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Abstract— Address Space Layout Randomization (ASLR) is a 

widely implemented security mechanism designed to thwart 

memory corruption vulnerabilities by randomizing the memory 

addresses of critical program components. Despite its 

effectiveness, attackers can bypass ASLR using leaked memory 

addresses and precise calculations. This paper explores the 
application of modular arithmetic in ASLR bypass, focusing on 

deriving critical addresses by leveraging offsets in the 64-bit 

memory layout. Through a practical example, we analyze a 

vulnerable binary and demonstrate how leaked addresses are 

used to calculate the base address of shared libraries, the system 
function, and the /bin/sh string. The work provides an in-depth 

understanding of the exploitation process, emphasizing the 

mathematical elegance of modular arithmetic and its practical use 

in binary exploitation. 
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I.   INTRODUCTION 

Address Space Layout Randomization (ASLR) has become 

an integral security mechanism in mitigating memory 

corruption attacks. By randomizing the base addresses of key 

memory regions, including the stack, heap, and shared 

libraries, ASLR makes it significantly more difficult for 

attackers to predict the memory layout and execute exploits 

such as buffer overflows, heap overflows,  or return-oriented 

programming (ROP). However, as with many security 

techniques, ASLR's effectiveness relies heavily on its 

implementation. Researchers have identified several 

weaknesses that attackers can exploit to bypass ASLR, ranging 

from information leaks to predictable randomization schemes. 

Despite its widespread adoption, ASLR alone cannot guarantee 

the prevention of sophisticated exploitation techniques, 

especially when attackers leverage mathematical principles to 

analyze memory layouts and offsets. 

Exploitation methods often involve breaking down the 

randomness introduced by ASLR. For instance, in many 

implementations, the randomized base address follows 

alignment constraints due to page or region boundaries, 

limiting the degree of entropy provided by the randomization 

process. Attackers exploit this predictability by analyzing 

patterns in leaked pointers, leveraging partial address 

overwrites, or brute-forcing smaller address spaces. Modular 

arithmetic plays a pivotal role in these processes, as it provides 

the mathematical framework to reason about cyclic properties 

and address alignments. The use of modular arithmetic enables 

attackers to deduce relationships between leaked values and 

randomized memory addresses, effectively reconstructing the 

original layout despite ASLR's randomization. 

Modular arithmetic, often referred to as "clock arithmetic," 

is a branch of mathematics that deals with integers and their 

equivalence classes under a modulo operation. In the context of 

computer memory, modular arithmetic is particularly useful for 

handling address alignment and cyclic patterns. Memory 

addresses are often aligned to specific boundaries, such as page 

sizes of     (4096 bytes), creating a predictable structure in the 

randomized memory space. Modular arithmetic allows 

attackers to reason about these alignments and constraints, 

providing a systematic way to calculate offsets or infer base 

addresses. For instance, given a leaked address, modular 

operations can help determine the address’s position relative to 

an aligned base, enabling the attacker to reverse-engineer the 

randomized layout. 

In the context of ASLR bypass, modular arithmetic is critical 

for solving problems involving partial overwrites, page 

alignments, and cyclic memory layouts. For example, when 

only a portion of an address is leaked, modular arithmetic can 

be used to compute the possible base addresses modulo the 

alignment size. Similarly, if an attacker can overwrite only the 

least significant bytes of a return address, they can use modular 

arithmetic to predict where execution will jump within the 

constrained address space. These techniques, as discussed in 

references [1] and [2], illustrate how mathematical concepts 

can bridge the gap between theoretical analysis and practical 

exploitation. 

This paper delves into the application of modular arithmetic 

in bypassing ASLR, with a focus on analyzing offsets and 

reconstructing randomized memory layouts. Drawing from 

foundational insights provided in [1] and [2], the discussion 

will explore the limitations of ASLR entropy and how 

mathematical precision is employed to exploit these gaps. 

Additionally, advanced techniques, such as branch predictor 

attacks detailed in [3], will further emphasize the critical role 

of address calculations in crafting effective bypass strategies. 

By providing a comprehensive exploration of modular 

arithmetic’s role in binary exploitation, this paper seeks to 

demonstrate the interplay between mathematical rigor and 

practical attack methodologies. 

 

II. BACKGROUND 

2.1 Address Space Layout Randomization( ASLR) 
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ASLR is a cornerstone defense mechanism in modern 

operating systems, designed to thwart exploitation by 

introducing randomness into memory address layouts. Its 

primary purpose is to make memory locations 

unpredictable, forcing attackers to guess or brute-force 

key addresses. Randomized regions include the stack, 

heap, shared libraries, and executable code, each 

contributing to the complexity of crafting reliable 

exploits. For instance, every time a program is executed, 

the stack and heap base addresses are shifted by random 

offsets, and the locations of dynamically loaded libraries 

are randomized within the address space. 

Operating systems implement ASLR differently. In 

Linux, the kernel applies random offsets within 

predefined entropy ranges, such as 28 or 48 bits 

depending on the architecture. Similarly, Windows uses a 

comparable approach, randomizing memory regions on 

process startup. This randomness, however, is bound by 

system constraints such as page alignment and address 

space limitations, making it less effective against 

advanced exploitation techniques. 

While ASLR significantly raises the bar for 

exploitation, it is not foolproof. One fundamental 

limitation is the entropy level, which determines the 

extent of address randomization. In practice, this entropy 

is often limited to 16 bits or less, especially for stack and 

heap addresses. Such constraints enable attackers to 

brute-force address guesses within a manageable number 

of attempts, as demonstrated in many real-world exploits. 

Another critical weakness lies in alignment 

requirements. Memory regions must adhere to page 

alignment, typically 4 KB (   ) boundaries, which 

reduces the effective randomness of ASLR. This  allows 

attackers to predict possible addresses modulo the page 

size, narrowing the search space for brute-forcing. Partial 

address randomization, where only parts of an address are 

randomized, further exacerbates these vulnerabilities. For 

example, attackers can exploit information leaks that 

reveal lower bytes of an address to infer the randomized 

base. 

Finally, ASLR is particularly susceptible to 

information disclosure vulnerabilities. Leaked pointers, 

uninitialized memory, and debugging artifacts often 

reveal enough information about the memory layout to 

nullify ASLR's effectiveness. This synergy between 

information leaks and memory alignment constraints is a 

key area exploited by attackers. 

 

2.2 Modular Arithmetic 

a. Definition and Mathematical Foundation 

Modular arithmetic, a fundamental concept in 

number theory, deals with the remainder of integers 

after division by a modulus. It is represented as  

         , where   is the dividend,   is the 

modulus, and   is the remainder. This system exhibits a 

cyclic nature, where values "wrap around" upon 

reaching the modulus, making it particularly useful in 

computer science for operations involving fixed bounds, 

such as memory alignment. 

Modular arithmetic is governed by properties of 

addition, subtraction, and multiplication, which 

maintain their equivalence modulo n. For 

instance,  (   )       (        )  (       ) . 

These properties simplify calculations in systems 

constrained by periodic boundaries, such as those found 

in digital systems. 

b. Memory Alignment and Address  Calculations 

In the context of ASLR and exploitation, modular 

arithmetic is invaluable for understanding memory 

alignment and address calculations. Memory addresses 

in modern systems are often aligned to powers of two, 

such as page boundaries of     bytes. Modular 

arithmetic simplifies determining the base address of a 

memory region from a leaked pointer. For instance, 

given a leaked pointer  , the page base can be 

calculated as  

  (               ) 

 

Attackers exploit this principle to calculate 

predictable offsets within aligned memory regions. 

Partial address overwrites leverage modular arithmetic 

to manipulate lower bytes of addresses while preserving 

alignment. For example, if only the lower two bytes of a 

stack address are randomized, the effective range of 

addresses can be narrowed to predictable intervals 

modulo the alignment. 

c. Examples of  Modular  Operations on Exploitating 

Several exploitation techniques directly apply 

modular arithmetic principles. Consider a scenario 

where a leaked pointer                reveals part 

of the stack's randomized address. Using modular 

arithmetic, the page boundary can be calculated as 

              , allowing an attacker to infer the 

aligned base address. Similarly, in partial address 

overwrites, modifying lower bytes of an address, such 

as 0xffffabcd, allows redirection of execution to a 

controlled location while preserving alignment. 

Another example involves exploiting the cyclic 

nature of modular addition. By carefully crafting buffer 

overflow payloads, attackers can manipulate memory 

regions within a predictable range, bypassing ASLR's 

randomization. These techniques, combined with 

information leaks, underscore the critical role of 

modular arithmetic in ASLR bypasses. 

 

 

III. VULNERABILITES AND EXPLOITATION 

3.1. Weaknesses in ASLR Implementation 

3.1.1. Limited Entropy 

ASLR depends heavily on the level of entropy 

available to randomize memory addresses. However, 

in practice, this entropy is often limited by the 

architecture and operating system. For instance, in 

32-bit systems, the total address space is only     , 

and after accounting for fixed memory regions and 

alignment, only about 8–16 bits of entropy remain. 
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On 64-bit systems, while the theoretical space is 

   , practical implementations often randomize only 

28–48 bits due to performance and hardware 

constraints. 

This limited entropy creates exploitable gaps. For 

example, when targeting a stack address, an attacker 

can narrow the potential addresses to     possible 

values, making brute-forcing computationally 

feasible within minutes. 

ASLR’s security is directly proportional to the 

entropy available for address randomization. 

However, the entropy differs across memory regions 

and operating system implementations. The table 

below compares the entropy levels of different 

memory regions in PaX ASLR (a hardened 

implementation) and Linux ASLR. It also shows the 

time required to brute-force these regions under 

typical conditions with green cells indicates higher 

security and red cells indicates  weaker one. 

 

 
Fig 3.1 Comparison of entropy and the brute-force 

time in PaX ASLR vs. Linux ASLR 

 

3.1.2. Information Leaks 

The effectiveness of ASLR can be significantly 

undermined by information disclosure 

vulnerabilities. These leaks occur when pointers or 

memory addresses are inadvertently revealed, often 

through functions like printf, stack dumps, or 

uninitialized memory usage. Once attackers obtain a 

leaked address, they can deduce the base of a 

memory region using modular arithmetic. 

For example, if a pointer   
                is leaked, the page-aligned base 

address can be calculated as: 

 

               (                ) 
 

This allows attackers to identify the starting point 

of the stack, heap, or shared libraries, bypassing the 

randomized offsets. 

 

3.1.3. Alignment Constraints  

Since memory regions must be adhere to 

alignment boundaries, the higher-order bits of order 

are the only got randomized. This reduce the search 

space for the attackers as the lower bits remain 

fixed. 

For example, given a stack address  aligned to 4 

KB (   ), the randomized portion of the address lies 

only in the higher 16 bits. This alignment reduces 

the number of guesses required to find a valid 

address, making brute-forcing or partial overwrites 

more effective. 

 
Fig 3.2 Page Boundaries on 4KB Address 

3.2. Exploit Techniques 

3.2.1. Information Disclosure Exploits  

Attackers often start by leveraging information 

disclosure vulnerabilities to bypass ASLR. These 

exploits reveal memory layout details, such as stack 

or heap pointers, through unprotected output 

functions or debugging traces. 

Once an attacker obtains a leaked pointer, they 

use modular arithmetic to infer the randomized base 

address. For example: 

                              

                            

This computation allow attacker to take calculate 

and predict the base of memory regions with high 

precision. 

3.2.2. Partial Address Overwrites  

Partial address overwrites exploit the fact that 

ASLR often randomizes only a subset of address 

bits. For instance, the lower 12 bits of an address are 

fixed due to alignment, and attackers can modify the 

remaining bits to redirect execution. 

Example, An attacker modifies the higher two 

bytes of an address               , redirecting 

execution to               . Modular arithmetic 

ensures that only the targeted bytes are changed 

while preserving alignment. 

3.2.3. Brute-Force 

Brute-forcing ASLR-protected addresses becomes 

feasible when the entropy is low, or when alignment 

constraints significantly reduce the search space. For 

example, if a stack address has 16 bits of entropy, an 

attacker needs     attempts on average to succeed. 

Automated tools are often used to repeatedly 

attempt address guesses until a valid address is 

found. Although this approach may crash the 

program, many services automatically restart, 

allowing attackers to continue brute-forcing. 

For visualization, Figure 3.1 can be used for 

better understanding. 

3.2.4. Modular Arithmetics 

Modular arithmetic is integral to many ASLR 

exploitation techniques. It simplifies calculations for 

memory alignment, address adjustments, and partial 
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overwrites. For example, the page-aligned base 

address of a leaked pointer   is calculated using: 

               (               ) 

This principle is also applied in cyclic overwrites. 

If an address space wraps around at    , attackers 

can use modular addition to craft payloads that 

target specific locations. For example: 

 

               (                   )         

 

Partial overwrites further exploit modular 

arithmetic by targeting specific bytes in an address. 

For instance, overwriting the two least significant 

bytes of                with 

                   redirects execution to 

                                      
 

IV. IMPLEMENTATION 

In this chapter, the exploitation strategy discussed in 

the previous chapter will be implemented. For this 

implementation, A binary code has been prepared with 

ignored some security like stack canaries. The code of the 

binary code goes like this 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For ignoring the basic security like Canary and Relro, 

this code are compiled with command 

 

 

 

 

To demonstrate the concept of bypassing ASLR using 

modular arithmetic, we implemented a vulnerable binary 

program (TestBinary.c) and crafted an exploit using 

pwntools in Python. The binary is designed to simulate 

a scenario where an attacker can leak addresses from 

memory and subsequently redirect execution to achieve 

arbitrary code execution. 

The binary (TestBinary.c) contains the following 

key components: 

1. Vulnerable vuln Function: 

The vuln function includes a stack buffer that can be 

overflowed due to the unsafe gets function, which 

does not limit input size. Additionally, it uses the puts 

function to output user input back to the console. This 

creates an opportunity for an attacker to leak memory 

addresses and calculate offsets dynamically. 

2. Critical Function (access): 

The access function contains a system call to execute 

a shell (/bin/sh) when invoked. The attack objective is 

to bypass ASLR and redirect execution to the access 

function by calculating the necessary offsets using 

leaked addresses. 

3. Program Workflow: 

The binary begins by displaying a banner and 

requesting input twice. The first input leaks a critical 

address (e.g., puts address from the Global Offset 

Table or GOT), and the second input is used to 

overwrite the return address on the stack to redirect 
execution. 

Upon running the exploit script, the binary starts with 

the message: 

 

 

At this stage, the script sends a payload designed to 

leak the address of a critical library function such as 

puts from the GOT. 

If the payload is successful, the script captures the 

leaked address. For example: 

  

 

 
This output demonstrates the attacker’s ability to 

extract memory layout information under ASLR. 

The exploit script uses modular arithmetic to align and 

compute essential addresses: 

 Libc Base Address : The puts address is used to 

calculate the base address of the loaded libc library. 

 System Function Address : Using the known offset 

of the system function from the base of libc, the 

script calculates its exact location. 

 String Address : Similarly, the script computes the 

location of the /bin/sh string required to execute a 

shell. 

\\ TestBinary.c 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

 

void access() { 

    printf("Access granted! 

You've bypassed ASLR!\n"); 

    system("/bin/sh"); 

} 

 

void vuln() { 

    char buffer[64]; 

    printf("Input: "); 

    gets(buffer); 

    puts(buffer); 

    gets(buffer); 

} 

 

int main() { 

    printf("ASLR bypass demo 

(64-bit version)!\n"); 

    vuln(); 

    return 0; 

} 

gcc -fno-stack-protector -z execstack 

-o bintest TestBinary.c 

ASLR bypass demo (64-bit 

version)! 

Input: 

[*] Leaked puts address: 

0x7f47b42f4000 
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Output at this stage might include: 

 
 

 
 

 
 

 

 
Using the calculated addresses, the script constructs a 

second payload to overwrite the return address of the vuln 

function. The new address points to the system function, 

passing the /bin/sh string as an argument. Upon sending 

this payload, the binary drops into a shell. 

Then the full code for the exploitation goes like this  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V.   CONCLUSION 

This work was able to showcase the role played by modular 

arithmetic in circumventing ASLR in 64-bit binaries, as it 

enables us with a real world application that distributes the 

analysis of the ASLR. ASLR, for instance, while effective 

against many forms of memory exploitation, which it seeks to 

prevent by randomizing memory address allocation. However, 

memory disclosure vulnerabilities undercut ASLR as they give 

the attacker some address, or multiple addresses, which can 

then be used to easily calcu- late where the essential parts of 

the program resides. 

We indeed did find an exploitable binary that uses gets to 

take user inputs and this makes the program vulnerable to 

buffer overflows and memory disclosures. By employing 

modular arithmetic in our tj=ek, we were able to determine the 

base address of the libc, identify the system function, and find 

the /bin/sh string, by reconstructing the deterministic mappings 

of the leaked addresses and the randomised sections of 

memory. We've been able to execute arbitrary commands by 

bypassing the ASLR protection and executing the payload. 

The conclusions from this work reveal the ineffectiveness 

of ASLR in conjunction with predictable memory layout and 

memory disclosure vulnerabilities. In addition, it accentuates 

the complementarity of theoretical mathematics and practical 

hacking by demonstrating how one can utilize modular 

arithmetic in attacking real systems. This work underscores the 

need for more robust defenses, such as memory sanitization, 

runtime mitigations, and avoiding unsafe functions like gets. 

As attackers continue to innovate, defenders must remain 

vigilant and adopt multi-layered security approaches to protect 

against evolving threats . 
. 
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[*] Libc Base Address 

(aligned): 0x7f47b42f0000 

[*] System Address: 

0x7f47b42f1234 

[*] '/bin/sh' Address: 

0x7f47b42f7890 

from pwn import * 

 

context.binary = './bintest' 

binary = context.binary 

 

p = process(binary.path) 

 

 

elf = ELF(binary.path) 

libc = ELF('/lib/x86_64-linux-gnu/libc.so.6', 

checksec = False)  

 

def leak_address(): 

    p.recvuntil(b"Input: ") 

    payload = b"A" * 72 + p64(elf.got['puts']) + 

p64(elf.plt['puts']) 

    p.sendline(payload) 

     

    leaked_data = p.recvline().strip() 

    leaked_address = u64(leaked_data.ljust(8, 

b"\x00"))   

    log.info(f"Leaked puts address: 

{hex(leaked_address)}") 

    return leaked_address 

 

def calculate_offsets(leaked_address): 

    libc_base = leaked_address - 

libc.symbols['puts'] 

    system_address = libc_base + 

libc.symbols['system'] 

    bin_sh_address = libc_base + 

next(libc.search(b'/bin/sh')) 

    alignment = 0x1000 

    randomized_base = leaked_address & 

~(alignment - 1)   

    log.info(f"Libc Base Address (aligned): 

{hex(randomized_base)}") 

    log.info(f"System Address: 

{hex(system_address)}") 

    log.info(f"'/bin/sh' Address: 

{hex(bin_sh_address)}") 

def exploit(system_address, bin_sh_address): 

    payload = b"A" * 72   

    payload += p64(system_address)   

    payload += p64(0xdeadbeef)   

    payload += p64(bin_sh_address)   

    p.sendline(payload) 

 

puts_leak = leak_address() 

system_addr, bin_sh_addr = 

calculate_offsets(puts_leak) 

exploit(system_addr, bin_sh_addr) 

p.interactive() 
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