
Makalah IF1220 Matematika Diskrit – Teknik Informatika ITB –Semester I Tahun 2024/2025

Developing NPC Behavior in Grid-Based Tactical

RPGs: An Implementation of Decision Trees and

Djikstra’s Algorithm

Lutfi Hakim Yusra and 135230841

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523084@itb.ac.id, 2luthfihakimyusra@gmail.com

Abstract—This paper presents the implementation of

Discrete Math in the development of NPC behavior in a

tactical RPG, mainly the logic behind the enemies’ actions. By

setting the expected behavior through a predetermined

decision tree, alongside developing a proper movement system

through Djikstra’s algorithm, we can create a generic model to

be used in tactical RPGs that utilize a graph system for the

game board.

Keywords— Decision Tree, Djikstra’s Algorithm, Graph-

Based Movement, NPC Behaviour

I. INTRODUCTION

The game development market is currently in a state of

rapid growth, with both developers and players constantly

evolving their capabilities and needs over the years. This

is especially true for the Tactical Role-Playing Game

(RPG) genre, where the design of levels and the

intelligence of both players and Non-Playable Characters

(NPCs) play a crucial role in delivering a positive gaming

experience for the average player. Tactical RPGs often

involve intricate scenarios that challenge players to make

strategic decisions while navigating grid-based

environments. In such games, NPC behavior is pivotal, as

it significantly influences the game's difficulty, pacing,

and overall enjoyment.

A typical Tactical RPG features numerous NPCs within

a single level, each requiring a robust behavioral system

to act intelligently and align with the game’s objectives.

The design of these systems can follow a variety of rules

and constraints, depending on the overarching vision of

the game being developed. This paper focuses on a

structured approach to developing NPC behavior by

implementing a generic model that leverages both optimal

pathfinding techniques and decision-making frameworks.

The proposed model aims to create a flexible foundation

for designing diverse NPC behaviors, supporting the

creation of compelling gameplay experiences tailored to

the Tactical RPG genre.

A well-designed NPC behavioral system typically

comprises two essential components: an efficient

pathfinding method to navigate towards desired targets

and a decision-making system that determines the actions

an NPC should take in any given situation. Pathfinding

ensures that NPCs can move strategically across grid-

based maps, avoiding obstacles and adapting to changing

game states. On the other hand, the decision-making

process enables NPCs to evaluate their environment,

assess potential threats or opportunities, and select actions

that align with their roles within the game. By integrating

these components, developers can create NPCs that

exhibit consistent and believable behavior, enhancing the

game's immersion and strategic depth.

The primary objective of this paper is to outline a

generic model for NPC behavior that can accommodate a

wide range of scenarios within Tactical RPGs. This model

is designed to be adaptable, enabling developers to create

simple, straightforward behaviors for standard enemy

units while also supporting more complex and intelligent

behaviors for boss characters or key NPCs. For example,

a standard enemy NPC might prioritize moving towards

the nearest player character and attacking, whereas a boss

NPC could evaluate multiple factors, such as positioning,

resource management, and potential escape routes, to

execute more sophisticated strategies. By utilizing a

single generic framework, developers can maintain

consistency across NPC behaviors, streamlining the

development process and improving the overall gameplay

experience.

One of the key challenges in designing NPC behavior

systems is achieving a balance between complexity and

accessibility. While advanced AI techniques, such as

machine learning, can generate highly intelligent and

adaptive behaviors, they often require significant

computational resources and are less transparent to

developers. Instead, this paper adopts a pragmatic

approach by leveraging concepts from discrete

mathematics, such as graph theory and decision trees, to

address pathfinding and decision-making problems. These

methods provide efficient, interpretable solutions that

align with the computational constraints of grid-based

Tactical RPGs.

mailto:113523084@itb.ac.id
mailto:2luthfihakimyusra@gmail.com

Makalah IF1220 Matematika Diskrit – Teknik Informatika ITB –Semester I Tahun 2024/2025

Pathfinding is addressed through the implementation of

Dijkstra's algorithm, a well-established method for

finding the shortest path in weighted graphs. This

algorithm ensures that NPCs can navigate complex grid-

based environments efficiently, accounting for obstacles,

terrain types, and other constraints. Decision-making, on

the other hand, is modeled using decision trees, which

enable NPCs to evaluate multiple factors and select

optimal actions based on predefined rules. Together, these

techniques form the foundation of the proposed

behavioral system, offering a balance of flexibility,

efficiency, and transparency.

The development of a generic NPC behavioral system

has implications beyond individual games. For

developers, a consistent and modular approach simplifies

the process of creating and refining NPC behaviors,

reducing development time and costs. For players, a well-

designed system enhances the gameplay experience by

ensuring that NPCs act in ways that are both challenging

and coherent with the game’s narrative and mechanics.

Moreover, a flexible framework allows developers to

fine-tune the difficulty and complexity of NPC behaviors,

ensuring that the game remains engaging for its intended

audience.

This paper aims to contribute to the field of Tactical

RPG development by providing a comprehensive

framework for NPC behavior design. Through the

integration of decision trees and Dijkstra's algorithm, this

study demonstrates how discrete mathematics can be

applied to create intelligent, adaptable NPCs that enhance

both the strategic depth and overall enjoyment of grid-

based Tactical RPGs.

II. THEORETICAL BASIS

A. Graph Theory

Graph theory is a branch of discrete mathematics that

studies graphs, and the algorithms that involve them.

Graphs are structures that mainly consists of nodes and

edges. A node is a point or an object in the graph,

representing a piece of information depending on how the

graph is used. An edge is used to connect two vertices

with each other. In the context of map representation,

each vertex can represent a specific location or point of

interest, while edges represent the connections or paths

between these locations.

Figure 2.1 Graph

https://www.w3schools.com/dsa/dsa_theory_graphs.php

Another algorithm that will be important in the

implementation of grid-based map in graph form is the

pathfinding and search algorithm. This paper will use

Djikstra’s algorithm, one of the most widely used

methods for finding the shortest path in a weighted graph.

It guarantees the shortest path from a source vertex to all

other vertices in the graph make it ideal. Dijkstra’s

algorithm works as follows:

1. Initialize the distance to the source vertex as 0

and to all other vertices as infinity.

2. Create a priority queue and add the source vertex

with a priority equal to its distance (initially 0).

3. While the priority queue is not empty:

o Dequeue the vertex with the smallest

distance.

o For each of its neighbors, calculate the

tentative distance through the current

vertex.

o If the tentative distance is smaller than

the previously recorded distance, update

it and add the neighbor to the priority

queue.

Figure 2.2 Djikstra Algorithm

https://algodaily.com/lessons/an-illustrated-guide-to-

dijkstras-algorithm

In this paper, grid-based maps in tactical RPGs are

represented in graph form in order to apply the algorithms

that are exclusive to graphs. A grid-based map can be

modelled as a graph where each grid cell is a node, and

edges represent movement between adjacent cells. The

weight between the nodes represent the ‘cost’ of

movement (e.g., forest tiles or obstacles could

compromise the ability to normally traverse).

Figure 2.3 Graph Representation of Grid Map

Private Documentation

https://www.w3schools.com/dsa/dsa_theory_graphs.php
https://algodaily.com/lessons/an-illustrated-guide-to-dijkstras-algorithm
https://algodaily.com/lessons/an-illustrated-guide-to-dijkstras-algorithm

Makalah IF1220 Matematika Diskrit – Teknik Informatika ITB –Semester I Tahun 2024/2025

B. Decision Tree

A decision tree is a flowchart-like structure used for

decision-making and classification tasks. It is composed

of nodes, edges, and leaves that represent decisions,

conditions, and outcomes, respectively. Decision trees

work by recursively splitting data or choices based on

specific criteria, resulting in a clear pathway to a decision

or classification.

The main components of a decision tree include:

• Root Node: The topmost node representing the

initial decision point.

• Decision Nodes: Intermediate nodes that

represent conditions or splits based on specific

features or attributes.

• Leaf Nodes: Terminal nodes that represent the

final decision or classification outcome.

• Edges: Connections between nodes that indicate

the outcomes of decisions or conditions.

Decision trees are used to act as the behaviour logic of

NPCs, deciding how to interact with players based on

situational context.

Figure 2.4 Decision Tree

https://medium.com/@jainvidip/understanding-decision-

trees-1ba0ef5f6bb4

C. Finite State Machine

A finite-state machine (FSM), or simply a state

machine, is a computational model used to design systems

that transition between a finite number of states based on

inputs or events. The main components of an FSM

include:

1. States: Represent different conditions or modes

of the system (e.g., idle, moving, attacking).

2. Transitions: Define the conditions or events that

cause the system to move from one state to

another.

3. Events/Inputs: External factors or triggers that

initiate transitions (e.g., player proximity, health

level).

In this paper, the state will allow NPC behavior to have

different decision trees based on the context and NPC

type. This allows for flexibility and modularity in

designing NPC behavior, leading to a more complex and

engaging behavioral system.

Figure 2.5 Finite State Machine

https://code.tutsplus.com/finite-state-machines-theory-

and-implementation--gamedev-11867t

III. CODE IMPLEMENTATION

In this paper, the implementation of the code will be

done in Python. Though Python is not the most optimal

game developing software, the aim of this paper is the

generic model implementation rather than a full-on

implementation inside a functioning game. To follow

with the common practices of developing NPC in game

development, this paper also applies the bare minimum in

state management with a basic Finite State Machine,

alongside simple representation of states. To avoid losing

focus, these states will only hold very simple events.

For the graph representation in code, this paper will use

an adjacency list to represent an undirected weighted

graph. An adjacency list represents the graph by storing

all the nodes in an array, with each node storing all the

connected edges in an array of itself. This approach is

chosen due to its simplicity in observing all the possible

paths from a single tile. In Python, instead of an array, we

use a dictionary to hold all the nodes, and for every edge

is appended upon both the connected nodes. The

following figures show the common adjacency list

diagram, alongside its code implementation.

Figure 3.1 Adjacency List

https://www.w3schools.com/dsa/dsa_theory_graphs.ph

p

https://medium.com/@jainvidip/understanding-decision-trees-1ba0ef5f6bb4
https://medium.com/@jainvidip/understanding-decision-trees-1ba0ef5f6bb4
https://code.tutsplus.com/finite-state-machines-theory-and-implementation--gamedev-11867t
https://code.tutsplus.com/finite-state-machines-theory-and-implementation--gamedev-11867t
https://www.w3schools.com/dsa/dsa_theory_graphs.php
https://www.w3schools.com/dsa/dsa_theory_graphs.php

Makalah IF1220 Matematika Diskrit – Teknik Informatika ITB –Semester I Tahun 2024/2025

Figure 3.2 Graph Implementation in Python

Private Documentation

The pathfinding method for NPC is Djikstra’s

algorithm, as mentioned before. In order to utilize

Djikstra’s algorithm, priority queue is also implemented,

alongside the code. A priority queue is essentially a

regular queue, with each element in the queue associated

with a priority value, dequeuing based on priority rather

than the original order. The implementation of Djikstra’s

algorithm follows the steps stated in the previous section.

Figure 3.3 Djikstra’s Algorithm in Python

Private Documentation

The following will be implementations of decision tree,

states, and the finite state machine. Although more

complex decision-making can be implemented in this test

run, the aim of this paper is to make a generic model.

With that in mind, the usage of the mentioned models are

very simple in this example model.

Figure 3.4 Decision Tree Implementation in Python

Private Documentation

Figure 3.5 States and Finite State Machine

Implementation in Python

Private Documentation

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the developed model,

this paper made a test case where an NPC ‘X’ is hostile

towards a stationary NPC ‘O’ and approaches it to attack.

The grid-map would be a 5x5 board with obstacles

blocking the path directly, ‘O’ would be placed in the top

left part of the graph, and ‘X’ is placed in the bottom right

part of the graph. The enemy_steps variable represent the

total distance ‘cost’ that can be afforded in each turn by

the ‘X’ NPC.

Figure 4.1 Setting Up the Test Map

Private Documentation

Makalah IF1220 Matematika Diskrit – Teknik Informatika ITB –Semester I Tahun 2024/2025

As mentioned before, the usage of decision tree and

states are minimal. Decision tree only to determine to

attack or move with the context being distance to the

target, and entering and exiting states would simply have

a printed message displaying the current state of the ‘X’

NPC.

Figure 4.2 Setting Up the NPC Behavior Decision Tree

and State Machine

Private Documentation

The turn system mainly focuses on the actions of the

‘X’ NPC, which consists of moving, and attacking once in

range. The program effectively cycles through each turn

during the ‘moving’ state, determining the closest

possible path every turn and going through the path as far

as possible with the available ‘steps’ the NPC has. The

model also takes into account the weight of each edges.

Each turn, the ‘X’ NPC calculates the closest path, then

takes the steps towards it.

Figure 4.3 Graph Display of Turn 1 and 2

Private Documentation

Figure 4.4 Graph Display of the Last Two Turns

Private Documentation

Figure 4.5 Graph Display of a Larger Graph

The tests show that the pathfinding and basic state

machine and decision tree has been implemented

successful in the basic model in NPC behavior. It is

important to consider that this is simply a representation a

model in Python, rather than a direct implementation in

Unity.

V. CONCLUDING REMARKS AND FUTURE WORK

In summary, this paper has successfully outlined a

generic model for developing Non-Playable Character

(NPC) behavior in grid-based Tactical RPGs by

integrating decision trees and Dijkstra's algorithm for

decision making. By leveraging concepts from discrete

mathematics, the model provides a flexible and

interpretable approach to NPC behavior, allowing

developers to create a variety of intelligent actions that

align with the game's objectives. The experimental results

demonstrate the effectiveness of the implemented model,

showcasing its potential to enhance the overall gaming

experience through coherent and challenging NPC

interactions.

Looking ahead, there is significant potential to expand

upon this foundational model by implementing more

complex decision trees and finite state machines within a

proper game engine. Such advancements would allow for

a richer and more nuanced NPC behavior, incorporating

detailed branching logic that can adapt to various in-game

scenarios. The current model, while functional, lacks the

intricate decision-making capabilities that would enable

NPCs to respond dynamically to player actions and

environmental changes. Future iterations could explore

the integration of advanced AI techniques, such as

machine learning, to further enhance NPC adaptability

and intelligence. The following is the link to the source

code: https://github.com/pixelatedbus/npc

https://github.com/pixelatedbus/npc

Makalah IF1220 Matematika Diskrit – Teknik Informatika ITB –Semester I Tahun 2024/2025

VII. ACKNOWLEDGMENT

The author wishes to express heartfelt gratitude to

several parties for their support in the creation of this

paper. First, gratitude is extended to God for His guidance

throughout the process of learning and writing. The

author also acknowledges the invaluable teachings and

support of Mr. Ir.Rila Mandala, the lecturer of ITB's

Matematika Diskrit IF2120 course, whose guidance

greatly enriched the learning experience. Finally, the

author thanks their family and friends for their

unwavering support throughout the semester.

REFERENCES

[1] C. J. T. and M. A. M. "A Survey of Decision Tree Algorithms," in

Journal of Computer Science and Technology, vol. 30, no. 4, pp. 1-

15, 2015.
[2] E. W. Dijkstra, "A Note on Two Problems in Connexion with

Graphs," Numerische Mathematik, vol. 1, no. 1, pp. 269-271,

1959.
[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction, 2nd ed. Cambridge, MA, USA: MIT Press, 2018.

[4] J. R. Quinlan, "C4.5: Programs for Machine Learning," San Mateo,
CA, USA: Morgan Kaufmann, 1993.

[5] M. A. Goodrich and R. Tamassia, Data Structures and Algorithms

in Java, 6th ed. Hoboken, NJ, USA: Wiley, 2014.
[6] https://www.w3schools.com/dsa/dsa_theory_graphs.php

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 Januari 2025

Lutfi Hakim Yusra 13523084

https://www.w3schools.com/dsa/dsa_theory_graphs.php

