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Abstract— This paper presents the design and optimization of a 7-

segment display circuit capable of representing hexadecimal numbers 

(0–9, A–F) using Karnaugh maps. Starting with the construction of 

a truth table that maps 4-bit binary inputs to the respective segment 

outputs, Karnaugh maps are then utilized to simplify the Boolean 

expressions for each segment (a–g), resulting in reduced logic 

complexity and a cost-effective circuit design. This study showcases 

the utility of Karnaugh maps in minimizing Boolean expressions and 

demonstrates their application in practical digital circuit design. 
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I.   INTRODUCTION 

7-segment displays are ubiquitous in digital electronics, 

serving as an efficient and straightforward method for 

displaying numerical digits. Composed of seven individual 

segments (labeled a to g), these displays can form various 

characters by illuminating specific segments in different 

patterns. Due to their simplicity and wide application in devices 

such as clocks, calculators, and digital meters, 7-segment 

displays have become a staple in many consumer and industrial 

products. 

The ability to display hexadecimal numbers (0–9, A–F) on a 

7-segment display is particularly valuable in digital systems, as 

hexadecimal notation is frequently used in computing to 

represent binary data in a more compact and human-readable 

format. Each hexadecimal digit can be represented by a 4-bit 

binary value, and there are 16 unique symbols in the 

hexadecimal system. The task of designing a circuit to correctly 

display these 16 hexadecimal digits requires determining how to 

map each 4-bit binary input to the corresponding combination 

of segments on the 7-segment display. 

This paper demonstrates the design and optimization of a 7-

segment display circuit for hexadecimal numbers using 

Karnaugh maps. The design process begins with creating a truth 

table that associates each 4-bit input (representing hexadecimal 

digits) with the correct segment outputs (a to g). Through the use 

of Karnaugh maps, the Boolean expressions for each segment 

can be simplified, reducing the complexity of the required logic 

circuit. 

The objective of this paper is to showcase the application of 

Karnaugh maps for minimizing Boolean expressions and 

deriving a circuit that can efficiently drive the 7-segment display 

for all 16 hexadecimal digits. By reducing the number of gates 

and simplifying the circuit design, this approach ensures an 

optimized, cost-effective solution for implementing a 7-segment 

display system. 

II.  THEORETICAL BASIS 

A. 7-Segment Display 

A 7-segment display is an electronic display device composed 

of seven individual light-emitting elements (or segments) 

arranged in a figure-eight configuration. These segments, 

labeled from "a" to "g," can be lit individually or in 

combinations to form different numeric or alphanumeric 

characters. The display is typically used to represent decimal 

digits (0–9), but can also be adapted to show letters and other 

symbols in certain cases. 

 

 
Fig. 1. 7-segment display. 

Source: commons.wikimedia.org/wiki/File: 

Seven_segment_01_Pengo.jpg 

 

Each of the seven segments (a to g) can either be ON (lit) or 

OFF, allowing for a total of 128 (27) possible combinations. For 

basic numerical displays, only a subset of these combinations 

are utilized to represent digits 0–9. For instance, to display the 

digit "0", segments a, b, c, e, f, and g are lit, leaving segment d 

off. 

For hexadecimal numbers, which require the display of the 

digits 0–9 as well as the letters A-F, more combinations of 

segments are used. This necessitates a precise mapping between 

each hexadecimal digit and the specific segments to be lit. The 

7-segment display offers a straightforward way to convey 

numeric values visually, but designing the underlying circuit to 

accurately light the correct segments for each input requires 
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careful analysis of the segment patterns. 

7-segment displays offer a straightforward solution for 

displaying numeric values efficiently while maintaining 

versatility in design and functionality. Their widespread 

adoption stems from their ability to integrate seamlessly into 

various electronic systems, providing reliable and readable 

outputs under different conditions [1]. 

 

B. Hexadecimal Number System 

The hexadecimal number system, commonly referred to as 

hex, is a base-16 numeral system that employs sixteen distinct 

symbols to represent values. These symbols include the digits 0 

through 9 and the letters A through F, where A represents 10, B 

represents 11, C represents 12, D represents 13, E represents 14, 

and F represents 15. Each hexadecimal digit also corresponds to 

a 4-bit binary value, as the base-16 system can be expressed as 

a direct mapping to 4-bit binary numbers. The significance of 

the hexadecimal system lies in its ability to provide a more 

compact and human-readable representation of binary numbers, 

which are fundamental to computer operations and digital 

electronics. 

The hexadecimal number system is extensively utilized in 

various computing applications due to its compactness and ease 

of conversion to and from binary. It serves as a bridge between 

human-readable formats and machine-level data representation. 

Common applications include memory addressing in 

programming, color codes in web design (e.g., RGB color 

values), and data representation in cryptography. 

 

C. Boolean Algebra 

Boolean algebra is a mathematical framework that deals with 

binary variables and logical operations. It was introduced by the 

English mathematician George Boole in his book The 

Mathematical Analysis of Logic (1847), aiming to formalize the 

principles of logical reasoning through a symbolic 

representation. Boolean algebra is fundamentally different from 

traditional algebra, as it operates on two discrete values: true (1) 

and false (0). This binary nature allows for the manipulation of 

logical statements and the construction of complex logical 

expressions. 

At its core, Boolean algebra employs three primary 

operations: conjunction (AND), disjunction (OR), and negation 

(NOT). These operations correspond to logical connectives that 

combine or modify propositions. The AND operation, denoted 

as 𝐴 ∧ 𝐵 or 𝐴 ⋅ 𝐵, yields true only when both operands are true. 

Conversely, the OR operation, represented as 𝐴 ∨ 𝐵 or 𝐴 + 𝐵, is 

true if at least one operand is true. The NOT operation, indicated 

as ¬𝐴 or 𝐴′, inverts the truth value of a proposition. 

Boolean algebra consists of several fundamental identities 

that govern the behavior of logical operations. These identities 

are as follows [2]. 

1. Law of the double complement 

 

(𝑥′)′ = 𝑥 (1) 

 

2. Idempotent laws 

 

𝑥 + 𝑥 = 𝑥 (2) 

𝑥 ⋅ 𝑥 = 𝑥 (3) 

  

3. Identity laws 

 

𝑥 + 0 = 𝑥 (4) 

𝑥 ⋅ 1 = 𝑥 (5) 

 

4. Domination laws 

 

𝑥 + 1 = 1 (6) 

𝑥 ⋅ 0 = 0 (7) 

 

5. Commutative laws 

 

𝑥 + 𝑦 = 𝑦 + 𝑥 (8) 

𝑥𝑦 = 𝑦𝑥 (9) 

 

6. Associative laws 

 

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 (10) 

𝑥(𝑦𝑧) = (𝑥𝑦)𝑧 (11) 

 

7. Distributive laws 

 

𝑥 + 𝑦𝑧 = (𝑥 + 𝑦)(𝑥 + 𝑧) (12) 

𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧 (13) 

 

8. De Morgan’s laws 

 

(𝑥𝑦)′ = 𝑥′ + 𝑦′ (14) 

(𝑥 + 𝑦)′ = 𝑥′𝑦′ (15) 

 

9. Absorption laws 

 

𝑥 + 𝑥𝑦 = 𝑥 (16) 

𝑥(𝑥 + 𝑦) = 𝑥 (17) 

 

10. Unit property 

 

𝑥 + 𝑥′ = 1 (18) 

 

11. Zero property 

 

𝑥𝑥′ = 0 (19) 

 

A literal is defined as a Boolean variable or its complement. 

A minterm of the Boolean variables 𝑥1, 𝑥2, … , 𝑥𝑛 is a Boolean 

product 𝑦1𝑦2 … 𝑦𝑛, where each 𝑦𝑖 is either 𝑥𝑖 or 𝑥𝑖
′. In essence, 

a minterm is the product of 𝑛 literals, with exactly one literal for 

each variable [2]. To form a minterm, each variable that has a 

value of 0 is expressed in its complement form, while the 

variable with a value of 1 is expressed as is [3]. 

A maxterm of the Boolean variables 𝑥1, 𝑥2, … , 𝑥𝑛 is a Boolean 

sum 𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛, where each 𝑦𝑖 is either 𝑥𝑖 or 𝑥𝑖
′. Thus, a 

maxterm is the sum of 𝑛 literals, with one literal corresponding 

to each variable [2]. To form a maxterm, each variable that has 

a value of 0 is expressed as is, while the variable with a value of 

1 is expressed in its complement form [3]. 
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Canonical forms are standardized ways of representing 

Boolean functions using minterms or maxterms. These forms 

ensure that a Boolean function is expressed in a consistent 

manner, which is useful for systematic analysis and 

simplification.  

There are two primary types of canonical forms, Sum of 

Minterms (SOP) and Product of Maxterms (POS). The Sum Of 

Minterms (SOP) form expresses a Boolean function as a sum of 

its minterms, for example: 

 

𝑓(𝑥, 𝑦, 𝑧) = 𝑥′𝑦′𝑧 + 𝑥𝑦′𝑧′ + 𝑥𝑦𝑧 (20) 

 

The Product of Maxterms (POS) represents a Boolean 

function as a product of its maxterms, for example: 

 

𝑔(𝑥, 𝑦, 𝑧) = (𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦′ + 𝑧) 

                                     (𝑥′ + 𝑦 + 𝑧′)(𝑥′ + 𝑦′ + 𝑧) (21) 

 

D. Karnaugh Map 

Karnaugh map (K-map) is a graphical method to simplify 

Boolean functions involving a relatively small number of 

variables, by reducing the number of terms in the expression. 

Introduced by Maurice Karnaugh in 1953, the method is based 

on earlier work by E.W. Veitch. K-maps are typically applied to 

functions with six or fewer variables and provide a visual 

approach for simplifying sum-of-products expansions. 

However, they are not designed for automating the process [2]. 

A K-map is a grid where each cell represents a possible 

combination of input values for the variables. The cells are 

arranged in a way that ensures adjacent cells differ by only one 

variable (this is known as the Gray code order). The number of 

cells in the K-map corresponds to the number of possible input 

combinations, which is 2𝑛, where 𝑛 is the number of variables 

in the Boolean function. 

To begin simplifying a Boolean functions, the cells of the K-

map are filled with 1s and 0s, corresponding to the values of the 

function for each combination of variables. A 1 is placed in a 

cell if the Boolean function evaluates to 1 for the combination 

of variables represented by that cell; otherwise, a 0 is placed. 

The goal of using the K-map is to group adjacent cells that 

contain 1s. These groups must have sizes that are powers of 2 

(e.g., 1, 2, 4, 8 cells, etc.). The larger the group, the simpler the 

resulting Boolean expression will be. Each group represents a 

simplified product term in the sum-of-products (SOP) form. The 

simplified Boolean expression is obtained by writing a term for 

each group, where the variables that change between the cells of 

the group are excluded. 

By forming the largest possible groups of 1s, the number of 

terms in the Boolean expression is minimized. Overlapping 

groups can be formed to cover all the 1s in the map. The goal is 

to cover all the 1s with the fewest groups. 

To demonstrate, consider the Karnaugh map of the function 

𝑓(𝑤, 𝑥, 𝑦, 𝑧) in Fig. 2. After grouping the 1s, the function can be 

simplified into: 

 

𝑓(𝑤, 𝑥, 𝑦, 𝑧) = 𝑤𝑦′ + 𝑦𝑧′ + 𝑤′𝑥′𝑧 (22) 

 

 

 
Fig. 2. K-map of 𝑓(𝑤, 𝑥, 𝑦, 𝑧). 

Source: [4] 

 

In some circuits, we may only care about the output for 

specific combinations of input values, while other combinations 

are either impossible or irrelevant. This flexibility allows us to 

further simplify the circuit because the output values for those 

combinations can be chosen freely. These combinations, for 

which the output can be arbitrarily assigned, are known as don’t 

care conditions. 

In a K-map, these don't care conditions are marked with an 

"X" or "D". During the minimization process, these don’t care 

conditions are treated as 1s in order to form the largest possible 

groups in the K-map, further reducing the number of terms in 

the simplified Boolean expression, leading to a simpler and 

more efficient circuit. 

 

E. Logic Gates 

Logic gates are the fundamental building blocks of digital 

circuits. They perform basic logical operations on one or more 

binary inputs to produce a single binary output. Because of this 

nature, logic circuits can be modelled using Boolean algebra [2]. 

There are various types of logic gates, but all of them are 

composed of 3 fundamental types: AND gate, OR gate, and 

NOT gate (inverter). 

 

 
Fig. 3. Fundamental logic gates. 

Source: [2] 

 

Logic gates are used extensively in digital electronics to 

implement Boolean functions, enabling the design of circuits 

that process and manipulate binary data. Logic gates form the 

basis for more complex components like multiplexers, decoders, 

and flip-flops, which are integral to modern digital systems. 

 

III.   IMPLEMENTATION 

To design the circuit, we will follow these steps: constructing 

a truth table, using Karnaugh maps to simplify the Boolean 

expressions, and finally implementing the simplified Boolean 

expressions into a logic circuit. 
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A. Truth Table Design 

The 7-segment display has seven segments labeled a–g, 

which can be turned on or off depending on the hexadecimal 

digit being displayed. For reference, we will use the 7-segment 

display labeling in Fig. 3. We will begin by constructing a truth 

table that maps each of the 16 hexadecimal digits (0–F) to the 

corresponding combination of segments. The input to the 

display will be a 4-bit binary number representing one of the 

hexadecimal digits (0–F). 

 

 
Fig. 4. 7-segment display labelled a—g. 

Source: flyrobo.in/blog/7-segment-display 

 

 
Fig. 5. Hexadecimal digits in 7-segment display. 

Source: electronics.stackexchange.com/questions/373034/hex-

to-7-segment-decoder-for-a-common-anode-7-seg-display 

 

Table 1. Truth table of hexadecimal in 7-segment display. 

Hex Binary a b c d e f g 

0 0000 1 1 1 1 1 1 0 

1 0001 0 1 1 0 0 0 0 

2 0010 1 1 0 1 1 0 1 

3 0011 1 1 1 1 0 0 1 

4 0100 0 1 1 0 0 1 1 

5 0101 1 0 1 1 0 1 1 

6 0110 1 0 1 1 1 1 1 

7 0111 1 1 1 0 0 0 0 

8 1000 1 1 1 1 1 1 1 

9 1001 1 1 1 1 0 1 1 

A 1010 1 1 1 0 1 1 1 

B 1011 0 0 1 1 1 1 1 

C 1100 1 0 0 1 1 1 0 

D 1101 0 1 1 1 1 0 1 

E 1110 1 0 0 1 1 1 1 

F 1111 1 0 0 0 1 1 1 

 

In this truth table, a "1" indicates that the corresponding 

segment is lit, and a "0" indicates that the segment is off. For the 

binary, we will name the digits as literal 𝐴, 𝐵, 𝐶, 𝐷 according to 

the order of the digits, starting from left to right. For example, 

the hex A, which has the binary 1010, will have A = 1, B = 0,
C = 1, and D = 0. 

 

B. Karnaugh Map Simplification 

Once the truth table is complete, we can now use Karnaugh 

maps to simplify the Boolean expressions for each segment (a–

g). A Karnaugh map helps minimize the Boolean expression by 

grouping adjacent "1" cells and deriving the simplest sum-of-

products (SOP) expressions. 

Once we have the simplified Boolean expressions for each 

segment, we can implement the circuit. The expressions can be 

realized using basic logic gates such as AND, OR, and NOT 

gates. The final circuit diagram will consist of seven 

independent circuits, one for each segment (a–g). 

 

1. Segment a 

 

 
Fig. 6. Karnaugh map of segment a. 

 

𝑎(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵𝐶′𝐷 + 𝐴′𝐶 + 𝐵′𝐶 + 𝐴𝐷′ + 𝐵′𝐷′ (23) 

 

 
Fig. 7. Logic circuit of segment a. 
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2. Segment b 

 

 
Fig. 8. Karnaugh map of segment b. 

 

𝑏(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵𝐶′𝐷′ + 𝐴𝐶′𝐷 + 𝐴′𝐶𝐷 + 𝐴𝐵𝐷′ + 𝐴′𝐵′ (24) 

 

 
Fig. 9. Logic circuit of segment b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Segment c 

 

 

 
Fig. 10. Karnaugh map of segment c. 

 

𝑐(𝐴, 𝐵, 𝐶, 𝐷) = 𝐶′𝐷 + 𝐴′𝐶′ + 𝐴′𝐷 + 𝐵 (25) 

 

 

 
Fig. 11. Logic circuit of segment c. 
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4. Segment d 

 

 

 
Fig. 12. Karnaugh map of segment d. 

 

𝑑(𝐴, 𝐵, 𝐶, 𝐷) = 𝐵𝐶′𝐷 + 𝐴′𝐶𝐷′ + 𝐴𝐵𝐷
                             +𝐴′𝐵′𝐶 + 𝐴𝐶′ + 𝐵′𝐷′ (26)

 

 

 
Fig. 13. Logic circuit of segment d. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Segment e 

 

 

 
Fig. 14. Karnaugh map of segment e. 

 

𝑒(𝐴, 𝐵, 𝐶, 𝐷) = 𝐶𝐷′ + 𝐴𝐵′ + 𝐴𝐶
                                   +𝐵′𝐶 + 𝐴𝐷′ + 𝐵′𝐷′ (27)

 

 

 
Fig. 15. Logic circuit of segment e. 
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6. Segment f 

 

 

 
Fig. 16. Karnaugh map of segment f. 

 

𝑓(𝐴, 𝐵, 𝐶, 𝐷) = 𝐶′𝐷′ + 𝐵𝐶′ + 𝐵𝐷′ + 𝐴 (28) 

 

 
Fig. 17. Logic circuit of segment f. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Segment g 

 

 

 
Fig. 18. Karnaugh map of segment g. 

 

𝑔(𝐴, 𝐵, 𝐶, 𝐷) = 𝐶𝐷′ + 𝐵𝐶′ + 𝐴𝐷 + 𝐵′𝐶 (29) 

 

 
Fig. 19. Logic circuit of segment g. 
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VI.   CONCLUSION 

The design and optimization of a 7-segment display circuit 

for hexadecimal numbers demonstrate the effective use of 

Boolean algebra and Karnaugh maps in digital logic design. By 

systematically constructing a truth table, simplifying the 

Boolean expressions for each segment, and implementing the 

resulting logic with gates, we developed a circuit capable of 

accurately displaying all 16 hexadecimal digits. 

The approach shown in this paper provides a robust 

methodology for designing similar digital systems. The 

principles of Boolean algebra, combined with visual 

simplification tools like Karnaugh maps, are versatile and 

applicable to a wide range of problems in digital electronics. 
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