
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Dungeon Procedural Generation in Video Games

Nathan Jovial Hartono - 135230321

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1nathjovi899@gmail.com, 13523032@std.stei.itb.ac.id

Abstract—Procedurally Content Generation (PCG) is a widely

adopted technique in modern video games to create randomized

unique content in an efficient manner. This study examines the
dungeon PCG repository by “vazgriz” and explore the algorithms.

The algorithms include Delaunay triangulation as a basis for

creating the connection between rooms, Prim’s MST to obtain a

consistent path, and A* pathfinding to determine the generation of
elements connecting each node. This study also explores the code

implementation of each algorithm and how it represents a graph or

node in the context of unity’s C#

Keywords—Procedural Content Generation, Delaunay

Triangulation, Minimum Spanning Tree, Pathfinding

I. INTRODUCTION

Procedural Content Generation (PCG) has been a popular

method in modern video games, enabling the creation of diverse,

unique, and replay-able environments, creating unique

experiences exclusive to each player. PCG has been seen its

implementation in dungeon generation, where the concept of

“dungeon” in a video game is a set of rooms, connected to each

other, that players can interact, which are uniquely instantiated

by the algorithm. With PCG’s implementation, it eliminates the

labor work of manually designing what a dungeon should be like

according to the game designers, instead PCG is capable of

generating multiple rooms that can connect to each other with

the algorithm defined for this specific notion of PCG. The

complexity and variation of layouts will create a gameplay loop

that’s more engaging and filled with exciting nuances to be

explored by the player [2][3].

This paper examines a GitHub repository owned by “vazgriz”

[1], presenting the implementation of an intermediate but

effective procedural dungeon generation algorithm, which is

inspired by the discussion in reddit by user “phidinh6” [4],

regarding it’s own implementation techniques. The PCG

implemented in vazgriz’s repository [1] uses three distinct

algorithms: Delaunay Triangulation, Prim’s Minimum

Spanning Three, and A* and or Dijkstra pathfinding. The

algorithm ensures the random generation of rooms will always

be connected to each other, creating a stable, unique, and

random experience for players.

Delaunay Triangulation is a method to create a triangulation

network of defined vertices, where it is known for its

computational efficiency and robust property which guarantees

no overlapping edges and proper triangulation among vertices

[5]. Applying MST to the generated graph will yield a reduced

graph with simplified connections between each vertex. After

that, we finally apply the pathfinding algorithm, preferably A*,

to provide path between each of the designated rooms in the

dungeon system. This combination of algorithms creates a

pipeline that suffices the aesthetics of the layout arrangements

while providing proper functionality.

Procedural Content Generation has been widespread among

various video games. Algorithms such as cellular automata were

implemented for dungeon generation in the earlier days [6].

There also exists other techniques such as BST (Binary Space

Partitioning) trees [7] which allowed more structured layouts.

The remainder of this paper is structured as follows. Section

2 explains the fundamental theorems of the algorithms used in

the PCG pipeline. Section 3 describes the implementation of the

algorithms in vazgriz’s GitHub repository and presents the

result. Section 4 discusses the potential applications in other

sectors, followed by conclusion in section 5.

II. PREREQUISITES

A. Delaunay Triangulation

Delaunay Triangulation, in the context of computational

geometry, is a network of triangles containing a set of vertices

connected to each other where for every circumcircle of any

triangles no additional vertex lies inside. The Delaunay

triangulation maximizes the minimum angle, but it doesn’t

necessarily minimize the maximum angle or its length of the

edge [10]. The circumcircle may overlap with each other as long

as no more than 3 vertices are within the border or inside the

circumcircle. The triangulation ensures no skinny triangles exist

between vertices; this is the byproduct of the circumcircle

property [7]. Important to take notice that the coordinates or

position of the vertices must not be collinear, or triangulation is

going to fail. Below is the defined triangulation [8] :

Fig 1. Delaunay Triangulation of Random Points [8]

mailto:1nathjovi899@gmail.com
mailto:13523032@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

B. Validating Points in Delaunay Triangulation

Guibas & Stolfi described an interesting technique in

determining if a point is within the circumcircle. The expression

below determines the position of a point [7]:

[

𝐴𝑥 𝐴𝑦 𝐴𝑥

2 + 𝐴𝑦
2 1

𝐵𝑥 𝐵𝑦 𝐵𝑥
2 + 𝐵𝑦

2 1

𝐶𝑥 𝐶𝑦 𝐶𝑥
2 + 𝐶𝑦

2 1

𝐷𝑥 𝐷𝑦 𝐷𝑥
2 + 𝐷𝑦

2 1]

(1)

where A, B, C are points, sorted in counterclockwise order,

that construct the circumcircle of the triangle and D is the point

to be examined. If the determinant of the matrix above is more

than zero, then point D lies within the circumcircle. If the

determinant is less than zero, then point D lies outside of the

circle. If the determinant is zero, then point D lies within the

circumference of the circumcircle. Another way to define the

expression is to write points A, B, C relative to point D which

gives us the expression as below [7]:

[

 𝐴𝑥 − 𝐷𝑥 𝐴𝑦 − 𝐷𝑦 (𝐴𝑥 − 𝐷𝑥)

2 + (𝐴𝑦 − 𝐷𝑦)
2

𝐵𝑥 − 𝐷𝑥 𝐵𝑦 − 𝐷𝑦 (𝐵𝑥 − 𝐷𝑥)
2 + (𝐵𝑦 − 𝐷𝑦)

2

𝐶𝑥 − 𝐷𝑥 𝐶𝑦 − 𝐷𝑦 (𝐶𝑥 − 𝐷𝑥)
2 + (𝐶𝑦 − 𝐷𝑦)

2
]

(2)

which yields a 3 x 3 matrix.

If a triangle is non-Delaunay (i.e. there exists a point inside the

circumcircle of the triangle), then we can perform a flip

operation to one of its edges. First, we determine the common

edge of the triangles, examine the figurine below [11]:

Fig 2. Non-Delaunay Triangle [11]

the edge 𝐵𝐷̅̅ ̅̅ represents the common edge of triangle 𝐴𝐵𝐶 and

𝐵𝐶𝐷. We then determine another common edge that divides

𝐴𝐵𝐶𝐷 into two triangles, in this case it’s 𝐴𝐶̅̅ ̅̅ . We then remove

the edge on 𝐵𝐷̅̅ ̅̅ and instantiate an edge on 𝐴𝐶̅̅ ̅̅ [7]. This creates

a valid Delaunay triangle for the four points, as follows [12]:

Fig 3. Delaunay Triangle After Flip Transformation [12]

With the ability to flip edges, it leads to a very straightforward

algorithm for constructing a Delaunay triangulation, construct

random triangulation among the set of points and flip the edges

until no more non-Delaunay triangle exists. This approach can

take up to Ω(𝑛2) edge flips and it is not guaranteed of its

convergence between points [13].

C. Bowyer-Watson Algorithm

The Bowyer-Watson algorithm is an incremental algorithm for

computing the Delaunay triangulation of finite sets of points in

any number of dimensions [15][16]. Every insertion of points

will validate the point’s position and if the circumcircle of

previous iteration contains the new points, then we delete that

triangle and construct a new triangle based off the new point.

The more detailed approach of this algorithm is as follows [14]:

1. Add a point to the triangulation.

2. Find all existing triangles where it’s circumcircle contains

the new point. The most optimal approach is to find the

first triangle containing the new point then checking the

validity of neighboring triangles.

3. Delete the identified triangles, this creates a convex cavity

Fig 4. Convex cavity creation

4. Connect the new point to the points of the cavity’s

boundary.

The initial phase of the algorithm is to define a super-triangle,

an infinitely large triangle that encapsulates the entire set [17].

Then we can proceed with the algorithm above. After iterating

through every point, we remove the triangles that contain

vertices from the super-triangle. In computers we cannot

achieve an infinitely large scale of an object, so we identify the

outermost points in the set and create the super-triangle vertices

off a distance from the outermost points.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig 5. Instantiate super triangle on points

The following pseudocode perfectly describes the simple

algorithm used in constructing the Delaunay triangulation from

the explanation above, written by author “SupernovaPhoenix”

from the Wikipedia page Bowyer-Watson algorithm [18], which

in change became the golden standard for multiple repositories

such as “Bl4ckb0ne” a.k.a. Simon Zeni’s repository [19]:

function BowyerWatson (pointList)
 // pointList is a set of coordinates defining the
points to be triangulated
 triangulation := empty triangle mesh data
structure
 add super-triangle to triangulation // must be
large enough to completely contain all the points in
pointList
 for each point in pointList do // add all the
points one at a time to the triangulation
 badTriangles := empty set
 for each triangle in triangulation do // first
find all the triangles that are no longer valid due to
the insertion
 if point is inside circumcircle of
triangle
 add triangle to badTriangles
 polygon := empty set
 for each triangle in badTriangles do // find
the boundary of the polygonal hole
 for each edge in triangle do
 if edge is not shared by any other
triangles in badTriangles
 add edge to polygon
 for each triangle in badTriangles do // remove
them from the data structure
 remove triangle from triangulation
 for each edge in polygon do // re-triangulate
the polygonal hole
 newTri := form a triangle from edge to
point
 add newTri to triangulation
 for each triangle in triangulation // done
inserting points, now clean up
 if triangle contains a vertex from original
super-triangle
 remove triangle from triangulation
 return triangulation

D. Minimum Spanning Tree

A minimum spanning tree (MST) is a subset of a graph or a

spanning tree consisting of edges connecting all the connected

nodes while minimizing the total sum of weight on its edges

[20]. An MST will have 𝑛 − 1 edges for 𝑛 vertices in the graph.

MST has a uniqueness property where if all the edge has a

distinct weight, then there will be only one MST created.

This ensures that all the vertices are connected to each other

by an edge. In the context of our procedural dungeon generation,

the MST will provide a solid foundation for generating rooms

without redundant unnecessary corridors (edge) between all the

rooms (vertices). There are multiple algorithms to create a MST

from an existing graph, but we will be using Prim’s algorithm.

E. Prim’s Algorithm in MST

Prim’s algorithm is a greedy algorithm to find the MST of a

connected weighted graph. The algorithm is simplified into

three steps as follows [21]:

1. Select an edge with the minimum weight value from

graph G and move it into graph T.

2. Select and edge (𝑢, 𝑣) with the minimum weight value

adjacent to the edges in T, with the exception (𝑢, 𝑣) does

not create a circuit in T. Move (𝑢, 𝑣) into T.

3. Repeat the second step for 𝑛 − 2 times, where 𝑛 is the

number of vertices.

The following steps are presented in the figurines below [21]:

Fig 6. Closed Weighted Graph [21]

Fig 7. Prim’s Algorithm Visualization [21]

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig 8. MST of Figurine 6 [21]

The code implementation of MST will may on a Priority Queue

to keep track of edges with the smallest weights to ensure

efficiency in selecting the edges, but the iterative

implementation above explicitly is also a valid strategy.

F. Dijkstra Pathfinding

Dijkstra’s algorithm is an iterative pathfinding algorithm for

weighted graphs, where the algorithm explores all the shortest

paths of the vertices from a source vertex. Defining the source

vertex differentiates this algorithm from MST algorithms such

as Prim’s algorithm. The downside of this algorithm is that it

won’t work with negative distance values, but that won’t be an

issue in our case so we assume the distance is always positive.

The algorithm works by defining a source vertex, which is set

to zero, while the rest of the vertices are initialized to infinity. A

min-priority queue / min-prioqueue is then used to extract every

vertex with the shortest distance and to be relaxed to its

neighbors. This process loops until all vertices have been

processed. Below is the pseudocode implementation using the

min-priority queue concept [22]:

1 function Dijkstra(Graph, source):
2 create vertex priority queue Q
3
4 dist[source] ← 0 //
Initialization
5 Q.add_with_priority(source, 0) //
associated priority equals dist[·]
6
7 for each vertex v in Graph.Vertices:
8 if v ≠ source
9 prev[v] ← UNDEFINED //
Predecessor of v
10 dist[v] ← INFINITY //
Unknown distance from source to v
11 Q.add_with_priority(v, INFINITY)
12
13
14 while Q is not empty: //
The main loop
15 u ← Q.extract_min() //
Remove and return best vertex
16 for each neighbor v of u: //
Go through all v neighbors of u
17 alt ← dist[u] + Graph.Edges(u, v)
18 if alt < dist[v]:
19 prev[v] ← u
20 dist[v] ← alt
21 Q.decrease_priority(v, alt)
22
23 return dist, prev

First, we define the min-prioqueue with the source vertex’s

distance set to 0 and the rest set to infinity stored in the

prioqueue. We also define a list of predecessor relations, prev,

where every vertex such as {A: undefined, B: undefined, …},

which are now undefined. The algorithm then proceeds to

extract the minimum vertex with the minimum value of the

distance and iterate through its respective neighbors. Each

iteration will “relax” the vertex where the distance is the value

of the previously extracted vertex added with the edge distance

between both vertices. If the resulting distance is less than the

current value of the distance, then we update the distance at that

vertex while also updating the relation list prev.

G. A* Pathfinding

A* algorithm combines Dijkstra’s algorithm information,

favoring vertices close to the starting point, and The Greedy

Best-First-Search algorithm information, favoring vertices close

to the goal. It’s an iterative algorithm that, like Dijkstra’s,

requires a starting vertex. Each iteration of the loop examines

the vertex with the lowest value of 𝑓(𝑛) where 𝑓(𝑛) is

represented as follows [23]:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (3)

𝑔(𝑛) represents the exact cost path from the starting point to the

assigned vertex n, the property of Dijkstra’s algorithm, and ℎ(𝑛)

represents the estimated cost from the assigned vertex 𝑛 to the

goal, the heuristic property of Greedy Best-First-Search

algorithm. The heuristic property of this approach suggests [24]:

1. If ℎ(𝑛) is equal to zero, then only 𝑓(𝑛) = 𝑔(𝑛)

resulting in Dijkstra’s algorithm.

2. If ℎ(𝑛) ≫ 𝑔(𝑛), then A* turns into Greedy Best-First-

Search.

The scale measurements of both values must be the same, as in

if ℎ(𝑛) is measured in meter then 𝑔(𝑛) must be measured in

meter as well. The pseudocode below, provided by Patel [25],

displays the similarity of Dijkstra’s algorithm to A* that

properly expresses the theory above:

OPEN = priority queue containing START
CLOSED = empty set
while lowest rank in OPEN is not the GOAL:
 current = remove lowest rank item from OPEN
 add current to CLOSED
 for neighbors of current:
 cost = g(current) + movementcost(current,
neighbor)
 if neighbor in OPEN and cost less than
g(neighbor):
 remove neighbor from OPEN, because new path is
better
 if neighbor in CLOSED and cost less than
g(neighbor): ⁽²⁾
 remove neighbor from CLOSED
 if neighbor not in OPEN and neighbor not in
CLOSED:
 set g(neighbor) to cost
 add neighbor to OPEN
 set priority queue rank to g(neighbor) +
h(neighbor)
 set neighbor's parent to current

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

III. IMPLEMENTATION AND RESULT OF VAZGRIZ’S

REPOSITORY

A. Representing a graph in code

The author of the repository represents a graph’s vertex and

edge in the namespace Graphs. The Vertex class consists of the

attribute Position of unity’s data type Vector3 with methods of

checking equality with other Vertex objects. The Vertex extends

to associate with a generic T item, a way to store additional data.

The Edge class consists of the attributes U and V of Vertex with

methods of checking equality with other Edge objects [1].

B. Generate random rooms

The author creates a class Room containing the attributes of

bounds as RectInt with the method Intersect to validate if two

Room objects are intersecting according to its definition. The

author generates rooms based off the determined roomCount as

integer, size as Vector2Int, roomMaxSize as Vector2Int. The

process iterates with roomCount as the loop count. The loop

begins by determining a random location of the room according

to the X and Y boundaries of size. The roomsize as Vector2Int

is initialized with random values between 1 and roomMaxSize.

The process creates a new object newRoom to with it’s new

location and roomSize. The process also creates a buffer Room,

acting like an invincible border around newRoom [1].

Fig 9. Buffer Room Generation [1]

The figure above explains how buffer encapsulates newRoom.

This ensures that when running validation tests, no rooms are

placed directly side by side. If the size and location of roomSize

are valid, we add newRoom to the list rooms while also

instantiating it in the scene view. The figure below displays the

result of the random generation of the algorithm [1]:

Fig 10. Random Room Generation [1]

C. Defining the Minimum Tree

The process begins by defining vertices as a list of Vertex. For

every room that has been generated, find the center point of each

room and store it in vertices. After obtaining all of the room’s

data, perform the Delaunay triangulation for every room

utilizing the Bowyer-Watson algorithm.

Fig 11. Room Triangulation [1]

This yields a graph of properly defined triangulations between

each room. Prim’s MST is applied to the graph above, with each

edge’s weight considered as the Euclidean distance between two

Vertex objects. The process initializes on defining openSet as a

list of Vertex that stores all of the edge data, while closedSet as

a list of Vertex initially stores the starting point. The process will

iterate through every single point in openSet. Each edge will be

validated for its connectivity to the MST and its cycle property.

The process finds the smallest weighted edge of the MST and

moves it from openSet to closedSet. If there are no edge, then

the process will break the loop iterating every point, an edge

case detection to disconnected graphs. The MST result is as

follows [1]:

Fig 12. MST of Triangulation [1]

The process also adds extra edges by chance (12.5%) after the

MST process, an example is an edge connecting the top most

left corner room to the top most right corner room at Fig 12.

D. Connecting the Nodes

The process involves finding the most optimal path along the

edge of the MST and then reconstructing it immediately after

reaching the final destination. The author initializes a class Node

with attributes: Position as Vector2Int, Previous as Node,

storing the reference of the previous Node, and Cost as float, a

struct PathCost with attributes: traversable as bool and cost as

float, neighbors as list of Vector2Int which determines the

movement, grid as Grid2D of Node, queue as PriorityQueue,

closed as Hashset of Node, and stack as Stack. The object grid

is defined with size of room generation and every x and y

coordinate of grid is declared a new Node. The implementation

of A* by the author is similar to the pseudocode provided above.

The process begins by resetting every Node, setting the cost to

positive infinite except the starting Node, which is set to 0. The

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

newCost is the sum of its respective ℎ(𝑛) and 𝑔(𝑛) values. After

finding the most optimal path, the process will backtrack from

the ending node to the starting node storing in result. The

process pushes the current Node into stack and traceback to its

previous Node repeating the process until no reference to the

previous Node is found. The process reverses the order of the

Nodes by pushing it to stack and then popping out to result. The

resulting process is as follows [1]:

Fig 13. Result of Dungeon PCG

V. CONCLUSION

The pipeline method introduced in this paper for dungeon

PCG is deemed to be effective for generating random room and

hallways that connect to each other. We explored the PCG

method by the user “vazgriz” [1] and found the relation between

Delaunay triangulation, Prim’s algorithm, and pathfinding

algorithms such as A*. Delaunay triangulation is useful for

determining a graph that represents the connectivity of each

rooms in an organized way, Prim’s MST algorithm creates a

path following the algorithm, and A* connects each room with

the determined path from the MST. The success of this approach

suggest the applicability of this pipeline in various other sectors

such as path planning in robotics. Future works will explore the

strategy and methods implemented for 3D PCG generation,

optimizing Delaunay triangulation generation, and

implementing complex triangulation algorithms to create more

complex structures. Overall, this paper highlights the

effectiveness of this pipeline to achieve consistent generation.

VI. ACKNOWLEDGMENT

I would like to thank my family and friends for supporting me

throughout the period of me researching this paper. I would also

like to thank my professor Ir. Rila Mandala, M.Eng., Ph.D. for

providing lectures about Discrete Mathematics and building a

foundation of the subject to kickstart this research.

REFERENCES

[1] Vazgriz, "Dungeon Generator," GitHub repository, [Online]. Available:
https://github.com/vazgriz/DungeonGenerator. [Accessed: Jan. 3 - 8,

2025].
[2] J. Togelius, N. Shaker, and M. Nelson, Procedural Content Generation in

Games: A Textbook and an Overview, Springer, 2016.

[3] K. Compton and M. Mateas, "Procedural content generation in games: A
textbook overview," in IEEE Transactions on Computational Intelligence

and AI in Games, vol. 6, no. 1, pp. 1–14, Mar. 2014.

[4] 6. [Username], “Procedural dungeon generation algorithm explained,”
Reddit. [Online]. Available:

https://www.reddit.com/r/gamedev/comments/1dlwc4/procedural_dunge
on_generation_algorithm_explained/. [Accessed: Jan. 3, 2025].

[5] F. Aurenhammer, "Voronoi diagrams—a survey of a fundamental

geometric data structure," in ACM Computing Surveys, vol. 23, no. 3, pp.
345–405, Sep. 1991.

[6] F. Blomqvist and P. Wang, "Cellular automata for dungeon generation," in
International Game Developers Association Conference Proceedings,
2018.

[7] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational
[8] Geometry: Algorithms and Applications, 3rd ed. Berlin, Germany:

Springer, 2008.
[9] By Gjacquenot - Own work, File:Delaunay circumcircles.png (Nü es),

Public Domain,

https://commons.wikimedia.org/w/index.php?curid=30370476.
[Accessed: Jan. 6, 2025].

[10] [9] L. J. Guibas and J. Stolfi, “Primitives for the manipulation of general
subdivisions and the computation of Voronoi diagrams,” ACM
Transactions on Graphics (TOG), vol. 4, no. 2, pp. 74–123, Apr. 1985.

[11] H. Edelsbrunner, T. S. Tan, and R. Waupotitsch, “An 𝑂(𝑛2 log 𝑛) time

algorithm for the minmax angle triangulation,” SIAM Journal on Scientific
and Statistical Computing, vol. 13, no. 4, pp. 994–1008, 1992.

[12] By Nü es - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=703333. [Accessed:
Jan. 6, 2025].

[13] By Jespa - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=56658046.
[Accessed: Jan. 6, 2025].

[14] R. Seidel, “Constrained Delaunay Triangulations and Voronoi Diagrams,”
in Proceedings of the 3rd Annual Symposium on Computational Geometry

(SoCG), Waterloo, Canada, 1987, pp. 178–191.
[15] C. A. Arens, “A note on the Bowyer-Watson algorithm for constructing

Delaunay triangulations,” Department of Geodesy, Faculty of Civil

Engineering and Geosciences, Delft University of Technology, GDMC
Publications, 2002. [Online]. Available:

https://www.gdmc.nl/publications/2002/Bowyer_Watson_algorithm.pdf.
[Accessed: 05-Jan-2025].

[16] A. Bowyer, “Computing Dirichlet tessellations,” The Computer Journal,

vol. 24, no. 2, pp. 162–166, 1981.
[17] D. Watson, “Computing the n-dimensional Delaunay tessellation with

application to Voronoi polytopes,” The Computer Journal, vol. 24, no. 2,

pp. 167–172, 1981.
[18] J. R. Shewchuk, “Delaunay Refinement Algorithms for Triangular Mesh

Generation,” Computational Geometry: Theory and Applications, vol. 22,
no. 1–3, pp. 21–74, 2002.

[19] SupernovaPhoenix, “Bowyer–Watson algorithm,” Wikipedia, 7-Aug-

2014. [Online]. Available:
https://en.wikipedia.org/wiki/Bowyer%E2%80%93Watson_algorithm.

[Accessed: 05-Jan-2025].
[20] Bl4ckb0ne, “Delaunay Triangulation,” GitHub repository, 2018. [Online].

Available: https://github.com/Bl4ckb0ne/delaunay-triangulation.

[Accessed: 05-Jan-2025].
[21] "scipy.sparse.csgraph.minimum_spanning_tree - SciPy v1.7.1 Manual,"

Numpy and Scipy Documentation — Numpy and Scipy Documentation.
[Online]. Available:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csgraph

.minimum_spanning_tree.html. [Accessed: Jan. 05, 2025].
[22] R. Munir, "Pohon Bagian 1," Discrete Mathematics Lecture Notes, School

of Electrical Engineering and Informatics, Institut Teknologi Bandung,
2024-2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-

Pohon-Bag1-2024.pdf. [Accessed: Jan. 5, 2025].
[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 3rd ed. Cambridge, MA: MIT Press, 2009, pp. 658–664.
[24] A. Patel, "Amit’s Thoughts on Pathfinding: A* Algorithm Comparison,"

Stanford University, [Online]. Available:

https://theory.stanford.edu/~amitp/GameProgramming/AStarComparison
.html. [Accessed: 07-Jan-2025].

[25] A. Patel, "Amit’s Thoughts on Pathfinding: Heuristics," Stanford
University, [Online]. Available:
https://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html.

[Accessed: 07-Jan-2025].
[26] A. Patel, "Implementation Notes," Amit’s Thoughts on Pathfinding, 2025.

[Online]. Available:
https://theory.stanford.edu/~amitp/GameProgramming/ImplementationN
otes.html. [Accessed: 07-Jan-2025].

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Januari 2024

Nathan Jovial Hartono - 13523032

