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Abstract—This paper proposes the usage of single-stage CNN 

models for detecting insulators in aerial images and measures 

their applicability in low-power computing settings that often 

found in UAS onboard systems. In addition to methods in 

literature, we also design another network based on YOLOv2 

modified with SPP (spatial pyramid pooling) block and CIoU loss 

as our baseline. Our results shows that while both using SPP 

block and optimizing the bounding box regression function 

increases the overall detection accuracy without significant cost, 

network architectures that is specifically designed for edge 

devices are much more suitable on said environments. One of 

such design is SF-YOLO, with computation cost of 3,842 BFLOP 

(29% lower than YOLOv3 tiny, 86% lower than ours) while 

retaining AP50 score higher than 0.9, and thus can be further 

used for autonomous navigation subsystems with proper edge 

devices.    

Keywords—UAS; insulator; autonomous; object detection; deep 

learning; onboard 

I.  INTRODUCTION 

Unmanned aircraft system (UAS) has been utilized widely 
in power grid inspections due to its cost effectiveness. 
Recently, several studies have been made to further increase 
the workflow efficiency by automating the whole inspection 
procedure. Said systems are expected to be able to 
autonomously navigate the transmission lines with minimal 
instructions other than tower coordinates. To achieve this, the 
UAV should be able to visually detect transmission towers [1], 
power lines [2], and their individual components to make sure 
all points of interest are captured. Captured images could then 
be further analyzed in ground control systems readily available 
in many UAS-based inspection services. In these inspections, 
insulators are one of the critical components due to its nature as 
both the physical construct support and the insulation 
component in the electrical system.   

Several insulator detection methods have been proposed in 
various literature, each with overlooked caveats that we would 
like to describe as follows. Binary images are used to localize 
insulators by detecting their pattern resemblance to insulator 
strings and discs, either heuristically [3] or with SVM based 
learning [4]. Hewever, it is often found that insulator aerial 
images are captured in angles such that the string inbetween 
insulator caps are not visible. This case is much prominent 

when inspecting disc faults, such as medial cracks and holes. 
Keypoint based methods are also used by BoW (bag of words) 
filtering and segmenting the remaining keypoints [5]. Because 
of its heavy reliance to high number of initial keypoints, and by 
extension, requires corner keypoint detectors, this method is 
especially hard to replicate in scale invariant settings such as 
aerial images. Active contour model is also proposed in [6] to 
snap initial contours to insulators. Aside from the fact that it 
shares the same weakness with binary images as neither of 
them cannot differentiate foreground objects by themselves, 
these models also need intial, manual input to proceed and thus 
unsuitable for automation purposes. 

CNN based methods were also proposed with VGG-16 [7] 
and YOLOv3 modifier with with ResNet-50 and SPP blocks 
[8], both reporting good performance in various conditions. 
However, [7] suffers from data over-augmentation (stitching 60 
insulator foregrounds into 1056 backgrounds). Both studies 
also use desktop/server hardware which does not represent its 
applicability to onboard computers on UAV, which have 
limited computing power. This is especially important for 
applications in which live video transmission to ground control 
is not possible, such as rural areas without 4G coverage, and 
thus require computations to be made in the airborne unit. In 
this paper, we propose a modified YOLOv2 as a baseline 
architecture for said onboard applications. Furthermore, our 
resulting benchmarks can also be used as a suitable reference 
for similar future research in low power computing 
environments. 

II. PROPOSED METHOD 

A. Dataset Construction 

To optimize the CNN training, a proper insulator image 
dataset with varying types, sizes and colors is required. 
Background variety is also equally important to ensure the 
model could be operated in any inspection environments. The 
dataset is made using the data from EPRI [9], Opole [10], and 
CPLID [7] public dataset. The dataset is then randomly split 
with stratified holdout validation scheme into training and 
validation sets with a ratio of 9:1. Table I describes how many 
samples were used for both training and validation in regards to 
the total images available in each sources. This is due to 
variance discrepancy between datasets, such as similar 
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backgrounds and/or single insulator type as described in figure 
1. This dataset is then further augmented by +30° rotation and 
flipping in horizontal, vertical, and diagonal direction. 
Furthermore, we also collect image samples from national 
power grid company, PT PLN, as testing dataset to represent 
the model performance in the actual inspection scenario.  

TABLE I.  DATA USAGE  FROM RESPECTIVE SOURCES 

Source 
Image count 

Used Total 

EPRI 1600 1600 

Opole 30 2630 

CPLID 40 600 

PLN 40 40 

 

 

 

Fig. 1. From above, dataset source from EPRI, Opole, CPLID. Enlarge on the 

digital document for clarity. 
 

 

 

 

 

B. Modified YOLOv2 with SPP and CIoU 

CNN architectures derived from YOLO [11] are single 
stage models, meaning the the resulting output layer consists 
both the bounding box of detected objects and their class 
probability. On the contrary, double stage models such as 
Faster-RCNN [12] separate the region proposal and class 
inference into different networks. Hence, single stage models 
are favored in cases that needs faster inference time while 
retaining passable detection accuracy. Figure 2 illustrates the 
single stage model.    

We chose YOLOv2 [13] as the starting point of our 
baseline architecture due to its significantly smaller layer depth 
compared to its successors, namely YOLOv3 [14] and 
YOLOv4 [15]. Since YOLOv2 and upwards are all aimed to be 
able to handle datasets consisting thousands of object classes, 
using earlier versions of these architectures should not mean it 
would perform significantly worse in our single object class 
problem. We then modify YOLOv2 to include SPP block at the 
end of feature extraction as described in table II. Referring to 
the work of [16], the addition of these pooling blocks are meant 
to increase the network performance not by merely deepening 
the network, but with combining local features from various 
scale spaces. 

TABLE II.  SPP BLOCK CONFIGURATION ON YOLOV2 

No. Type Filters Size/Stride Output Desc. 

-  Image 

input 

- - 416x416x3  

1 Darknet-

19 

  13x13x1024  

2 Conv. 1024 3x3/1 13x13x1024  

3 Conv. 512 1x1/1 13x13x512  

4 Maxpool  5x5x1 13x13x512 SPP 

5 Route 3   13x13x512  

6 Maxpool  9x9/1 13x13x512  

7 Route 3   13x13x512  

8 Maxpool  13x13/1 13x13x512  

9 Route 3, 

4, 6, 8 

  13x13x2048 SPP-end 

10 Route-15   26x26x512  

11 Conv. 64 1x1/1 26x26x512  

12 Reorg.  /2 13x13x256  

13 Route 12, 

9 

  13x13x2304  

14 Conv. 1024 3x3/1 13x13x1024  

15 Conv 30 1x1/1 13x13x30 YOLO 

detection 

 



 

Fig 2. YOLO function model as a single stage function [11]. 

 

The default bounding box regression function often found 
in YOLO implementations is known as IoU loss (1), which is a 
simple loss function based solely on an overlap ratio between 
predicted box and the ground truth. We instead used a recently 
developed CIoU loss function [17] which handles cases such 
that these bounding boxes does not intersect. Furthermore, 
CIoU loss optimizes the regression by improving the penalty 
function and taking aspect ratio difference into account. By 
defining C as the minimum bounding box that covers both 
prediction and ground truth boxes, v as the aspect ratio metric, 
and α as the tradeoff parameter which prioritizes regression to 
overlapping boxes, CIoU can be written as follows: 

𝐿𝐼𝑜𝑈 = 1 −
 𝑝𝑟𝑒𝑑 ∩ 𝑔𝑟𝑡𝑟𝑢𝑡ℎ 

 𝑝𝑟𝑒𝑑 ∪ 𝑔𝑟𝑡𝑟𝑢𝑡ℎ 
 1  

 

𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
 𝑑𝑖𝑠𝑡 𝑐𝑒𝑛𝑡𝑒𝑟 𝑝𝑟𝑒𝑑 ∩ 𝑐𝑒𝑛𝑡𝑒𝑟 𝑔𝑟𝑡𝑟𝑢𝑡ℎ   2

(𝑑𝑖𝑎𝑔(𝐶))2
+  𝑎𝑣  2  

 

𝑣 =
4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑖𝑑𝑡ℎ𝑔𝑟𝑡𝑟𝑢𝑡 ℎ

ℎ𝑒𝑖𝑔ℎ𝑡𝑔𝑟𝑡𝑟𝑢𝑡 ℎ
−

𝑤𝑖𝑑𝑡ℎ𝑝𝑟𝑒𝑑

ℎ𝑒𝑖𝑔ℎ𝑡𝑝𝑟𝑒𝑑
 )2  3  

 

𝑎 =
𝑣

 1 − 𝐼𝑜𝑈 + 𝑣
 4  

 

 

III. EVALUATION 

A. Implementation Environment 

Both our proposed baseline network and others described in 
literature are implemented in Darknet framework. Being the 
framework on which YOLO was born, Darknet trivializes the 
network setup with its configuration file systems. The 
experiment can also be reproduced as easily via exporting said 
files. Google Colabs environment was used to train and 
evaluate the networks, while their performance benchmarks 
were measured in a personal laptop with NVIDIA GTX950m 
and a single board computer Nanopi-M4. Aside from the fact 
that Google Colabs is a free cloud service in which available 
GPU differs from time to time, the hardware mentioned is 

much closer to the onboard computers. Respectively, they both 
represent Mini-PCs (NUC form factor with mobile GPU) and 
entry level onboard computers often carried by UAV. In this 
context however, the use of industrial aerial vehicle capable of 
payloads weighting no less than 3 pounds is mandatory. 

B. Evaluation Metric 

The networks are measured by their model accuracy and 
performance in low power computing environment. AP 
(average precision) is used as the overall correctness measure 
between resulting and ground truth bounding boxes. Following 
the COCO evaluation metric [18], we retrieve AP in multiple 
IoU threshold to compute the final AP score. IoU can be 
described as overlap-union ratio between bounding boxes: 

𝐼𝑜𝑈 =
𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ∩ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ

𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ∪ 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ
 5  

 

For instance, an IoU threshold of 1.00 would mean only 
positive detections with the exact box coordinates as the 
ground truth would count as a true positive. The final AP score 
is then computed as the average of AP taken in IoU threshold 
of 0.50 to 0.95: 

𝐴𝑃 =
1

10
 
𝐴𝑃50 + 𝐴𝑃55 + 𝐴𝑃60 + 𝐴𝑃65 + 𝐴𝑃70 +
𝐴𝑃75 + 𝐴𝑃80 + 𝐴𝑃85 + 𝐴𝑃90 + 𝐴𝑃95

  6  

 

 With AP50 or AP@0.50 denotes the average precision on 
0.50 IoU threshold. These scores are measured in each 
threshold by averaging precision numbers on the PR-curve, 
with the recall axis being the confidence score: 

𝐴𝑃@𝐼𝑜𝑈 =  
1

11
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙 

𝑟𝑒𝑐𝑎𝑙𝑙 ∈ 0,0.1,..0.9,1 

 7  

 

 Figure 3 is an example of a PR-curve in the literature. It 
should be noted that earlier studies often measure average 
precision only on the 0.50 IoU threshold. While AP50 should be 
enough in most usage cases such as autonomous navigation, it 
does not represent the overall model performance. 
Furthermore, strict measures such as IoU > 0.75 might be 
useful to other cases, such as whether the model output can be 
directly fed to a fault detection system. 

 The performance benchmark of each network architecture 
is measured by its inference time on each image frame, 
memory requirement, and floating-point operations number. 
The inference time is then compared to the minimum visual 
navigation standard used in many robotic applications which is 
30 FPS, or 33ms for each frame. Floating-point operations 
(FLOP) and RAM usage can then be used as a feasibility 
reference to whether the network can be applied to onboard 
systems, and by extension as a reference to whether the 
hardware used is suitable to use CNNs reliably. 



 

Fig 3. A sample PR-curve in the work of [8] with an IoU threshold of 0.5. 

 

C. Experiment Results 

We compared our baseline network to the 

architectures found in [8], namely YOLOv2, YOLOv3, 

YOLOv3-ResNet50, and YOLOv3-tiny. For a fair 

comparison to the YOLOv3-tiny network, we add another 

comparison with SF-YOLO medium [19] as a network 

specifically designed for use in embedded environments. 

 

TABLE III.  VARIOUS NETWORK MODEL METRICS IN TRAINING AND 

VALIDATION SETS  

Architecture AP FLOP 

(Bn.) 

RAM Inference 

Time 

T864 

(s) 

950m 

(ms) 

[13] 0.645 29.338 950MB 

  

33.3 83.2 

YOLOv2-

spp-cIoU 

0.773 29.539 970MB 33.2 86.8 

[14] 0.714 65.304 1.5GB 64.3 172.4 

[8] 0.696 64.506 1.8GB 65.1 188.6 

YOLOv3-

tiny 

0.465 5.448 271MB 5.5 23.2 

[19] 0.597 3.842 218MB 4.1 22.2 

 

 

Results in table III shows that both the addition of 

SPP block and moving the bounding box regression 

function to CIoU results in increased accuracy without 

significant additional load. Figure 4 also shows that the 

proposed baseline architecture performs well even in a 

strict IoU threshold of 0.75, which means the output of 

said network can potentially be fed directly to insulator 

fault detection systems. However, both YOLOv2 and 

YOLOv3 derived networks are deemed not suitable to use 

in onboard environments. While their memory requirement 

can be handled by onboard computers, both do not satisfy 

the minimum FPS required on visual based navigation 

systems. Hence, small architectures such as YOLOv3-tiny 

and SF-YOLO is favored in this context. Unlike the results 

shown in [8], we found that YOLOv3-tiny performs well 

in IoU threshold of  0.50. 

As shown by [19], SF-YOLO can run faster while 

having an even better detection performance than 

YOLOv3-tiny due to its deeper network, consisting of 46 

convolution layers. This is done by limiting the filter depth 

on each layer by 256 or less, which is the upper limit of 

number of GPU cores found in edge devices. However, our 

single board computer does not able to achieve this 

because the MALI-T864 is a basic video processor unit as 

opposed to edge devices with dedicated GPU for deep 

learning, and thus we recommend not to use such devices 

without TPU/GPU for future machine learning studies. 

The difference between our hardware and [19], which are 

all mountable on UAV, is compiled in table IV.      

 

 
Fig. 4. Average precision measurement in various IoU threshold. Enlarge 

the digital document for clarity. 

 

TABLE IV.  COMPARISON OF THE AUTHORS’ HARDWARE TO PROPER 

EDGE DEVICES 

 Nanopi-

M4v1 

Jetson 

NANO 

Jetson 

TX2 

Jetson 

Navier 

NX 

Driver OpenCL CUDA CUDA CUDA 

GPU 4-core 

Mali 

Midgard, 

@650MH

z 

128-core 

NVIDIA 

Maxwell, 

@921MHz 

256-core 

NVIDIA 

Pascal, 

@1300M

Hz 

384-core 

NVIDIA 

Volta, 

@1866

MHz 

RAM 4GB 4GB  8GB 8GB 

Through

put 
(FP16) 

80 

GFLOPs 

472 

GFLOPs 

1.3 

TFLOPs 

2.8 

TFLOPs 

SF-YOLO 

Inference 
4.1s 29.4ms 12.9ms 12.8ms 

 

D. Detection on PLN Dataset 

The image dataset from the PT PLN is used to represent the 
model performance on unseen data in our local environment 
setting. Due to the minimal number of samples and variation 
on the PLN dataset, it is excluded from the set used to calculate 
performance shown in Fig. 4. Evaluation is then conducted 



qualitatively after retraining the networks with both training 
and validation dataset. Following the metrics measured in the 
training phase, insulator locations in aerial images taken in 
Jakarta, Indonesia could also be inferred by the network.  

 

 

Fig. 5. Detection results in PLN dataset, from left: YOLOv2, our baseline 

network, YOLOv3-tiny, SF-YOLO. Enlarge the digital document for clarity. 

 

Figure 5 shows that the usage of CIoU loss function results 
in bounding boxes that is much closer to the actual object 
compared to IoU loss. However, all models cannot reliably 
detect insulators that are excessively smaller compared to the 
rest of the image, mainly due to shooting distance. This is 
caused not only by the dataset largely consisting of insulators 
being close enough to inspect the faults visually, but also by 
the number of object scales that can be detected by CNNs (For 
instance, YOLOv2 have 2 scales, YOLOv3 and YOLOv4 have 
3 scales) to limit the computation load while ensuring enough 
generalization. Aside from these limitations, the networks can 
still be used for autonomous navigation purposes when used in 
tandem with power line detection systems, as insulators should 
be directly attached into these cables.  

IV. CONCLUSION 

Insulator on aerial images can be detected using onboard 
computers with CNN based methods. However, our results 
shows that it is essential to use proper devices with edge GPU. 
The network architecture used is equally important to ensure its 
feasibility to the target hardware. When designing such 
networks for use in onboard computers, we recommend a rule-
of-thumb of computation load being no more than 6GFLOP, 
while having filter depth of less than the number of cores 

available in the targeted edge GPU. The usage of SPP blocks 
and CIoU regression function is also recommended to 
maximize the network performance and to compensate the lack 
of feature depth within each layer.  

The object detection method both on this paper and the 
earlier literatures only presents on how to identify insulator 
locations in aerial images. However, to ensure every required 
shooting angle is achieved, additional orientation classes are 
needed (e.g., insulator-top, insulator-side for horizontally 
oriented string insulators). The detection method could also be 
further expanded for other components in transmission tower 
when public datasets became available in the future.  
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