
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Modular Arithmetic in Bypassing ASLR: Analyzing

Offsets and Address Calculations

Muhammad Aditya Rahmadeni - 13523028
1

Departement of Informatics
School of Electrical Engineering and Informatics

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1
rahmadeniaditya@gmail.com, 13523028@std.stei.itb.ac.id

Abstract— Address Space Layout Randomization (ASLR) is a

widely implemented security mechanism designed to thwart

memory corruption vulnerabilities by randomizing the memory

addresses of critical program components. Despite its

effectiveness, attackers can bypass ASLR using leaked memory

addresses and precise calculations. This paper explores the
application of modular arithmetic in ASLR bypass, focusing on

deriving critical addresses by leveraging offsets in the 64-bit

memory layout. Through a practical example, we analyze a

vulnerable binary and demonstrate how leaked addresses are

used to calculate the base address of shared libraries, the system
function, and the /bin/sh string. The work provides an in-depth

understanding of the exploitation process, emphasizing the

mathematical elegance of modular arithmetic and its practical use

in binary exploitation.

Keywords— Address Space Layout Randomization, Bypass,

Modular Arithmetic, Exploitation

I. INTRODUCTION

Address Space Layout Randomization (ASLR) has become

an integral security mechanism in mitigating memory

corruption attacks. By randomizing the base addresses of key

memory regions, including the stack, heap, and shared

libraries, ASLR makes it significantly more difficult for

attackers to predict the memory layout and execute exploits

such as buffer overflows, heap overflows, or return-oriented

programming (ROP). However, as with many security

techniques, ASLR's effectiveness relies heavily on its

implementation. Researchers have identified several

weaknesses that attackers can exploit to bypass ASLR, ranging

from information leaks to predictable randomization schemes.

Despite its widespread adoption, ASLR alone cannot guarantee

the prevention of sophisticated exploitation techniques,

especially when attackers leverage mathematical principles to

analyze memory layouts and offsets.

Exploitation methods often involve breaking down the

randomness introduced by ASLR. For instance, in many

implementations, the randomized base address follows

alignment constraints due to page or region boundaries,

limiting the degree of entropy provided by the randomization

process. Attackers exploit this predictability by analyzing

patterns in leaked pointers, leveraging partial address

overwrites, or brute-forcing smaller address spaces. Modular

arithmetic plays a pivotal role in these processes, as it provides

the mathematical framework to reason about cyclic properties

and address alignments. The use of modular arithmetic enables

attackers to deduce relationships between leaked values and

randomized memory addresses, effectively reconstructing the

original layout despite ASLR's randomization.

Modular arithmetic, often referred to as "clock arithmetic,"

is a branch of mathematics that deals with integers and their

equivalence classes under a modulo operation. In the context of

computer memory, modular arithmetic is particularly useful for

handling address alignment and cyclic patterns. Memory

addresses are often aligned to specific boundaries, such as page

sizes of (4096 bytes), creating a predictable structure in the

randomized memory space. Modular arithmetic allows

attackers to reason about these alignments and constraints,

providing a systematic way to calculate offsets or infer base

addresses. For instance, given a leaked address, modular

operations can help determine the address’s position relative to

an aligned base, enabling the attacker to reverse-engineer the

randomized layout.

In the context of ASLR bypass, modular arithmetic is critical

for solving problems involving partial overwrites, page

alignments, and cyclic memory layouts. For example, when

only a portion of an address is leaked, modular arithmetic can

be used to compute the possible base addresses modulo the

alignment size. Similarly, if an attacker can overwrite only the

least significant bytes of a return address, they can use modular

arithmetic to predict where execution will jump within the

constrained address space. These techniques, as discussed in

references [1] and [2], illustrate how mathematical concepts

can bridge the gap between theoretical analysis and practical

exploitation.

This paper delves into the application of modular arithmetic

in bypassing ASLR, with a focus on analyzing offsets and

reconstructing randomized memory layouts. Drawing from

foundational insights provided in [1] and [2], the discussion

will explore the limitations of ASLR entropy and how

mathematical precision is employed to exploit these gaps.

Additionally, advanced techniques, such as branch predictor

attacks detailed in [3], will further emphasize the critical role

of address calculations in crafting effective bypass strategies.

By providing a comprehensive exploration of modular

arithmetic’s role in binary exploitation, this paper seeks to

demonstrate the interplay between mathematical rigor and

practical attack methodologies.

II. BACKGROUND

2.1 Address Space Layout Randomization(ASLR)

mailto:1rahmadeniaditya@gmail.com
mailto:13523028@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

ASLR is a cornerstone defense mechanism in modern

operating systems, designed to thwart exploitation by

introducing randomness into memory address layouts. Its

primary purpose is to make memory locations

unpredictable, forcing attackers to guess or brute-force

key addresses. Randomized regions include the stack,

heap, shared libraries, and executable code, each

contributing to the complexity of crafting reliable

exploits. For instance, every time a program is executed,

the stack and heap base addresses are shifted by random

offsets, and the locations of dynamically loaded libraries

are randomized within the address space.

Operating systems implement ASLR differently. In

Linux, the kernel applies random offsets within

predefined entropy ranges, such as 28 or 48 bits

depending on the architecture. Similarly, Windows uses a

comparable approach, randomizing memory regions on

process startup. This randomness, however, is bound by

system constraints such as page alignment and address

space limitations, making it less effective against

advanced exploitation techniques.

While ASLR significantly raises the bar for

exploitation, it is not foolproof. One fundamental

limitation is the entropy level, which determines the

extent of address randomization. In practice, this entropy

is often limited to 16 bits or less, especially for stack and

heap addresses. Such constraints enable attackers to

brute-force address guesses within a manageable number

of attempts, as demonstrated in many real-world exploits.

Another critical weakness lies in alignment

requirements. Memory regions must adhere to page

alignment, typically 4 KB () boundaries, which

reduces the effective randomness of ASLR. This allows

attackers to predict possible addresses modulo the page

size, narrowing the search space for brute-forcing. Partial

address randomization, where only parts of an address are

randomized, further exacerbates these vulnerabilities. For

example, attackers can exploit information leaks that

reveal lower bytes of an address to infer the randomized

base.

Finally, ASLR is particularly susceptible to

information disclosure vulnerabilities. Leaked pointers,

uninitialized memory, and debugging artifacts often

reveal enough information about the memory layout to

nullify ASLR's effectiveness. This synergy between

information leaks and memory alignment constraints is a

key area exploited by attackers.

2.2 Modular Arithmetic

a. Definition and Mathematical Foundation

Modular arithmetic, a fundamental concept in

number theory, deals with the remainder of integers

after division by a modulus. It is represented as

 , where is the dividend, is the

modulus, and is the remainder. This system exhibits a

cyclic nature, where values "wrap around" upon

reaching the modulus, making it particularly useful in

computer science for operations involving fixed bounds,

such as memory alignment.

Modular arithmetic is governed by properties of

addition, subtraction, and multiplication, which

maintain their equivalence modulo n. For

instance, () () () .

These properties simplify calculations in systems

constrained by periodic boundaries, such as those found

in digital systems.

b. Memory Alignment and Address Calculations

In the context of ASLR and exploitation, modular

arithmetic is invaluable for understanding memory

alignment and address calculations. Memory addresses

in modern systems are often aligned to powers of two,

such as page boundaries of bytes. Modular

arithmetic simplifies determining the base address of a

memory region from a leaked pointer. For instance,

given a leaked pointer , the page base can be

calculated as

 ()

Attackers exploit this principle to calculate

predictable offsets within aligned memory regions.

Partial address overwrites leverage modular arithmetic

to manipulate lower bytes of addresses while preserving

alignment. For example, if only the lower two bytes of a

stack address are randomized, the effective range of

addresses can be narrowed to predictable intervals

modulo the alignment.

c. Examples of Modular Operations on Exploitating

Several exploitation techniques directly apply

modular arithmetic principles. Consider a scenario

where a leaked pointer reveals part

of the stack's randomized address. Using modular

arithmetic, the page boundary can be calculated as

 , allowing an attacker to infer the

aligned base address. Similarly, in partial address

overwrites, modifying lower bytes of an address, such

as 0xffffabcd, allows redirection of execution to a

controlled location while preserving alignment.

Another example involves exploiting the cyclic

nature of modular addition. By carefully crafting buffer

overflow payloads, attackers can manipulate memory

regions within a predictable range, bypassing ASLR's

randomization. These techniques, combined with

information leaks, underscore the critical role of

modular arithmetic in ASLR bypasses.

III. VULNERABILITES AND EXPLOITATION

3.1. Weaknesses in ASLR Implementation

3.1.1. Limited Entropy

ASLR depends heavily on the level of entropy

available to randomize memory addresses. However,

in practice, this entropy is often limited by the

architecture and operating system. For instance, in

32-bit systems, the total address space is only ,

and after accounting for fixed memory regions and

alignment, only about 8–16 bits of entropy remain.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

On 64-bit systems, while the theoretical space is

 , practical implementations often randomize only

28–48 bits due to performance and hardware

constraints.

This limited entropy creates exploitable gaps. For

example, when targeting a stack address, an attacker

can narrow the potential addresses to possible

values, making brute-forcing computationally

feasible within minutes.

ASLR’s security is directly proportional to the

entropy available for address randomization.

However, the entropy differs across memory regions

and operating system implementations. The table

below compares the entropy levels of different

memory regions in PaX ASLR (a hardened

implementation) and Linux ASLR. It also shows the

time required to brute-force these regions under

typical conditions with green cells indicates higher

security and red cells indicates weaker one.

Fig 3.1 Comparison of entropy and the brute-force

time in PaX ASLR vs. Linux ASLR

3.1.2. Information Leaks

The effectiveness of ASLR can be significantly

undermined by information disclosure

vulnerabilities. These leaks occur when pointers or

memory addresses are inadvertently revealed, often

through functions like printf, stack dumps, or

uninitialized memory usage. Once attackers obtain a

leaked address, they can deduce the base of a

memory region using modular arithmetic.

For example, if a pointer
 is leaked, the page-aligned base

address can be calculated as:

 ()

This allows attackers to identify the starting point

of the stack, heap, or shared libraries, bypassing the

randomized offsets.

3.1.3. Alignment Constraints

Since memory regions must be adhere to

alignment boundaries, the higher-order bits of order

are the only got randomized. This reduce the search

space for the attackers as the lower bits remain

fixed.

For example, given a stack address aligned to 4

KB (), the randomized portion of the address lies

only in the higher 16 bits. This alignment reduces

the number of guesses required to find a valid

address, making brute-forcing or partial overwrites

more effective.

Fig 3.2 Page Boundaries on 4KB Address

3.2. Exploit Techniques

3.2.1. Information Disclosure Exploits

Attackers often start by leveraging information

disclosure vulnerabilities to bypass ASLR. These

exploits reveal memory layout details, such as stack

or heap pointers, through unprotected output

functions or debugging traces.

Once an attacker obtains a leaked pointer, they

use modular arithmetic to infer the randomized base

address. For example:

This computation allow attacker to take calculate

and predict the base of memory regions with high

precision.

3.2.2. Partial Address Overwrites

Partial address overwrites exploit the fact that

ASLR often randomizes only a subset of address

bits. For instance, the lower 12 bits of an address are

fixed due to alignment, and attackers can modify the

remaining bits to redirect execution.

Example, An attacker modifies the higher two

bytes of an address , redirecting

execution to . Modular arithmetic

ensures that only the targeted bytes are changed

while preserving alignment.

3.2.3. Brute-Force

Brute-forcing ASLR-protected addresses becomes

feasible when the entropy is low, or when alignment

constraints significantly reduce the search space. For

example, if a stack address has 16 bits of entropy, an

attacker needs attempts on average to succeed.

Automated tools are often used to repeatedly

attempt address guesses until a valid address is

found. Although this approach may crash the

program, many services automatically restart,

allowing attackers to continue brute-forcing.

For visualization, Figure 3.1 can be used for

better understanding.

3.2.4. Modular Arithmetics

Modular arithmetic is integral to many ASLR

exploitation techniques. It simplifies calculations for

memory alignment, address adjustments, and partial

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

overwrites. For example, the page-aligned base

address of a leaked pointer is calculated using:

 ()

This principle is also applied in cyclic overwrites.

If an address space wraps around at , attackers

can use modular addition to craft payloads that

target specific locations. For example:

 ()

Partial overwrites further exploit modular

arithmetic by targeting specific bytes in an address.

For instance, overwriting the two least significant

bytes of with

 redirects execution to

IV. IMPLEMENTATION

In this chapter, the exploitation strategy discussed in

the previous chapter will be implemented. For this

implementation, A binary code has been prepared with

ignored some security like stack canaries. The code of the

binary code goes like this

For ignoring the basic security like Canary and Relro,

this code are compiled with command

To demonstrate the concept of bypassing ASLR using

modular arithmetic, we implemented a vulnerable binary

program (TestBinary.c) and crafted an exploit using

pwntools in Python. The binary is designed to simulate

a scenario where an attacker can leak addresses from

memory and subsequently redirect execution to achieve

arbitrary code execution.

The binary (TestBinary.c) contains the following

key components:

1. Vulnerable vuln Function:

The vuln function includes a stack buffer that can be

overflowed due to the unsafe gets function, which

does not limit input size. Additionally, it uses the puts

function to output user input back to the console. This

creates an opportunity for an attacker to leak memory

addresses and calculate offsets dynamically.

2. Critical Function (access):

The access function contains a system call to execute

a shell (/bin/sh) when invoked. The attack objective is

to bypass ASLR and redirect execution to the access

function by calculating the necessary offsets using

leaked addresses.

3. Program Workflow:

The binary begins by displaying a banner and

requesting input twice. The first input leaks a critical

address (e.g., puts address from the Global Offset

Table or GOT), and the second input is used to

overwrite the return address on the stack to redirect
execution.

Upon running the exploit script, the binary starts with

the message:

At this stage, the script sends a payload designed to

leak the address of a critical library function such as

puts from the GOT.

If the payload is successful, the script captures the

leaked address. For example:

This output demonstrates the attacker’s ability to

extract memory layout information under ASLR.

The exploit script uses modular arithmetic to align and

compute essential addresses:

 Libc Base Address : The puts address is used to

calculate the base address of the loaded libc library.

 System Function Address : Using the known offset

of the system function from the base of libc, the

script calculates its exact location.

 String Address : Similarly, the script computes the

location of the /bin/sh string required to execute a

shell.

\\ TestBinary.c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

void access() {

 printf("Access granted!

You've bypassed ASLR!\n");

 system("/bin/sh");

}

void vuln() {

 char buffer[64];

 printf("Input: ");

 gets(buffer);

 puts(buffer);

 gets(buffer);

}

int main() {

 printf("ASLR bypass demo

(64-bit version)!\n");

 vuln();

 return 0;

}

gcc -fno-stack-protector -z execstack

-o bintest TestBinary.c

ASLR bypass demo (64-bit

version)!

Input:

[*] Leaked puts address:

0x7f47b42f4000

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Output at this stage might include:

Using the calculated addresses, the script constructs a

second payload to overwrite the return address of the vuln

function. The new address points to the system function,

passing the /bin/sh string as an argument. Upon sending

this payload, the binary drops into a shell.

Then the full code for the exploitation goes like this

V. CONCLUSION

This work was able to showcase the role played by modular

arithmetic in circumventing ASLR in 64-bit binaries, as it

enables us with a real world application that distributes the

analysis of the ASLR. ASLR, for instance, while effective

against many forms of memory exploitation, which it seeks to

prevent by randomizing memory address allocation. However,

memory disclosure vulnerabilities undercut ASLR as they give

the attacker some address, or multiple addresses, which can

then be used to easily calcu- late where the essential parts of

the program resides.

We indeed did find an exploitable binary that uses gets to

take user inputs and this makes the program vulnerable to

buffer overflows and memory disclosures. By employing

modular arithmetic in our tj=ek, we were able to determine the

base address of the libc, identify the system function, and find

the /bin/sh string, by reconstructing the deterministic mappings

of the leaked addresses and the randomised sections of

memory. We've been able to execute arbitrary commands by

bypassing the ASLR protection and executing the payload.

The conclusions from this work reveal the ineffectiveness

of ASLR in conjunction with predictable memory layout and

memory disclosure vulnerabilities. In addition, it accentuates

the complementarity of theoretical mathematics and practical

hacking by demonstrating how one can utilize modular

arithmetic in attacking real systems. This work underscores the

need for more robust defenses, such as memory sanitization,

runtime mitigations, and avoiding unsafe functions like gets.

As attackers continue to innovate, defenders must remain

vigilant and adopt multi-layered security approaches to protect

against evolving threats .
.

VI. ACKNOWLEDGMENT

The author wishes to express sincere gratitude to the authors

of pivotal works in the field of binary exploitation and ASLR

bypass. In particular, [1] Fritsch et al.'s presentation at

BlackHat Europe provided invaluable insights into ASLR's

vulnerabilities and practical exploitation methods. The research

by [3] Almakhdhub et al. offered an in-depth analysis of

randomized memory layouts and their limitations.

Additionally, special thanks go to Dr. Rinaldi Munir for his

lecture materials on number theory [4], which served as a

foundational reference for understanding modular arithmetic

principles and their application in this paper.

[*] Libc Base Address

(aligned): 0x7f47b42f0000

[*] System Address:

0x7f47b42f1234

[*] '/bin/sh' Address:

0x7f47b42f7890

from pwn import *

context.binary = './bintest'

binary = context.binary

p = process(binary.path)

elf = ELF(binary.path)

libc = ELF('/lib/x86_64-linux-gnu/libc.so.6',

checksec = False)

def leak_address():

 p.recvuntil(b"Input: ")

 payload = b"A" * 72 + p64(elf.got['puts']) +

p64(elf.plt['puts'])

 p.sendline(payload)

 leaked_data = p.recvline().strip()

 leaked_address = u64(leaked_data.ljust(8,

b"\x00"))

 log.info(f"Leaked puts address:

{hex(leaked_address)}")

 return leaked_address

def calculate_offsets(leaked_address):

 libc_base = leaked_address -

libc.symbols['puts']

 system_address = libc_base +

libc.symbols['system']

 bin_sh_address = libc_base +

next(libc.search(b'/bin/sh'))

 alignment = 0x1000

 randomized_base = leaked_address &

~(alignment - 1)

 log.info(f"Libc Base Address (aligned):

{hex(randomized_base)}")

 log.info(f"System Address:

{hex(system_address)}")

 log.info(f"'/bin/sh' Address:

{hex(bin_sh_address)}")

def exploit(system_address, bin_sh_address):

 payload = b"A" * 72

 payload += p64(system_address)

 payload += p64(0xdeadbeef)

 payload += p64(bin_sh_address)

 p.sendline(payload)

puts_leak = leak_address()

system_addr, bin_sh_addr =

calculate_offsets(puts_leak)

exploit(system_addr, bin_sh_addr)

p.interactive()

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Gratitude is also extended to the open-source communities

behind tools like Pwntools, GDB, and Checksec, without

which this research would not have been possible. Finally,

heartfelt thanks go to colleagues and mentors for their

constructive feedback and encouragement throughout th is

project.

REFERENCES

[1] Fritsch, F., & Bovenzi, T . (2009). Bypassing ASLR. BlackHat Europe.

Available at: https://www.blackhat.com/presentations/bh-europe-
09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-whitepaper.pdf

[2] Fritsch, F., & Bovenzi, T. (2009). Bypassing ASLR - A Technical Analysis.
BlackHat Europe. Available at:

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-
Europe-2009-Fritsch-Bypassing-aslr-whitepaper.pdf

[3] Almakhdhub, N. S., et al. (2016). Shredder: Breaking Address Space
Layout Randomization using Modular Arithmetic. University of

California, Riverside. Available at:
https://www.cs.ucr.edu/~nael/pubs/micro16.pdf

[4] Munir, R. (2024). Teori Bilangan Bagian 1 (Lecture Notes on Number

Theory). Institut Teknologi Bandung. Available at:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/15-
Teori-Bilangan-Bagian1-2024.pdf

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Januari 2025

Muhammad Aditya Rahmadeni - 13523028

https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-whitepaper.pdf
https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-whitepaper.pdf
https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-whitepaper.pdf
https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-whitepaper.pdf
https://www.cs.ucr.edu/~nael/pubs/micro16.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/15-Teori-Bilangan-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/15-Teori-Bilangan-Bagian1-2024.pdf

