
Leveraging Karnaugh Map Logic for Streamlining
Code Design

Nadhif Radityo Nugroho (13523045)1,2

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523045@mahasiswa.itb.ac.id, 2nadhifradityo@gmail.com

Abstract—Code development has been a struggle for most
people. Constructing a robust and complex algorithms always in-
volve convoluted logical expressions. Developers should not worry
about making complex logic, as they have more important works
to do: implementing algorithms and business requirements. This
paper explains how Karnaugh map logic simplification paired
with language-tailored abstract syntax tree, can be used in a
code development process as a user suggestion. Allowing more
readable code and streamlined code design.

Index Terms—Karnaugh Map, Abstract Syntax Tree, Code
Development

I. INTRODUCTION

Code development has been evolving since computers ex-
ist. Well known and intelligent people have invented code
development practices and standards, allowing projects to be
more collaborative. Said practices and standards usually differ
between projects, revolving around a domain the projects are
working on. Naming convention, branching rules, and owner-
ship management are few examples the practices are about.
But they all have one characteristic: readable simple logical
expressions are always preferred than redundant complex
logical expressions. Poorly written logics can lead to higher
error rates, increased debugging time, and difficulty in future
updates and scalability. Simplifying logical expressions are
not only for maintainability and readability, but it also about
efficiency. Compiler can produce more performant executable
with the help of simple logics. All in all the requirement for
readable simple logical expressions are in need in modern
software engineering practices.

II. THEORETICAL FOUNDATIONS

A. Karnaugh Map

Karnaugh Map (K-Map) is a method to optimize logical ex-
pressions. Maurice Karnaugh invented this technique in 1953,
with idea that similar neighbouring values can be expressed in
a simplified manner with blocks recognition. A rule must be
satisfied first, which is neighbouring cells must have a single
difference in its bit value. Cells also must contain only one
literal—a final boolean result the logical expressions returned.

B. Abstract Syntax Tree

Codes, as a way for humans to tell computers to do things,
are often optimized to bridge human concepts to machine

instructions. These bridges are usually designed to be human-
like languages, but still on a threshold to match the language
usage and their principles. Codes that act as bridges are often
problematic to compile on their own. The use of Abstract
Syntax Tree (AST) helps convert the language set of rules to
a tree-like syntax that can be parsed and understood quickly
by a compiler.

C. Code Development

Standards and practices on code development have evolved
over time. Paradigms have been invented to satisfy the require-
ments of modern-world businesses. Object-oriented design and
agile methodologies have shown their ability to provide the
ease of coding. But object-oriented design, agile method-
ologies, and any other paradigms have things in common:
the importance of readability and maintainability. Clear and
logical code structures often lead to lower error rates and easier
debugging. Not to mention in a system that life could be at
stake, the importance of clear controlled code flow is rather
mandatory.

III. METHODOLOGY

This paper leverages practical methods as its methodology.
This approach was chosen because it fit the need to prove the
implementation of the Karnaugh map in a code design. With
that said, here are the main outlines of this paper:

• Abstract Syntax Tree Parsing: Parses the language ab-
stract syntax tree to help identify logical conditions.

• Logical Conditions Extraction: Extracts all possible log-
ical conditions from the previous step.

• Karnaugh Table Construction: Creates the equivalent
truth table based on the logical conditiions.

• K-Map Pattern Recognition: Simplifies the Karnaugh
map table by using well-known Karnaugh techniques.

• Code Reassemble: Generates the code for simplified
logical conditions.

Although this method can be generalized, this paper will use
Javascript Langugae as a proof medium. A general approach
can still be achieved when conversion to generic AST and
generic code assembler are available.

mailto:13523045@mahasiswa.itb.ac.id
mailto:nadhifradityo@gmail.com

IV. IMPLEMENTATION

Implementation of this paper basically consists of 5 steps.
Starting with parsing the code to AST form, continued with
extraction of logical conditions, Karnaugh table construction,
pattern recognition, and finally reassemble the optimized code.
Each step has their own unique problem that fits with a specific
domain.

A. Abstract Syntax Tree Parsing

This step basically converts the input code to a syntax
that a machine can process easily. This conversion includes
recognizing token and structuring it into a tree. With the help
of Backus-Naur form, rules with context-free grammars can
be defined.

Fig. 1: Backus-Naur Form of Simple Arithmetic Language

NUMBER ::= [0-9]+
IDENTIFIER ::= [a-zA-Z_][a-zA-Z0-9_]*
OPERATOR ::= "+" | "-" | "*" | "/"

<program> ::= <expression>
<expression> ::= <term> (("+" | "-") <term>)*
<term> ::= <factor> (("*" | "/") <factor>)*
<factor> ::= <number> | <identifier> |

"(" <expression> ")"
<number> ::= NUMBER
<identifier> ::= IDENTIFIER

B. Logical Conditions Extraction

Logical conditions can be easily extracted within keywords
that expect logical values, such as if statements, while
statements, and for statements. But a general approach can
be achieved in some languages, since they general expression
evaluation. The Algorithm 1 explains how this process works.

Algorithm 1 Extract Logical Conditions

Require: Abstract Syntax Tree (AST) ast
Ensure: List of logical conditions logicalExpressions
logicalExpressions ← empty list
Walk over all nodes in ast:

if node.type does not end with "Expression"
then

skip node
else

Add node to logicalExpressions
end if

filteredExpressions ← empty list
for each node in logicalExpressions do

parentNode ← parent of node in ast
if parentNode.type does not end with

"Expression" then
Add node to filteredExpressions

end if
end for
logicalExpressions ← filteredExpressions

Although this representation is enough to move forward, it
would be wise to normalize these conditions to identifiable
expressions. This approach is taken to simplify the con-
struction of Karnaugh table as it involves evaluating distinct
expressions.

Algorithm 2 Normalize Logical Conditions

Require: List of logical conditions logicalConditions
Ensure: List of normalized logical conditions
normalizedLogicalConditions
normalizedLogicalConditionsMap ← empty map
for each node in logicalConditions do

if normalizedLogicalConditionsMap contains
node then

skip node
else

normalizedLogicalCondition ← copy of
node

Assign unique identifier to
normalizedLogicalCondition.id

Add node and normalizedLogicalCondition
to normalizedLogicalConditionsMap

end if
end for
normalizedLogicalConditions ← all values in
normalizedLogicalConditionsMap

C. Karnaugh Table Construction

Constructing Karnaugh table works by evaluating the logical
expression for each permutation of available variables. The
permutated bits depend on the row and column that they
occupy. The table rows and columns are also defined by Gray
Code sequences generated by Algorithm 3.

Algorithm 3 Generate Gray Code Sequences

function GENERATEGRAYCODESEQUENCES(n)
if n = 0 then

return "0"
end if
if n = 1 then

return "0, 1"
end if
previous ← GENERATEGRAYCODESEQUENCES(n

- 1)
result ← empty list
for each string s in previous do

Append "0" + s to result
end for
for each string s in reversed(previous) do

Append "1" + s to result
end for
return result

end function

If the number of variables is odd, the Algorithm 4 will put
one more variable in its row. In this way, the total number of

variables remains the same. The resulting value is a matrix
with size rows by columns.

Algorithm 4 Construct Karnaugh Table

Require: Logical conditions logicalExpressions
Ensure: Generated Karnaugh Table
N ← size of unique elements in logicalExpressions
colsVar ← ⌊N/2⌋
rowsVar ← ⌈N/2⌉
colsSeq ← GENERATEGRAYCODESE-
QUENCES(colsVar)
rowsSeq ← GENERATEGRAYCODESE-
QUENCES(rowsVar)
cols ← length of colsSeq
rows ← length of rowsSeq
kTable ← array of size cols × rows, initialized to 0
for i = 0 to cols × rows - 1 do

x ← i%cols
y ← ⌊i/cols⌋
colVals ← Split(colsSeq[x]) and map each value

to boolean
rowVals ← Split(rowsSeq[y]) and map each value

to boolean
kTable[i] ← EvaluateLogicalExpres-

sion(logicalExpressions, rowVals ∪ colVals)
end for
return kTable

D. K-Map Pattern Recognition
Pattern recognition begins by defining functions that gener-

ate a specific pattern that can simplify the logics. Algorithm
5 can generate Karnaugh patterns such as square fields,
horizontal fields, vertical fields, etc.

Algorithm 5 Karnaugh Map Pattern Lookup Generator

Require: Number of variables n, logical condition pattern v
Ensure: Generated lookup fields for the Karnaugh table

function GENERATEGROUPSEQUENCES(n)
if n = 0 then

return empty list
else if n = 1 then

return list {”1”, ”0”, ”X”}
else

prev ← GENERATEGROUPSEQUENCES(n - 1)
sequences ← concatenate:

Append ”0” to each element in prev
Append ”1” to each element in prev
Append ”X” to each element in prev

return sequences
end if

end function
function GENERATEFIELD(v)

colsSeq ← GENERATEGRAYCODESE-
QUENCES(colsVar)

rowsSeq ← GENERATEGRAYCODESE-
QUENCES(rowsVar)

cols ← length of colsSeq

rows ← length of rowsSeq
field ← array of size cols × rows, initialized to 0
for i = 0 to cols × rows - 1 do

x ← i%cols
y ← ⌊i/cols⌋
colVals ← Split(colsSeq[x]) and map to

boolean
rowVals ← Split(rowsSeq[y]) and map to

boolean
values ← rowVals ∪ colVals
field[i] ← true if all conditions in v are met:

For each character c in v, check:
If c = "X", continue
Else, compare c to corresponding value in

values
end for
return field

end function

With all the helper algorithms defined, finally the Karnaugh
table can be solved. The Algorithm 6 solves Karnaugh by first
generating all possible fields for each pair x and y. These fields
are then sorted from the biggest to the smallest, and reduced
by removing all unnecessary fields.

Algorithm 6 Karnaugh Map Solver

Require: Karnaugh table karnaughTable, number of vari-
ables N

Ensure: Simplified Karnaugh map
function FIELDCHECK(field)

for each element v in field do
if v is true then

return false if karnaughTable[i] is false
end if

end for
return true

end function
function FIELDSIZE(field)

count ← 0
for each element v in field do

if v is true then
count ← count + 1

end if
end for
return count

end function
function FIELDINTERSECT(fieldA, fieldB)

result ← array of size rows × cols, initialized to
0

for each index i do
result[i] ← fieldA[i] AND fieldB[i]

end for
return result

end function
function FIELDUNION(fieldA, fieldB)

result ← array of size rows × cols, initialized to

0
for each index i do

result[i] ← fieldA[i] OR fieldB[i]
end for
return result

end function
fields ← empty list
for each group in GENERATEGROUPSEQUENCES(N) do

field ← GENERATEFIELD(group)
if FIELDCHECK(field) then

fields ← fields ∪ field
end if

end for
fields ← fields sorted by decreasing FieldSize
for i = fields.length - 1 down to 0 do

joinField← array of size rows × cols, initialized
to 0

for j = fields.length - 1 down to 0 do
if i is not j then

joinField ← FIELDUNION(joinField,
fields[j])

end if
end for
intersected ← FIELDINTERSECT(fields[i],

joinField)
if FIELDSIZE(intersected) = FIELD-

SIZE(fields[i]) then
Remove fields[i] from fields

end if
end for

E. Code Reassemble

This part finally converts the optimized logical conditions
to code. This step involves generating AST which then will
be transformed into code respecting the code style guides. An
alternative approach can be achieved by directly generating the
code string. While the latter approach is simpler, this however,
will put a burden on a developer since they have to restyle
the code. This additional task can lead to increased develop-
ment time and potentially introduce errors or inconsistencies,
making the AST-based approach more scalable and reliable in
the long run, especially for larger and more complex projects.
Furthermore, the use of ASTs allows for more flexibility
in code transformation, enabling automatic optimizations and
modifications that may not be possible when generating raw
code strings.

V. RESULTS AND DISCUSSION

To make the implementation more clear, let’s take a look
at one example. This code snippet is an example that has
potential optimization for logical conditions.

Fig. 2: Code Snippet with Potential Optimizations

function determineAccess(user) {
const isAdmin = user.isAdmin;
const isEditor = user.isEditor;
const hasPaidSubscription =

user.hasPaidSubscription;
const isTrialActive = user.isTrialActive;
const isVerified = user.isVerified;

// Complex logical condition
// to simulate access
if ((isAdmin && isVerified) ||

(isAdmin && hasPaidSubscription) ||
(isEditor && isVerified &&

isTrialActive) ||
(isEditor && hasPaidSubscription &&

isVerified) ||
(hasPaidSubscription && isTrialActive &&

!isVerified) ||
(!isAdmin && isEditor && isVerified)) {
return true;

}
return false;

}

Figure 3 shows the logical condition extracted from the
previous example. The variables inside the logical conditions
will the get extracted and identified. Those variables
are isAdmin, isEditor, hasPaidSubscription,
isTrialActive, and isVerified. In total, there are 5
variables, meaning the Karnaugh table will have 8 rows and
4 columns. For visual reason, isAdmin, isEditor,
hasPaidSubscription, isTrialActive, and
isVerified will be referred as A, B, C, D, E, respectively.

Fig. 4: Grouped Karnaugh Table

ABC

DE
00 01 11 10

000

001

011

010

110

111

101

100

0 0 00

0 0 0

0 0

0

0 0

0 0

1

1 1

1 11

1 1

1 1 11

1 1

1 1 11

Fig. 3: Logical Condition Abstract Syntax Tree

LogicalExpression

LogicalExpression

LogicalExpression

LogicalExpression

LogicalExpression

Identifier
isAdmin

&&

Identifier
isVerified

||

LogicalExpression

Identifier
isAdmin

&&

Identifier
hasPaidSubscription

||

LogicalExpression

LogicalExpression

Identifier
isEditor

&&

Identifier
isVerified

&&

Identifier
isTrialActive

||

LogicalExpression

LogicalExpression

Identifier
isEditor

&&

Identifier
hasPaidSubscription

&&

Identifier
isVerified

||

LogicalExpression

LogicalExpression

LogicalExpression

Identifier
hasPaidSubscription

&&

Identifier
isTrialActive

&&

UnaryExpression

!

Identifier
isVerified

||

LogicalExpression

LogicalExpression

UnaryExpression

!

Identifier
isAdmin

&&

Identifier
isEditor

&&

Identifier
isVerified

Figure 4 shows the optimized conditional logic by grouping
4 regions indicated by different colors. This result will then
get reassembled to code again.

Fig. 5: Optimized Code Snippet

function determineAccess(user) {
const isAdmin = user.isAdmin;
const isEditor = user.isEditor;
const hasPaidSubscription =

user.hasPaidSubscription;
const isTrialActive = user.isTrialActive;
const isVerified = user.isVerified;

// Complex logical condition
// to simulate access
if ((isEditor && isVerified) ||

(isAdmin && isVerified) ||
(isAdmin && hasPaidSubscription) ||
(hasPaidSubscription && isTrialActive

&& !isVerified)) {
return true;

}
return false;

}

The optimized logic condition can also be expressed in logic
gates.

Fig. 6: Optimized Logic Gate Representation

VI. CONCLUSION

In conclusion, the application of Karnaugh map logic to
streamline code design presents a significant improvement in
simplifying logical expressions. By integrating Karnaugh maps
with abstract syntax tree (AST) parsing, this methodology
enhances the readability and maintainability of code while
ensuring efficient algorithm development. The process of
extracting logical conditions, constructing Karnaugh tables,
recognizing simplification patterns, and reassembling opti-
mized code leads to cleaner and more performant codebases.
Moreover, the use of ASTs ensures that code transformations

are scalable and consistent, reducing the potential for errors.
This approach not only supports the goals of maintainability
but also contributes to improved developer productivity and
code optimization. While the methods outlined in this paper
were demonstrated through JavaScript, the principles can be
generalized to other programming languages, paving the way
for broader application in software engineering practices.

APPENDIX

The code implementation for the methods
and experiments discussed in this paper can
be found at the following GitHub repository:
https://github.com/NadhifRadityo/code-design-karnaugh.

Please do explore the repository for a deeper understanding
of the implementation details and for any potential extensions
of the methodology. for issues or questions regarding the
repository, please refer to the provided documentation or
contact the repository maintainer directly.

ACKNOWLEDGMENT

The author would like to express profound gratitude to Dr.
Ir. Rinaldi Munir, M.T. for his invaluable guidance and insights
as IF1220 Discrete Mathematics course lecturer, which greatly
contributed to the development of this paper.

The author also extends apologies for any shortcomings that
may remain in this work. It is sincerely hoped that this paper
will serve as a useful reference for future studies and research
purposes.

REFERENCES

[1] Munir, R. 2023. Aljabar Boolean.
[2] Fluri, B., Wursch, M., Pinzger, M., Gall, H. 2007. Change Distilling:Tree

Differencing for Fine-Grained Source Code Change Extraction. IEEE
Transactions on Software Engineering. 33 (11): 725–743.

[3] Koschke, R., Falke, R., Frenzel, P. 2006. Clone Detection Using Abstract
Syntax Suffix Trees. Working Conference on Reverse Engineering.
IEEE.

[4] Karnaugh, M. 1953. The Map Method for Synthesis of Combinational
Logic Circuits. Transactions of the American Institute of Electrical
Engineers, Part I: Communication and Electronics. 72 (5): 593–599.
doi:10.1109/TCE.1953.6371932.

[5] Veitch, E. W. 1952. A chart method for simplifying truth func-
tions. Proceedings of the 1952 ACM national meeting (Pittsburgh)
on - ACM ’52. Association for Computing Machinery. pp. 127–133.
doi:10.1145/609784.609801.

[6] Dodge, N. B. 2015. Simplifying Logic Circuits with Karnaugh Maps.
The University of Texas at Dallas, Erik Jonsson School of Engineering
and Computer Science.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 31 Desember 2024

Nadhif Radityo N. (13523045)

https://github.com/NadhifRadityo/code-design-karnaugh

	Introduction
	Theoretical Foundations
	Karnaugh Map
	Abstract Syntax Tree
	Code Development

	Methodology
	Implementation
	Abstract Syntax Tree Parsing
	Logical Conditions Extraction
	Karnaugh Table Construction
	K-Map Pattern Recognition
	Code Reassemble

	Results and Discussion
	Conclusion
	References

