

UAV Detection using Web Application Approach

based on SSD Pre-Trained Model

Leonard Matheus Wastupranata

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

leo.matt.547@gmail.com

Rinaldi Munir

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

rinaldi@informatika.org

Abstract— UAV development is being intensively developed by

various groups to help overcome various types of problems. Object

Detection is important in helping UAVs to do drone chasing and

other competition that need visual approach based on image

processing and deep learning. Unfortunately, the computational

capabilities of the onboard processing unit that attached to the

UAV are less than optimal for object detection due to storage and

memory size constraints. This paper aims to create the new

approach to improve the precision and recall during UAV

detection by using web application to do real time detection. To

decide a pre-trained model, it is necessary to compare which SSD

pre-trained model is suitable to be deployed in this web

application. The results obtained are that using the web

application approach is better than the onboard processing

approach with a high level of precision and recall with an average

precision value of 0.85 and an average recall value of 0.837.

Keywords— UAV, object detection, SSD, web application, deep

learning

I. INTRODUCTION

In modern times, the use of UAVs is intended to fulfill
increasingly complex human needs. From rush hour dispatch
services to scanning inaccessible areas, UAVs are proving to be
essential in a variety of situations where humans cannot achieve
or cannot perform hazardous/risky tasks in a timely and efficient
manner[1]. Now, UAV technology integrates autonomous
capabilities with aerial vehicles to do a variety of tasks,
including package delivery, autonomous mapping, and
surveillance, as well as capturing another autonomous aircraft in
flight. The expanding number of UAV competitions throughout
the world, ranging from payload delivery to drone chasing,
proves that UAV technology is growing rapidly today.

A drone chasing competition is one of the races which
drones compete to tag each other. The first drone to be tagged
loses the race. Although it is a relatively simple challenge for
human-controlled drones to solve, it is a considerably more
difficult problem for autonomous drones to solve since, to tag
another drone, the drone must first know the precise location of
other drones to tag it down. One way for a drone to learn about
the location of other drones is by detection.

To help the drone learn about the location visually,
TensorFlow Object Detection API[2] will be the problem solver.

This API is the most widely used API for detecting objects
captured on camera. Comparable or same arrangement of pixels
that make up an object to the original item will be considered.
To do that, Single Shot Object Detection (SSD) is the Object
Detection method which is good for detecting small targets
because low-level feature maps is used with high resolution
process[3]. In carrying out the object detection process, there are
several pre-trained models contained in the zoo model. The
model has been pre-trained with general objects whose details
can be seen in the detection label map file [4].

Makirin et.al. [5] proposed the real time detection of flying
drones by prioritizing the concept of a lightweight model with
good accuracy. The results using SSD MobileNet v2 are
precision of 0.586 and sensitivity of 0.622 at IoU 0.50 - 0.95 in
all-area of captured image. However, the accuracy of this model
is still lacking and requires heavy computing on the onboard
processing. A new approach is needed to carry the
computational load so that this extra resource requirement can
be reduced in the onboard processing of the UAV.

Vaddi et al. [6] also have proposed the efficient way for
Real-Time UAV Object Detection. The method used is to
compare models that are suitable for detecting pedestrians,
vehicles, bicycles, etc., using MobileNet[7] and ResNet[8]
models. The results obtained are the combined model with
MobileNet as backend feature extractor gave the best results in
terms of accuracy, speed and memory efficiency and is best
suitable for real time object detection with drones.
Unfortunately, the proposed method does not detect other UAVs
in more detail so they cannot be used for tracking other UAVs.

TABLE I. LIST OF ABBREVIATIONS

Acronym Acronym

UAV Unmanned Aerial Vehicle

SSD Single Shot Detector

API Application Programming Interface

IoU Intersection of Union

GPU Graphics Processing Unit

COS Cloud Object Storage

Funding was received from P3MI STEI ITB to sponsor the research

2021 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES)

978-1-6654-0179-1/21/$31.00 @2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

er
os

pa
ce

 E
le

ct
ro

ni
cs

 a
nd

 R
em

ot
e

Se
ns

in
g

Te
ch

no
lo

gy
 (I

CA
RE

S)
 |

 9
78

-1
-6

65
4-

01
79

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

AR
ES

53
96

0.
20

21
.9

66
51

91

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on June 13,2022 at 08:02:23 UTC from IEEE Xplore. Restrictions apply.

In this paper, a new web application approach will be
proposed so the precision and recall can be improved for the
better detection instead of onboard processing [5]. The precision
obtained is expected to be greater than 80% and the successful
recall number obtained is expected to be greater than 70% to be
concluded as successful. In addition, this pre-trained model will
be developed with the help of cloud computing and can be stored
in a separate storage. It will be accessed asynchronously from
internet access so the computing process will speed up.

II. PROPOSED METHOD

A. Workflow for Model Training Initiation

As we can see in the Figure 1, the purpose of image labeling
is for training and evaluating the model so the exact location of
the object that must be detected. After that, the entire image will
be entered into a TFRecord file which is useful for the training
process. TFRecord is a file that describes the data needed during
the training and testing phases of the TensorFlow Object
Detection API [9].

Fig. 1. Proposed Workflow

Each different model will have a unique behavior for each

different set of images. For this reason, hyperparameter tuning

is needed so that when real training is carried out on a large set

of images, the model will still fit [10]. After getting the right

parameters for training and evaluating the model, the training

process is carried out and of course will produce a new graph

which will then be converted and deployed to TensorFlow.js

[11]. Finally, cloud storage is set up to store a model so that the

website can access the graph file after it has been released.

B. Web Application Architecture

From Figure 2, we can see that after the new model had been
deployed, user can choose the desired model for object detection
after the model deployment had done. After that, the UAV
onboard camera will be used to capture images which can send
directly to the website in real time [12]. After the web gets the
model requested by the user and has the video from UAV
webcam, then the web will send request to the TensorFlow

Object Detection API to extract the image. The processing uses
a model that has been stored in cloud storage so that the location
of the bounding box where the detection is located is obtained.
With a cross-service operation plan, a web architecture that
relies on cloud storage will be chosen. As a result, this web will
use IBM COS. This is done to better support cloud operations
and asynchronous computing, thereby reducing long computing
time [13].

Fig. 2. Proposed Architecture

Next, the result will be sent in the form of an array to the

web and the web will draw a bounding box. Later, the results

of this detection will be used so that the web application on the

website can send commands to the UAV in real-time to carry

out a mission.

C. Datasets

For a training purpose to make a new model, there are 12000
images that have been collected from YouTube, with the
classification of 6000 positive images and the remaining are
negative images, can be seen in Figure 3. The positive data
includes images of quadrotor and fixed-wing types [14], while
the negative data contains images of kites, helicopters, and birds.
All datasets have been labeled according to their respective class
classifications, namely the "uav" class for positive images and
the "non_uav" class for negative images. Labeling is done on a
flawless, flawless image so blurry images will not be used. This
dataset divided into 96% Train Dataset, 2% Dev Dataset, and
2% Test Dataset for evaluation.

a) Positive Dataset b) Negative Dataset

Fig. 3. Example of Dataset

This dataset contains images that are in the Portable Network
Graphic (PNG) format. This format is used because in the
machine learning process, the training will use the RGB (Red,
Green, Blue) color approach. With this scheme, the training
process will be more accurate and can detect each pixel well
[15].

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on June 13,2022 at 08:02:23 UTC from IEEE Xplore. Restrictions apply.

D. Pre-trained Models

There are so many SSD pre-trained model options available
in TensorFlow V2 [4]. A comparison will be made on three
different models, such as SSD MobileNet, SSD ResNet50, and
SSD ResNet101. MobileNet and ResNet pre-trained model was
chosen because the smaller layer sizes show the faster speed.
These three models were chosen because only 12GB of GPU
memory of computation that can be used for training the model.

From Table II, we can see that, the results with FPN [16] are
measurements made on training for familiar objects. Therefore,
these selected models will be further investigated for training
using the dataset described in the previous section.

TABLE II. TENSORFLOW 2 DETECTION MODEL ZOO [4]

Model name
Speed

(ms)

COCO

mAP
Outputs

SSD MobileNet
V1 FPN 640x640

48 29.1 Boxes

SSD MobileNet

V2 FPNLite
320×320a

22 22.2 Boxes

SSD MobileNet

V2 FPNLite
640×640

39 28.2 Boxes

SSD ResNet50 V1

FPN 640×640

(RetinaNet50) a

46 34.3 Boxes

SSD ResNet50 V1

FPN 1024×1024

(RetinaNet50)

87 38.3 Boxes

SSD ResNet101

V1 FPN 640×640

(RetinaNet101) a

57 35.6 Boxes

SSD ResNet101

V1 FPN

1024×1024
(RetinaNet101)

104 39.5 Boxes

SSD ResNet152

V1 FPN 640×640
(RetinaNet152)

80 35.4 Boxes

SSD ResNet152

V1 FPN

1024×1024
(RetinaNet152)

111 39.6 Boxes

a.
 Selected Model to be trained

E. Hyperparameter Tuning

In determining the right parameters so that the resulting
model can work optimally, the random search method is used
because random experiments are more efficient than grid
experiments for hyper-parameter optimization in the case of
several learning algorithms on several data set[17].
Hyperparameter tuning is using GPU computing environment
with a total of 100 000 training steps, a momentum scale of 0.9
[18] and an initial learning rate of 0.04. The selected number can
be seen in the cells marked in Table III with the letter (a). The
selection of this number is based on the highest precision and
recall with the lowest loss so the maximum training will be
generated.

TABLE III. HYPERPARAMETER TESTING

Model
Batch

Size

Warm

up

Step

Warm

up

Rate

Loss Prec Rec

SSD

MobileNet

V2

FPNLite

320×320

12 5000a 0.013a 0.056 0.0347 0.045

12 100000 0 0.077 0.0385 0.058

12 5000 0.04 0.038 0.039 0.039

SSD

ResNet50

V1 FPN

640×640

(RetinaNet

50)

12 5000 0.013 0.033 0.0232 0.028

12 100000 0 0.176 0.088 0.132

12 5000a 0.04a 0.057 0.0485 0.053

SSD

ResNet101

V1 FPN

640×640

(RetinaNet

101)

8 5000a 0.013a 0.047 0.0302 0.039

8 100000 0 0.25 0.125 0.188

4 5000 0.04 0.122 0.081 0.102

a.
 Selected Parameter Value to be trained

F. Hardware and Resources

For training phase, Google Colab provides a single 12GB
NVIDIA Tesla K80 GPU that can be used up to 12 hours
continuously. The testing phase is using a Computer with Intel®
Core™ i7-9750H CPU @ 2.60GHz, with 8.192 MB RAM. For
Training. The deployment process is using Heroku with
React.js. Detection process is using the model that saved in IBM
Cloud with single Cloud Object Storage Service Instance in Lite
scheme [19].

III. RESULTS AND ANALYSIS

Loss is the distance between the detection result and ground
labeled for image detection [20]. The higher loss number, the
more errors will be generated during training. From the Figure
4, MobileNet has a loss rate of only 0.09, while ResNet50 has a
loss rate, around 0.101, and finally ResNet 101 has the highest
loss rate of all, which is 0.142. MobileNet V2 has the lowest
level of loss value so the detection results with the ground label
are not much different. On the other hand, ResNet101 has the
highest loss rate, so many errors can be seen during detection.

Fig. 4. Loss Value for all Models

0.09
0.101

0.142

Loss

Loss Value

MobileNet V2 ResNet50 ResNet101

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on June 13,2022 at 08:02:23 UTC from IEEE Xplore. Restrictions apply.

Some metrics is used to measure the Object Detection
Models. A true positive is an outcome where the model correctly
predicts the positive class. Similarly, a true negative is an
outcome where the model correctly predicts the negative class.
A false positive is an outcome where the model incorrectly
predicts the positive class. And a false negative is an outcome
where the model incorrectly predicts the negative class. To
calculate the precision of the object detection results, it can be
seen in equation (1).

 ��������� =
��

����
 (1)

TP means True Positive, and FP means True Negative. The
greater the precision value, the higher the object detection
accuracy in recognizing and vice versa.

The model can be said to be successful if the precision
number is greater than 80% and the successful recall number is
greater than 70% and it is categorized as "Knowledge High"
[21]. IoU is also called the Intersection of Union, which means
the intersection of the detection results with the square that
should be at the same time, also known as the detection
confidence.

 In the detection of large and medium-sized objects as we can
see in Figure 5, the difference in results between the three
models is not so significant, but the results of ResNet101 rank
the lowest. The same thing happened at the scale of IoU = 0.75
and IoU = 0.50, and IoU = 0.50:0.95, again ResNet101 has the
lowest precision in performing detection on a certain confidence
scale. The precision value for small object detection size should
be highlighted here; the MobileNet V2 Model has the highest
precision. Therefore, if small-scale UAV object identification is
done frequently, the precision should be considered.

Fig. 5. Precision Value for all Models

To calculate the sensitivity or Recall Value of the object
detection results, it can be seen in equation (2).

 ������ =
��

����
 (2)

TP means True Positive, and FN means False Negative. The
greater the recall value, the higher the sensitivity of object
detection in triggering decision making.

 MaxDets is the maximum number of detections indicating
the maximum number of detections in a single image only. For
all MaxDets values as shown in Figure 6, there is no significant
difference in detection sensitivity, with ResNet101 having the
lowest sensitivity. The sensitivity of detection on large objects,
there is also no significant difference. The interesting thing is the
recall number in the detection of medium-sized objects, where
ResNet50 occupies the highest number even though the
difference is not much different from others. Unfortunately,
ResNet50 has a lower detection sensitivity than MobileNet V2
for small objects.

Fig. 6. Recall Value for all Models

0.850

0.831

0.991

0.93

0.658

0.806

0.885

0.843

0.83

0.992

0.93

0.612

0.812

0.883

0.821

0.805

0.99

0.922

0.567

0.784

0.856

Average

IoU = 0.50:0.95

IoU = 0.50

IoU = 0.75

area = small

area = medium

area = large

Precision
ResNet101 ResNet50 MobileNet V2

0.837

0.855

0.867

0.868

0.676

0.834

0.923

0.831

0.854

0.867

0.868

0.632

0.843

0.923

0.805

0.827

0.844

0.846

0.598

0.814

0.9

Average

MaxDets = 1

MaxDets = 10

MaxDets = 100

area = small

area = medium

area = large

Recall

ResNet101 ResNet50 MobileNet V2

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on June 13,2022 at 08:02:23 UTC from IEEE Xplore. Restrictions apply.

 The Bounding Box on the Web is drawn using the HTML
Canvas Rendering Context, usually symbolized by "ctx". The
created line follows the number that appears at the detection
angle of the tensorflow.js layer generated on the web backend
[22]. The screenshot of UAV detection on the web can be seen
in Figure 7.

a) True Positive Detection b) False Positive Detection

c) True Negative Detection d) False Negative Detection

Fig. 7. Result of UAV Detection in Web

To deploy a new model to a display page as shown in Figure

8, Runtime Testing is based on two stages, such as Load Model

Time and Average Detection Time, measured in seconds. Load

Model Time is measured based on the time span required by the

backend to access the graph model from cloud storage with all

its preparations. It can be seen in Table IV, MobileNet V2 has

the fastest processing time from Cloud Storage to the website

backend. This is influenced by the size of the extracted bin file

from the training results, where the size of the converted graph

is the smallest than the others.

Fig. 8. Web Interface of UAV Object Detection using a New Model

TABLE IV. RUNTIME MODEL IN WEB MEASUREMENT

Runtime Model

Measurement (s)

Model

MobileNet V2 ResNet50 ResNet101

Load Model Time 12.27a 240.94 209.21

Average Detection Time 1.5a 17.47 25.90

a.
 Minimum Value

Furthermore, Average Detection Time is measured based on

the time span of layer-by-layer processing that exists in each

pre-trained model and the average detection time is obtained

from ten times. Again, the results show that MobileNet V2 has

the fastest time span in performing layer-by-layer detection so

that the detection results on the web backend finally released.

IV. CONCLUSION

In this paper, a new web application approach has been

generated to obtain an optimal object detection model to

overcome the constraint in terms of parameters, computational

environment, and other various constraints. The new pre-

trained model also runs well after the deployment on the web

and can classify various flying objects from the generated

bounding box class. In the web application approach, SSD

MobileNet v2 FPN precision value is 0.85 and recall value is

0.837. Compared with SSD MobileNet v2 with onboard

processing, the precision value is only 0.586 and the recall

value is only 0.622. These are proofing that the precision and

recall values in the web application approach are better than

UAV object detection using onboard processing. However, the

processing runtime on the web application is slower than the

onboard processing of the UAV.

V. FUTURE WORKS

Runtime performance of detection processing can be

improved by exploring another web architecture, pre-trained

models, and method. The web application approach can be

further developed to be integrated with Ground Control Station

of the UAV. The web application also allows the detection and

classification of other flying objects instead of detecting only

"uav" and "non_uav" objects. UAVs can also coordinate with

each other from multiple camera angles and transmit object

detection results to multiple computers and devices in real time.

With runtime improvement, this web application can also be

integrated to measuring the UAV speed and anti-theft detection.

ACKNOWLEDGMENT

I would like to thank P3MI STEI ITB for providing

sponsorship and funding. I also want to thank Aksantara ITB

for giving advice so that this research can run well.

REFERENCES

[1] H. Shakhatreh et al., “Unmanned Aerial Vehicles (UAVs): A Survey on
Civil Applications and Key Research Challenges,” IEEE Access, vol. 7,

pp. 48572–48634, 2019.
[2] M. M. Naushad Ali, M. Abdullah-Al-Wadud, and S. L. Lee, “Moving

Object Detection and Tracking Using Different Image Processing

Approaches,” International Journal of Pure and Applied Mathematics,

vol. 321–324, no. 6, pp. 1200–1204, 2013.
[3] W. Liu et al., “SSD : Single Shot MultiBox Detector,” European

conference on computer vision, pp. 21–37, 2016.

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on June 13,2022 at 08:02:23 UTC from IEEE Xplore. Restrictions apply.

[4] TensorFlow, “TensorFlow 2 Detection Model Zoo,” GitHub, 2021.

https://github.com/tensorflow/models/blob/master/research/object_detec
tion/g3doc/tf2_detection_zoo.md (accessed Jun. 08, 2021).

[5] M. K. Makirin, L. M. Wastupranata, and A. Daffa, “Onboard Visual

Drone Detection for Drone Chasing and Collision Avoidance,” AIP
Conference Proceedings, vol. 2366, 2021.

[6] S. Vaddi, D. Kim, C. Kumar, S. Shad, and A. Jannesari, “Efficient Object

Detection Model for Real-time UAV Application,” Computer and
Information Science, vol. 14, no. 1, p. 45, 2021.

[7] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications,” 2017.
[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pp. 770–778, 2016.
[9] O. Campesato, TensorFlow 2 Pocket Primer. Mercury Learning and

Information, 2019.

[10] M. Claesen and B. de Moor, “Hyperparameter Search in Machine
Learning,” The XI Metaheuristics International Conference, pp. 10–14,

2015.

[11] D. Smilkov et al., “TensorFlow.js: Machine Learning for the Web and
Beyond,” Proceedings of the 2nd SysML Conference, 2019.

[12] S. N. Kizar and G. S. R. Satyanarayana, “Object Detection and Location

Estimation using SVS for UAVs,” International Conference on
Automatic Control and Dynamic Optimization Techniques, ICACDOT

2016, pp. 920–924, 2017.

[13] A. Levin et al., “AIOps for a Cloud Object Storage Service,” Proceedings
- 2019 IEEE International Congress on Big Data, BigData Congress

2019 - Part of the 2019 IEEE World Congress on Services, pp. 165–169,
2019.

[14] A. Jaimes, S. Kota, and J. Gomez, “An Approach to Surveillance an Area

Using Swarm of Fixed Wing and Quad-Rotor Unmanned Aerial Vehicles
UAV(S),” 2008 IEEE International Conference on System of Systems

Engineering, SoSE 2008, pp. 8–13, 2008.

[15] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning Rich Features
from RGB-D Images for Object Detection and Segmentation,” Lecture

Notes in Computer Science, vol. 8695 LNCS, pp. 345–360, 2014.

[16] X. Li, T. Lai, S. Wang, Q. Chen, C. Yang, and R. Chen, “Feature Pyramid
Networks for Object Detection,” Proceedings - 2019 IEEE Intl Conf on

Parallel and Distributed Processing with Applications, Big Data and

Cloud Computing, Sustainable Computing and Communications, Social
Computing and Networking, ISPA/BDCloud/SustainCom/SocialCom

2019, pp. 1500–1504, 2019.

[17] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter
Optimization,” Journal of Machine Learning Research, vol. 13, pp. 281–

305, 2012.

[18] S. Ruder, “An Overview of Gradient Descent Optimization Algorithms,”
pp. 1–14, 2016.

[19] L. Stadtmueller, “Which Cloud Storage Service Delivers the Performance

You Need ? Comparing IBM Cloud Object Storage and Amazon S3 An
Executive Brief Sponsored by IBM,” 2016.

[20] S. Jiang, H. Qin, B. Zhang, and J. Zheng, “Optimized Loss Functions for

Object detection: A Case Study on Nighttime Vehicle Detection,” arXiv,
pp. 1–18, 2020.

[21] F. Habryn, Customer Intimacy Analytics: Leveraging Operational Data

to Assess Customer Knowledge and Relationships and to Measure their
Business Impact. 2012.

[22] N. Renotte, “Deployable Computer Vision App,” 2020.

https://github.com/nicknochnack/DeployableComputerVisionApp
(accessed Jun. 02, 2021).

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on June 13,2022 at 08:02:23 UTC from IEEE Xplore. Restrictions apply.

		2022-01-06T02:00:46-0500
	Certified PDF 2 Signature

