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Abstract—Procedurally Content Generation (PCG) is a widely 

adopted technique in modern video games to create randomized 

unique content in an efficient manner. This study examines the 
dungeon PCG repository by “vazgriz” and explore the algorithms. 

The algorithms include Delaunay triangulation as a basis for 

creating the connection between rooms, Prim’s MST to obtain a 

consistent path, and A* pathfinding to determine the generation of 
elements connecting each node. This study also explores the code 

implementation of each algorithm and how it represents a graph or 

node in the context of unity’s C# 
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I.   INTRODUCTION 

Procedural Content Generation (PCG) has been a popular 

method in modern video games, enabling the creation of diverse, 

unique, and replay-able environments, creating unique 

experiences exclusive to each player. PCG has been seen its 

implementation in dungeon generation, where the concept of 

“dungeon” in a video game is a set of rooms, connected to each 

other, that players can interact, which are uniquely instantiated 

by the algorithm. With PCG’s implementation, it eliminates the 

labor work of manually designing what a dungeon should be like 

according to the game designers, instead PCG is capable of 

generating multiple rooms that can connect to each other with 

the algorithm defined for this specific notion of PCG. The 

complexity and variation of layouts will create a gameplay loop 

that’s more engaging and filled with exciting nuances to be 

explored by the player [2][3]. 

This paper examines a GitHub repository owned by “vazgriz” 

[1], presenting the implementation of an intermediate but 

effective procedural dungeon generation algorithm, which is 

inspired by the discussion in reddit by user “phidinh6” [4], 

regarding it’s own implementation techniques. The PCG 

implemented in vazgriz’s repository [1] uses three distinct 

algorithms: Delaunay Triangulation, Prim’s Minimum 

Spanning Three, and A* and or Dijkstra pathfinding. The 

algorithm ensures the random generation of rooms will always 

be connected to each other, creating a stable, unique, and 

random experience for players.  

Delaunay Triangulation is a method to create a triangulation 

network of defined vertices, where it is known for its 

computational efficiency and robust property which guarantees 

no overlapping edges and proper triangulation among vertices 

[5]. Applying MST to the generated graph will yield a reduced 

graph with simplified connections between each vertex. After 

that, we finally apply the pathfinding algorithm, preferably A*, 

to provide path between each of the designated rooms in the 

dungeon system. This combination of algorithms creates a 

pipeline that suffices the aesthetics of the layout arrangements 

while providing proper functionality. 

Procedural Content Generation has been widespread among 

various video games. Algorithms such as cellular automata were 

implemented for dungeon generation in the earlier days [6]. 

There also exists other techniques such as BST (Binary Space 

Partitioning) trees [7] which allowed more structured layouts. 

The remainder of this paper is structured as follows. Section 

2 explains the fundamental theorems of the algorithms used in 

the PCG pipeline. Section 3 describes the implementation of the 

algorithms in vazgriz’s GitHub repository and presents the 

result.  Section 4 discusses the potential applications in other 

sectors, followed by conclusion in section 5. 

 

II.  PREREQUISITES 

A. Delaunay Triangulation 

Delaunay Triangulation, in the context of computational 

geometry, is a network of triangles containing a set of vertices 

connected to each other where for every circumcircle of any 

triangles no additional vertex lies inside. The Delaunay 

triangulation maximizes the minimum angle, but it doesn’t 

necessarily minimize the maximum angle or its length of the 

edge [10]. The circumcircle may overlap with each other as long 

as no more than 3 vertices are within the border or inside the 

circumcircle. The triangulation ensures no skinny triangles exist 

between vertices; this is the byproduct of the circumcircle 

property [7]. Important to take notice that the coordinates or 

position of the vertices must not be collinear, or triangulation is 

going to fail. Below is the defined triangulation [8] : 

 

 
Fig 1. Delaunay Triangulation of Random Points [8] 
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B. Validating Points in Delaunay Triangulation 

Guibas & Stolfi described an interesting technique in 

determining if a point is within the circumcircle. The expression 

below determines the position of a point [7]: 
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where A, B, C are points, sorted in counterclockwise order, 

that construct the circumcircle of the triangle and D is the point 

to be examined. If the determinant of the matrix above is more 

than zero, then point D lies within the circumcircle. If the 

determinant is less than zero, then point D lies outside of the 

circle. If the determinant is zero, then point D lies within the 

circumference of the circumcircle. Another way to define the 

expression is to write points A, B, C relative to point D which 

gives us the expression as below [7]: 
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which yields a 3 x 3 matrix. 

If a triangle is non-Delaunay (i.e. there exists a point inside the 

circumcircle of the triangle), then we can perform a flip 

operation to one of its edges. First, we determine the common 

edge of the triangles, examine the figurine below [11]: 

 

 
Fig 2. Non-Delaunay Triangle [11] 

 

the edge 𝐵𝐷̅̅ ̅̅  represents the common edge of triangle 𝐴𝐵𝐶 and 

𝐵𝐶𝐷. We then determine another common edge that divides 

𝐴𝐵𝐶𝐷 into two triangles, in this case it’s 𝐴𝐶̅̅ ̅̅ . We then remove 

the edge on 𝐵𝐷̅̅ ̅̅  and instantiate an edge on 𝐴𝐶̅̅ ̅̅  [7]. This creates 

a valid Delaunay triangle for the four points, as follows [12]: 

 
Fig 3. Delaunay Triangle After Flip Transformation [12] 

 

With the ability to flip edges, it leads to a very straightforward 

algorithm for constructing a Delaunay triangulation, construct 

random triangulation among the set of points and flip the edges 

until no more non-Delaunay triangle exists. This approach can 

take up to Ω(𝑛2) edge flips and it is not guaranteed of its 

convergence between points [13].   

 

C. Bowyer-Watson Algorithm 

The Bowyer-Watson algorithm is an incremental algorithm for 

computing the Delaunay triangulation of finite sets of points in 

any number of dimensions [15][16]. Every insertion of points 

will validate the point’s position and if the circumcircle of 

previous iteration contains the new points, then we delete that 

triangle and construct a new triangle based off the new point. 

The more detailed approach of this algorithm is as follows [14]: 

1. Add a point to the triangulation. 

2. Find all existing triangles where it’s circumcircle contains 

the new point. The most optimal approach is to find the 

first triangle containing the new point then checking the 

validity of neighboring triangles. 

3. Delete the identified triangles, this creates a convex cavity 

 

 
Fig 4. Convex cavity creation 

  

4. Connect the new point to the points of the cavity’s 

boundary. 

The initial phase of the algorithm is to define a super-triangle, 

an infinitely large triangle that encapsulates the entire set [17]. 

Then we can proceed with the algorithm above. After iterating 

through every point, we remove the triangles that contain 

vertices from the super-triangle. In computers we cannot 

achieve an infinitely large scale of an object, so we identify the 

outermost points in the set and create the super-triangle vertices 

off a distance from the outermost points. 
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Fig 5. Instantiate super triangle on points 

 

The following pseudocode perfectly describes the simple 

algorithm used in constructing the Delaunay triangulation from 

the explanation above, written by author “SupernovaPhoenix” 

from the Wikipedia page Bowyer-Watson algorithm [18], which 

in change became the golden standard for multiple repositories 

such as “Bl4ckb0ne”  a.k.a. Simon Zeni’s repository [19]: 

 

function BowyerWatson (pointList) 
    // pointList is a set of coordinates defining the 
points to be triangulated 
    triangulation := empty triangle mesh data 
structure 
    add super-triangle to triangulation // must be 
large enough to completely contain all the points in 
pointList 
    for each point in pointList do // add all the 
points one at a time to the triangulation 
        badTriangles := empty set 
        for each triangle in triangulation do // first 
find all the triangles that are no longer valid due to 
the insertion 
            if point is inside circumcircle of 
triangle 
                add triangle to badTriangles 
        polygon := empty set 
        for each triangle in badTriangles do // find 
the boundary of the polygonal hole 
            for each edge in triangle do 
                if edge is not shared by any other 
triangles in badTriangles 
                    add edge to polygon 
        for each triangle in badTriangles do // remove 
them from the data structure 
            remove triangle from triangulation 
        for each edge in polygon do // re-triangulate 
the polygonal hole 
            newTri := form a triangle from edge to 
point 
            add newTri to triangulation 
    for each triangle in triangulation // done 
inserting points, now clean up 
        if triangle contains a vertex from original 
super-triangle 
            remove triangle from triangulation 
    return triangulation 

 

D. Minimum Spanning Tree 

A minimum spanning tree (MST) is a subset of a graph or a 

spanning tree consisting of edges connecting all the connected 

nodes while minimizing the total sum of weight on its edges 

[20]. An MST will have 𝑛 − 1 edges for 𝑛 vertices in the graph. 

MST has a uniqueness property where if all the edge has a 

distinct weight, then there will be only one MST created.  

This ensures that all the vertices are connected to each other 

by an edge. In the context of our procedural dungeon generation, 

the MST will provide a solid foundation for generating rooms 

without redundant unnecessary corridors (edge) between all the 

rooms (vertices). There are multiple algorithms to create a MST 

from an existing graph, but we will be using Prim’s algorithm. 

 

E. Prim’s Algorithm in MST 

Prim’s algorithm is a greedy algorithm to find the MST of a 

connected weighted graph. The algorithm is simplified into 

three steps as follows  [21]: 

1. Select an edge with the minimum weight value from 

graph G and move it into graph T. 

2. Select and edge (𝑢, 𝑣) with the minimum weight value 

adjacent to the edges in T, with the exception (𝑢, 𝑣) does 

not create a circuit in T. Move (𝑢, 𝑣) into T. 

3. Repeat the second step for 𝑛 − 2 times, where 𝑛 is the 

number of vertices. 

The following steps are presented in the figurines below [21]: 

 
Fig 6. Closed Weighted Graph [21] 

 

 

 
Fig 7. Prim’s Algorithm Visualization [21] 
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Fig 8. MST of Figurine 6 [21] 

 

The code implementation of MST will may on a Priority Queue 

to keep track of edges with the smallest weights to ensure 

efficiency in selecting the edges, but the iterative 

implementation above explicitly is also a valid strategy. 

 

F. Dijkstra Pathfinding 

Dijkstra’s algorithm is an iterative pathfinding algorithm for 

weighted graphs, where the algorithm explores all the shortest 

paths of the vertices from a source vertex. Defining the source 

vertex differentiates this algorithm from MST algorithms such 

as Prim’s algorithm. The downside of this algorithm is that it 

won’t work with negative distance values, but that won’t be an 

issue in our case so we assume the distance is always positive. 

The algorithm works by defining a source vertex, which is set 

to zero, while the rest of the vertices are initialized to infinity. A 

min-priority queue / min-prioqueue is then used to extract every 

vertex with the shortest distance and to be relaxed to its 

neighbors. This process loops until all vertices have been 

processed. Below is the pseudocode implementation using the 

min-priority queue concept [22]: 

 

1   function Dijkstra(Graph, source): 
2       create vertex priority queue Q 
3 
4       dist[source] ← 0                          // 
Initialization 
5       Q.add_with_priority(source, 0)            // 
associated priority equals dist[·] 
6 
7       for each vertex v in Graph.Vertices: 
8           if v ≠ source 
9               prev[v] ← UNDEFINED               // 
Predecessor of v 
10              dist[v] ← INFINITY                // 
Unknown distance from source to v 
11              Q.add_with_priority(v, INFINITY) 
12 
13 
14      while Q is not empty:                     // 
The main loop 
15          u ← Q.extract_min()                   // 
Remove and return best vertex 
16          for each neighbor v of u:             // 
Go through all v neighbors of u 
17              alt ← dist[u] + Graph.Edges(u, v) 
18              if alt < dist[v]: 
19                  prev[v] ← u 
20                  dist[v] ← alt 
21                  Q.decrease_priority(v, alt) 
22 
23      return dist, prev 
  

 

First, we define the min-prioqueue with the source vertex’s 

distance set to 0 and the rest set to infinity stored in the 

prioqueue. We also define a list of predecessor relations, prev, 

where every vertex such as {A: undefined, B: undefined, …}, 

which are now undefined. The algorithm then proceeds to 

extract the minimum vertex with the minimum value of the 

distance and iterate through its respective neighbors. Each 

iteration will “relax” the vertex where the distance is the value 

of the previously extracted vertex added with the edge distance 

between both vertices. If the resulting distance is less than the 

current value of the distance, then we update the distance at that 

vertex while also updating the relation list prev. 

 

G. A* Pathfinding  

A* algorithm combines Dijkstra’s algorithm information, 

favoring vertices close to the starting point, and The Greedy 

Best-First-Search algorithm information, favoring vertices close 

to the goal. It’s an iterative algorithm that, like Dijkstra’s, 

requires a starting vertex. Each iteration of the loop examines 

the vertex with the lowest value of 𝑓(𝑛) where 𝑓(𝑛) is 

represented as follows [23]: 

 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (3) 

 

𝑔(𝑛) represents the exact cost path from the starting point to the 

assigned vertex n, the property of Dijkstra’s algorithm, and ℎ(𝑛) 

represents the estimated cost from the assigned vertex 𝑛 to the 

goal, the heuristic property of Greedy Best-First-Search 

algorithm. The heuristic property of this approach suggests [24]: 

1. If ℎ(𝑛) is equal to zero, then only 𝑓(𝑛) = 𝑔(𝑛) 

resulting in Dijkstra’s algorithm. 

2. If  ℎ(𝑛) ≫ 𝑔(𝑛), then A* turns into Greedy Best-First- 

Search. 

The scale measurements of both values must be the same, as in 

if  ℎ(𝑛) is measured in meter then 𝑔(𝑛)  must be measured in 

meter as well. The pseudocode below, provided by Patel [25], 

displays the similarity of Dijkstra’s algorithm to A* that 

properly expresses the theory above: 

 

OPEN = priority queue containing START 
CLOSED = empty set 
while lowest rank in OPEN is not the GOAL: 
  current = remove lowest rank item from OPEN 
  add current to CLOSED 
  for neighbors of current: 
    cost = g(current) + movementcost(current, 
neighbor) 
    if neighbor in OPEN and cost less than 
g(neighbor): 
      remove neighbor from OPEN, because new path is 
better 
    if neighbor in CLOSED and cost less than 
g(neighbor): ⁽²⁾ 
      remove neighbor from CLOSED 
    if neighbor not in OPEN and neighbor not in 
CLOSED: 
      set g(neighbor) to cost 
      add neighbor to OPEN 
      set priority queue rank to g(neighbor) + 
h(neighbor) 
      set neighbor's parent to current 
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III.   IMPLEMENTATION AND RESULT OF VAZGRIZ’S 

REPOSITORY 

A. Representing a graph in code 

The author of the repository represents a graph’s vertex and 

edge in the namespace Graphs. The Vertex class consists of the 

attribute Position of unity’s data type Vector3 with methods of 

checking equality with other Vertex objects. The Vertex extends 

to associate with a generic T item, a way to store additional data. 

The Edge class consists of the attributes U and V of Vertex with 

methods of checking equality with other Edge objects [1].  

 

B. Generate random rooms 

The author creates a class Room containing the attributes of 

bounds as RectInt with the method Intersect to validate if two 

Room objects are intersecting according to its definition. The 

author generates rooms based off the determined roomCount as 

integer, size as Vector2Int, roomMaxSize as Vector2Int. The 

process iterates with roomCount as the loop count. The loop 

begins by determining a random location of the room according 

to the X and Y boundaries of size. The roomsize as Vector2Int 

is initialized with random values between 1 and roomMaxSize. 

The process creates a new object newRoom to with it’s new 

location and roomSize. The process also creates a buffer Room, 

acting like an invincible border around newRoom [1]. 

  

 
Fig 9. Buffer Room Generation [1] 

 

The figure above explains how buffer encapsulates newRoom. 

This ensures that when running validation tests, no rooms are 

placed directly side by side. If the size and location of roomSize 

are valid, we add newRoom to the list rooms while also 

instantiating it in the scene view. The figure below displays the 

result of the random generation of the algorithm [1]: 

 

 
Fig 10. Random Room Generation [1] 

 

C. Defining the Minimum Tree 

The process begins by defining vertices as a list of Vertex. For 

every room that has been generated, find the center point of each 

room and store it in vertices. After obtaining all of the room’s 

data, perform the Delaunay triangulation for every room 

utilizing the Bowyer-Watson algorithm.  

 
Fig 11. Room Triangulation [1] 

 

This yields a graph of properly defined triangulations between 

each room. Prim’s MST is applied to the graph above, with each 

edge’s weight considered as the Euclidean distance between two 

Vertex objects. The process initializes on defining openSet as a 

list of Vertex that stores all of the edge data, while closedSet as 

a list of Vertex initially stores the starting point. The process will 

iterate through every single point in openSet. Each edge will be 

validated for its connectivity to the MST and its cycle property. 

The process finds the smallest weighted edge of the MST and 

moves it from openSet to closedSet. If there are no edge, then 

the process will break the loop iterating every point, an edge 

case detection to disconnected graphs. The MST result is as 

follows [1]: 

 

 
Fig 12. MST of Triangulation [1] 

 

The process also adds extra edges by chance (12.5%) after the 

MST process, an example is an edge connecting the top most 

left corner room to the top most right corner room at Fig 12. 

 

D. Connecting the Nodes 

The process involves finding the most optimal path along the 

edge of the MST and then reconstructing it immediately after 

reaching the final destination. The author initializes a class Node 

with attributes: Position as Vector2Int, Previous as Node, 

storing the reference of the previous Node, and Cost as float, a 

struct PathCost with attributes: traversable as bool and cost as 

float, neighbors as list of Vector2Int which determines the 

movement, grid as Grid2D of Node, queue as PriorityQueue, 

closed as Hashset of Node, and stack as Stack. The object grid 

is defined with size of room generation and every x and y 

coordinate of grid is declared a new Node. The implementation 

of A* by the author is similar to the pseudocode provided above. 

The process begins by resetting every Node, setting the cost to 

positive infinite except the starting Node, which is set to 0. The 
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newCost is the sum of its respective ℎ(𝑛)  and 𝑔(𝑛) values. After 

finding the most optimal path, the process will backtrack from 

the ending node to the starting node storing in result. The 

process pushes the current Node into stack and traceback to its 

previous Node repeating the process until no reference to the 

previous Node is found. The process reverses the order of the 

Nodes by pushing it to stack and then popping out to result. The 

resulting process is as follows [1]:  

 

 
Fig 13. Result of Dungeon PCG 

 

V.   CONCLUSION 

The pipeline method introduced in this paper for dungeon 

PCG is deemed to be effective for generating random room and 

hallways that connect to each other. We explored the PCG 

method by the user “vazgriz” [1] and found the relation between 

Delaunay triangulation, Prim’s algorithm, and pathfinding 

algorithms such as A*. Delaunay triangulation is useful for 

determining a graph that represents the connectivity of each 

rooms in an organized way, Prim’s MST algorithm creates a 

path following the algorithm, and A* connects each room with 

the determined path from the MST. The success of this approach 

suggest the applicability of this pipeline in various other sectors 

such as path planning in robotics. Future works will explore the 

strategy and methods implemented for 3D PCG generation, 

optimizing Delaunay triangulation generation, and 

implementing complex triangulation algorithms to create more 

complex structures. Overall, this paper highlights the 

effectiveness of this pipeline to achieve consistent generation. 
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