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Abstract— UAV development is being intensively developed by 

various groups to help overcome various types of problems. Object 

Detection is important in helping UAVs to do drone chasing and 

other competition that need visual approach based on image 

processing and deep learning. Unfortunately, the computational 

capabilities of the onboard processing unit that attached to the 

UAV are less than optimal for object detection due to storage and 

memory size constraints. This paper aims to create the new 

approach to improve the precision and recall during UAV 

detection by using web application to do real time detection. To 

decide a pre-trained model, it is necessary to compare which SSD 

pre-trained model is suitable to be deployed in this web 

application. The results obtained are that using the web 

application approach is better than the onboard processing 

approach with a high level of precision and recall with an average 

precision value of 0.85 and an average recall value of 0.837.  

Keywords— UAV, object detection, SSD, web application, deep 

learning 

I. INTRODUCTION 

In modern times, the use of UAVs is intended to fulfill 
increasingly complex human needs. From rush hour dispatch 
services to scanning inaccessible areas, UAVs are proving to be 
essential in a variety of situations where humans cannot achieve 
or cannot perform hazardous/risky tasks in a timely and efficient 
manner[1]. Now, UAV technology integrates autonomous 
capabilities with aerial vehicles to do a variety of tasks, 
including package delivery, autonomous mapping, and 
surveillance, as well as capturing another autonomous aircraft in 
flight. The expanding number of UAV competitions throughout 
the world, ranging from payload delivery to drone chasing, 
proves that UAV technology is growing rapidly today.  

A drone chasing competition is one of the races which 
drones compete to tag each other. The first drone to be tagged 
loses the race. Although it is a relatively simple challenge for 
human-controlled drones to solve, it is a considerably more 
difficult problem for autonomous drones to solve since, to tag 
another drone, the drone must first know the precise location of 
other drones to tag it down. One way for a drone to learn about 
the location of other drones is by detection.  

To help the drone learn about the location visually, 
TensorFlow Object Detection API[2] will be the problem solver. 

This API is the most widely used API for detecting objects 
captured on camera. Comparable or same arrangement of pixels 
that make up an object to the original item will be considered. 
To do that, Single Shot Object Detection (SSD) is the Object 
Detection method which is good for detecting small targets 
because low-level feature maps is used with high resolution 
process[3]. In carrying out the object detection process, there are 
several pre-trained models contained in the zoo model. The 
model has been pre-trained with general objects whose details 
can be seen in the detection label map file [4].  

Makirin et.al. [5] proposed the real time detection of flying 
drones by prioritizing the concept of a lightweight model with 
good accuracy. The results using SSD MobileNet v2 are 
precision of 0.586 and sensitivity of 0.622 at IoU 0.50 - 0.95 in 
all-area of captured image. However, the accuracy of this model 
is still lacking and requires heavy computing on the onboard 
processing. A new approach is needed to carry the 
computational load so that this extra resource requirement can 
be reduced in the onboard processing of the UAV. 

Vaddi et al. [6] also have proposed the efficient way for 
Real-Time UAV Object Detection. The method used is to 
compare models that are suitable for detecting pedestrians, 
vehicles, bicycles, etc., using MobileNet[7] and ResNet[8] 
models. The results obtained are the combined model with 
MobileNet as backend feature extractor gave the best results in 
terms of accuracy, speed and memory efficiency and is best 
suitable for real time object detection with drones. 
Unfortunately, the proposed method does not detect other UAVs 
in more detail so they cannot be used for tracking other UAVs. 

TABLE I.  LIST OF ABBREVIATIONS 

Acronym Acronym 

UAV Unmanned Aerial Vehicle 

SSD Single Shot Detector 

API Application Programming Interface 

IoU Intersection of Union 

GPU Graphics Processing Unit 

COS Cloud Object Storage 
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In this paper, a new web application approach will be 
proposed so the precision and recall can be improved for the 
better detection instead of onboard processing [5]. The precision 
obtained is expected to be greater than 80% and the successful 
recall number obtained is expected to be greater than 70% to be 
concluded as successful. In addition, this pre-trained model will 
be developed with the help of cloud computing and can be stored 
in a separate storage. It will be accessed asynchronously from 
internet access so the computing process will speed up. 

II. PROPOSED METHOD 

A. Workflow for Model Training Initiation 

As we can see in the Figure 1, the purpose of image labeling 
is for training and evaluating the model so the exact location of 
the object that must be detected. After that, the entire image will 
be entered into a TFRecord file which is useful for the training 
process. TFRecord is a file that describes the data needed during 
the training and testing phases of the TensorFlow Object 
Detection API [9]. 

 

Fig. 1. Proposed Workflow 

Each different model will have a unique behavior for each 

different set of images. For this reason, hyperparameter tuning 

is needed so that when real training is carried out on a large set 

of images, the model will still fit [10]. After getting the right 

parameters for training and evaluating the model, the training 

process is carried out and of course will produce a new graph 

which will then be converted and deployed to TensorFlow.js 

[11]. Finally, cloud storage is set up to store a model so that the 

website can access the graph file after it has been released. 

B. Web Application Architecture 

From Figure 2, we can see that after the new model had been 
deployed, user can choose the desired model for object detection 
after the model deployment had done. After that, the UAV 
onboard camera will be used to capture images which can send 
directly to the website in real time [12]. After the web gets the 
model requested by the user and has the video from UAV 
webcam, then the web will send request to the TensorFlow 

Object Detection API to extract the image. The processing uses 
a model that has been stored in cloud storage so that the location 
of the bounding box where the detection is located is obtained. 
With a cross-service operation plan, a web architecture that 
relies on cloud storage will be chosen. As a result, this web will 
use IBM COS. This is done to better support cloud operations 
and asynchronous computing, thereby reducing long computing 
time [13]. 

 

Fig. 2. Proposed Architecture 

Next, the result will be sent in the form of an array to the 

web and the web will draw a bounding box. Later, the results 

of this detection will be used so that the web application on the 

website can send commands to the UAV in real-time to carry 

out a mission. 

C. Datasets 

For a training purpose to make a new model, there are 12000 
images that have been collected from YouTube, with the 
classification of 6000 positive images and the remaining are 
negative images, can be seen in Figure 3. The positive data 
includes images of quadrotor and fixed-wing types [14], while 
the negative data contains images of kites, helicopters, and birds. 
All datasets have been labeled according to their respective class 
classifications, namely the "uav" class for positive images and 
the "non_uav" class for negative images. Labeling is done on a 
flawless, flawless image so blurry images will not be used. This 
dataset divided into 96% Train Dataset, 2% Dev Dataset, and 
2% Test Dataset for evaluation.  

  
a) Positive Dataset b) Negative Dataset 

Fig. 3. Example of Dataset 

This dataset contains images that are in the Portable Network 
Graphic (PNG) format. This format is used because in the 
machine learning process, the training will use the RGB (Red, 
Green, Blue) color approach. With this scheme, the training 
process will be more accurate and can detect each pixel well 
[15]. 
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D. Pre-trained Models 

There are so many SSD pre-trained model options available 
in TensorFlow V2 [4]. A comparison will be made on three 
different models, such as SSD MobileNet, SSD ResNet50, and 
SSD ResNet101. MobileNet and ResNet pre-trained model was 
chosen because the smaller layer sizes show the faster speed. 
These three models were chosen because only 12GB of GPU 
memory of computation that can be used for training the model.  

From Table II, we can see that, the results with FPN [16] are 
measurements made on training for familiar objects. Therefore, 
these selected models will be further investigated for training 
using the dataset described in the previous section. 

TABLE II.  TENSORFLOW 2 DETECTION MODEL ZOO [4] 

Model name 
Speed 

(ms) 

COCO 

mAP 
Outputs 

SSD MobileNet 
V1 FPN 640x640 

48 29.1 Boxes 

SSD MobileNet 

V2 FPNLite 
320×320a 

22 22.2 Boxes 

SSD MobileNet 

V2 FPNLite 
640×640 

39 28.2 Boxes 

SSD ResNet50 V1 

FPN 640×640 

(RetinaNet50) a 

46 34.3 Boxes 

SSD ResNet50 V1 

FPN 1024×1024 

(RetinaNet50) 

87 38.3 Boxes 

SSD ResNet101 

V1 FPN 640×640 

(RetinaNet101) a 

57 35.6 Boxes 

SSD ResNet101 

V1 FPN 

1024×1024 
(RetinaNet101) 

104 39.5 Boxes 

SSD ResNet152 

V1 FPN 640×640 
(RetinaNet152) 

80 35.4 Boxes 

SSD ResNet152 

V1 FPN 

1024×1024 
(RetinaNet152) 

111 39.6 Boxes 

a.
 Selected Model to be trained 

 

E. Hyperparameter Tuning 

In determining the right parameters so that the resulting 
model can work optimally, the random search method is used 
because random experiments are more efficient than grid 
experiments for hyper-parameter optimization in the case of 
several learning algorithms on several data set[17]. 
Hyperparameter tuning is using GPU computing environment 
with a total of 100 000 training steps, a momentum scale of 0.9 
[18] and an initial learning rate of 0.04. The selected number can 
be seen in the cells marked in Table III with the letter (a). The 
selection of this number is based on the highest precision and 
recall with the lowest loss so the maximum training will be 
generated. 

 

 

TABLE III.  HYPERPARAMETER TESTING 

Model 
Batch 

Size 

Warm

up 

Step 

Warm

up 

Rate 

Loss Prec Rec 

SSD 

MobileNet 

V2 

FPNLite 

320×320 

12 5000a 0.013a 0.056 0.0347 0.045 

12 100000 0 0.077 0.0385 0.058 

12 5000 0.04 0.038 0.039 0.039 

SSD 

ResNet50 

V1 FPN 

640×640 

(RetinaNet

50) 

12 5000 0.013 0.033 0.0232 0.028 

12 100000 0 0.176 0.088 0.132 

12 5000a 0.04a 0.057 0.0485 0.053 

SSD 

ResNet101 

V1 FPN 

640×640 

(RetinaNet

101) 

8 5000a 0.013a 0.047 0.0302 0.039 

8 100000 0 0.25 0.125 0.188 

4 5000 0.04 0.122 0.081 0.102 

a.
 Selected Parameter Value to be trained 

F. Hardware and Resources 

For training phase, Google Colab provides a single 12GB 
NVIDIA Tesla K80 GPU that can be used up to 12 hours 
continuously. The testing phase is using a Computer with Intel® 
Core™ i7-9750H CPU @ 2.60GHz, with 8.192 MB RAM. For 
Training. The deployment process is using Heroku with 
React.js. Detection process is using the model that saved in IBM 
Cloud with single Cloud Object Storage Service Instance in Lite 
scheme [19]. 

III. RESULTS AND ANALYSIS 

Loss is the distance between the detection result and ground 
labeled for image detection [20]. The higher loss number, the 
more errors will be generated during training. From the Figure 
4, MobileNet has a loss rate of only 0.09, while ResNet50 has a 
loss rate, around 0.101, and finally ResNet 101 has the highest 
loss rate of all, which is 0.142. MobileNet V2 has the lowest 
level of loss value so the detection results with the ground label 
are not much different. On the other hand, ResNet101 has the 
highest loss rate, so many errors can be seen during detection. 

 
Fig. 4. Loss Value for all Models 

0.09
0.101

0.142

Loss

Loss Value

MobileNet V2 ResNet50 ResNet101
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Some metrics is used to measure the Object Detection 
Models. A true positive is an outcome where the model correctly 
predicts the positive class. Similarly, a true negative is an 
outcome where the model correctly predicts the negative class. 
A false positive is an outcome where the model incorrectly 
predicts the positive class. And a false negative is an outcome 
where the model incorrectly predicts the negative class. To 
calculate the precision of the object detection results, it can be 
seen in equation (1). 

 ��������� =  
��

����
 (1) 

TP means True Positive, and FP means True Negative. The 
greater the precision value, the higher the object detection 
accuracy in recognizing and vice versa. 

The model can be said to be successful if the precision 
number is greater than 80% and the successful recall number is 
greater than 70% and it is categorized as "Knowledge High" 
[21]. IoU is also called the Intersection of Union, which means 
the intersection of the detection results with the square that 
should be at the same time, also known as the detection 
confidence. 

 In the detection of large and medium-sized objects as we can 
see in Figure 5, the difference in results between the three 
models is not so significant, but the results of ResNet101 rank 
the lowest. The same thing happened at the scale of IoU = 0.75 
and IoU = 0.50, and IoU = 0.50:0.95, again ResNet101 has the 
lowest precision in performing detection on a certain confidence 
scale. The precision value for small object detection size should 
be highlighted here; the MobileNet V2 Model has the highest 
precision. Therefore, if small-scale UAV object identification is 
done frequently, the precision should be considered. 

 

Fig. 5. Precision Value for all Models 

To calculate the sensitivity or Recall Value of the object 
detection results, it can be seen in equation (2). 

 ������ =  
��

����
 (2) 

TP means True Positive, and FN means False Negative. The 
greater the recall value, the higher the sensitivity of object 
detection in triggering decision making. 

 MaxDets is the maximum number of detections indicating 
the maximum number of detections in a single image only. For 
all MaxDets values as shown in Figure 6, there is no significant 
difference in detection sensitivity, with ResNet101 having the 
lowest sensitivity. The sensitivity of detection on large objects, 
there is also no significant difference. The interesting thing is the 
recall number in the detection of medium-sized objects, where 
ResNet50 occupies the highest number even though the 
difference is not much different from others. Unfortunately, 
ResNet50 has a lower detection sensitivity than MobileNet V2 
for small objects. 

 
Fig. 6. Recall Value for all Models 
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 The Bounding Box on the Web is drawn using the HTML 
Canvas Rendering Context, usually symbolized by "ctx". The 
created line follows the number that appears at the detection 
angle of the tensorflow.js layer generated on the web backend 
[22]. The screenshot of UAV detection on the web can be seen 
in Figure 7. 

  
a) True Positive Detection b) False Positive Detection 

  

c) True Negative Detection d) False Negative Detection 

Fig. 7. Result of UAV Detection in Web 

To deploy a new model to a display page as shown in Figure 

8, Runtime Testing is based on two stages, such as Load Model 

Time and Average Detection Time, measured in seconds. Load 

Model Time is measured based on the time span required by the 

backend to access the graph model from cloud storage with all 

its preparations. It can be seen in Table IV, MobileNet V2 has 

the fastest processing time from Cloud Storage to the website 

backend. This is influenced by the size of the extracted bin file 

from the training results, where the size of the converted graph 

is the smallest than the others. 

 
Fig. 8. Web Interface of UAV Object Detection using a New Model 

TABLE IV.  RUNTIME MODEL IN WEB MEASUREMENT 

Runtime Model 

Measurement (s) 

Model 

MobileNet V2 ResNet50 ResNet101 

Load Model Time 12.27a 240.94 209.21 

Average Detection Time 1.5a 17.47 25.90 

a.
 Minimum Value 

Furthermore, Average Detection Time is measured based on 

the time span of layer-by-layer processing that exists in each 

pre-trained model and the average detection time is obtained 

from ten times. Again, the results show that MobileNet V2 has 

the fastest time span in performing layer-by-layer detection so 

that the detection results on the web backend finally released. 

IV. CONCLUSION 

In this paper, a new web application approach has been 

generated to obtain an optimal object detection model to 

overcome the constraint in terms of parameters, computational 

environment, and other various constraints. The new pre-

trained model also runs well after the deployment on the web 

and can classify various flying objects from the generated 

bounding box class. In the web application approach, SSD 

MobileNet v2 FPN precision value is 0.85 and recall value is 

0.837. Compared with SSD MobileNet v2 with onboard 

processing, the precision value is only 0.586 and the recall 

value is only 0.622. These are proofing that the precision and 

recall values in the web application approach are better than 

UAV object detection using onboard processing. However, the 

processing runtime on the web application is slower than the 

onboard processing of the UAV. 

V. FUTURE WORKS 

Runtime performance of detection processing can be 

improved by exploring another web architecture, pre-trained 

models, and method. The web application approach can be 

further developed to be integrated with Ground Control Station 

of the UAV. The web application also allows the detection and 

classification of other flying objects instead of detecting only 

"uav" and "non_uav" objects. UAVs can also coordinate with 

each other from multiple camera angles and transmit object 

detection results to multiple computers and devices in real time. 

With runtime improvement, this web application can also be 

integrated to measuring the UAV speed and anti-theft detection. 
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