORK MODEL METRICS IN TRAINING AND

VALIDATION SETS

Architecture AP FLOP

(Bn.)

RAM Inference

Time

T864

(s)

950m

(ms)

[13] 0.645 29.338 950MB

33.3 83.2

YOLOv2-

spp-cIoU

0.773 29.539 970MB 33.2 86.8

[14] 0.714 65.304 1.5GB 64.3 172.4

[8] 0.696 64.506 1.8GB 65.1 188.6

YOLOv3-

tiny

0.465 5.448 271MB 5.5 23.2

[19] 0.597 3.842 218MB 4.1 22.2

Results in table III shows that both the addition of

SPP block and moving the bounding box regression

function to CIoU results in increased accuracy without

significant additional load. Figure 4 also shows that the

proposed baseline architecture performs well even in a

strict IoU threshold of 0.75, which means the output of

said network can potentially be fed directly to insulator

fault detection systems. However, both YOLOv2 and

YOLOv3 derived networks are deemed not suitable to use

in onboard environments. While their memory requirement

can be handled by onboard computers, both do not satisfy

the minimum FPS required on visual based navigation

systems. Hence, small architectures such as YOLOv3-tiny

and SF-YOLO is favored in this context. Unlike the results

shown in [8], we found that YOLOv3-tiny performs well

in IoU threshold of 0.50.

As shown by [19], SF-YOLO can run faster while

having an even better detection performance than

YOLOv3-tiny due to its deeper network, consisting of 46

convolution layers. This is done by limiting the filter depth

on each layer by 256 or less, which is the upper limit of

number of GPU cores found in edge devices. However, our

single board computer does not able to achieve this

because the MALI-T864 is a basic video processor unit as

opposed to edge devices with dedicated GPU for deep

learning, and thus we recommend not to use such devices

without TPU/GPU for future machine learning studies.

The difference between our hardware and [19], which are

all mountable on UAV, is compiled in table IV.

Fig. 4. Average precision measurement in various IoU threshold. Enlarge

the digital document for clarity.

TABLE IV. COMPARISON OF THE AUTHORS’ HARDWARE TO PROPER

EDGE DEVICES

 Nanopi-

M4v1

Jetson

NANO

Jetson

TX2

Jetson

Navier

NX

Driver OpenCL CUDA CUDA CUDA

GPU 4-core

Mali

Midgard,

@650MH

z

128-core

NVIDIA

Maxwell,

@921MHz

256-core

NVIDIA

Pascal,

@1300M

Hz

384-core

NVIDIA

Volta,

@1866

MHz

RAM 4GB 4GB 8GB 8GB

Through

put
(FP16)

80

GFLOPs

472

GFLOPs

1.3

TFLOPs

2.8

TFLOPs

SF-YOLO

Inference
4.1s 29.4ms 12.9ms 12.8ms

D. Detection on PLN Dataset

The image dataset from the PT PLN is used to represent the
model performance on unseen data in our local environment
setting. Due to the minimal number of samples and variation
on the PLN dataset, it is excluded from the set used to calculate
performance shown in Fig. 4. Evaluation is then conducted

qualitatively after retraining the networks with both training
and validation dataset. Following the metrics measured in the
training phase, insulator locations in aerial images taken in
Jakarta, Indonesia could also be inferred by the network.

Fig. 5. Detection results in PLN dataset, from left: YOLOv2, our baseline

network, YOLOv3-tiny, SF-YOLO. Enlarge the digital document for clarity.

Figure 5 shows that the usage of CIoU loss function results
in bounding boxes that is much closer to the actual object
compared to IoU loss. However, all models cannot reliably
detect insulators that are excessively smaller compared to the
rest of the image, mainly due to shooting distance. This is
caused not only by the dataset largely consisting of insulators
being close enough to inspect the faults visually, but also by
the number of object scales that can be detected by CNNs (For
instance, YOLOv2 have 2 scales, YOLOv3 and YOLOv4 have
3 scales) to limit the computation load while ensuring enough
generalization. Aside from these limitations, the networks can
still be used for autonomous navigation purposes when used in
tandem with power line detection systems, as insulators should
be directly attached into these cables.

IV. CONCLUSION

Insulator on aerial images can be detected using onboard
computers with CNN based methods. However, our results
shows that it is essential to use proper devices with edge GPU.
The network architecture used is equally important to ensure its
feasibility to the target hardware. When designing such
networks for use in onboard computers, we recommend a rule-
of-thumb of computation load being no more than 6GFLOP,
while having filter depth of less than the number of cores

available in the targeted edge GPU. The usage of SPP blocks
and CIoU regression function is also recommended to
maximize the network performance and to compensate the lack
of feature depth within each layer.

The object detection method both on this paper and the
earlier literatures only presents on how to identify insulator
locations in aerial images. However, to ensure every required
shooting angle is achieved, additional orientation classes are
needed (e.g., insulator-top, insulator-side for horizontally
oriented string insulators). The detection method could also be
further expanded for other components in transmission tower
when public datasets became available in the future.

ACKNOWLEDGEMENT

The authors would like to thank PT. PLN for their helpful
information regarding inspection practices and resulting image
dataset on electrical transmission systems in Indonesia.

REFERENCE

[1] A. Ceron, I. Mondragon and F. Prieto, "Real-time Transmission Tower

Detection from Video Based on A Feature Descriptor," IET Computer

Vision, 2016.

[2] Y. Zhang, X. Yuan and S. Chen, "Automatic Power Line Inspection

Using UAV Images," Remote Sensing, 2017.

[3] J. Han, Z. Yang, Q. Zhang, C. Chen, H. Li, S. Lai, G. Hu, C. Xu, H. Xu,

D. Wang and R. Chen, "A Method of Insulator Faults Detection in

Aerial Images for High-Voltage Transmission Lines Inspection," 2019.

[4] Z. Zhao, G. Xu and Y. Qi, "Representation of Binary Feature Pooling

for Detection of Insulator Strings in Infrared Images," IEEE

Transactions on Dieletcrics and Electrical Insulation vol. 23, 2016.

[5] S. Liao and J. An, "A Robust Insulator Detection Algorithm Based on

Local Features and Spatial Orders for Aerial Images," IEEE Geoscience

and Remote Sensing Letters vol. 12, 2015.

[6] Q. Wu and J. An, "An Active Contour Model Based on Texture

Distribution for Extracting Inhomogeneous Insulators From Aerial

Images," IEEE Transactions on Geoscience and Remote Sensing vol.

52, 2014.

[7] X. Tao and D. Zhang, "Detection of Power Line Insulator Defects Using

Aerial Images Analyzed Wirh Convolutional Neural Networks," IEEE

Transactions on Systems, Manm and Cybernetics: Systems vol. 50,

2018.

[8] J. Han, Z. Yang, H. Xu, G. Hu, C. Zhang, H. Li, S. Lai and H. Zeng,

"Search Like an Eagle: A Cascaded Model for Insulator Missing Faults

Detection in Aerial Images," 2020.

[9] E. P. R. Institute, "Insulator Defect Image Dataset v1.1," 07 02 2020.

[Online]. Available:

https://www.epri.com/research/products/000000003002017949/.

[Accessed 2021].

[10] M. Tomaszewski, B. Ruszczak and P. Michalski, "The collection of

images of an insulator taken outdoors in varying lighting conditions

with additional laser spots," Data in Brief, 2018.

[11] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look

Once: Unified, Real-Time Object Detection," 2015.

[12] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks," 2015.

[13] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger,"

2016.

[14] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement,"

2018.

[15] A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao, "YOLOv4: Optimal

Speed and Accuracy of Object Detection," 2020.

[16] Z. Huang and J. Wang, "DC-SPP-YOLO: Dense Connection and Spatial

Pyramid Pooling Based YOLO for Object Detection," 2019.

[17] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye and D. Ren, "Distance-IoU

Loss: Faster and Better Learning for Bounding Box Regression," 2019.

[18] T.-Y. Lin, M. Maire, B. Serge, L. Bourdev, R. Girshick, J. Hays, P.

Perona, D. Ramanan, C. L. Zitnick and P. Dollar, "Microsoft COCO:

Common Objects in Context," 2015.

[19] B.-G. Han, J.-G. Lee, K.-T. Lim and D.-H. Choi, "Design of a Scalable

and Fast YOLO for Edge-Computing Devices," Sensors, 2020.

		2021-09-10T15:00:34-0400
	Preflight Ticket Signature

