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Abstract— This paper presents a comprehensive analysis of 

optimal strategies in Tic-Tac-Toe through the application of 

combinatorial tree analysis. By constructing a detailed game tree that 

encapsulates all possible game states and move sequences, we 

systematically explore the decision-making processes inherent in the 

game. By leveraging combinatorial techniques, we effectively reduce 

the complexity of the game tree by identifying and eliminating 

symmetrical states, thereby streamlining the analysis. The Minimax 

algorithm is employed to evaluate and assign utility values to terminal 

states, facilitating the determination of optimal moves under various 

game conditions. Additionally, probabilistic methods are integrated to 

assess the likelihood of different outcomes (win, loss, draw) from 

specific game states, providing a nuanced understanding of strategic 

advantages. Through scenario-based evaluations and case studies, 

the paper demonstrates how combinatorial tree analysis can identify 

and validate optimal strategies, ensuring that player can consistently 

achieve the best possible outcomes. This study underscores the 

efficacy of combinatorial tree analysis as a robust framework for 

strategic decision-making and offers insights into its broader 

applications in game theory. 

Keywords— Tic-Tac-Toe, combinatorial analysis, game trees, 

optimal strategies 

 

I.   INTRODUCTION 

Tic-Tac-Toe, a simple yet enduring two-player game, has 

long served as an ideal model for exploring fundamental 

concepts in game theory, combinatorics, and strategic decision-

making. Despite its apparent simplicity, Tic-Tac-Toe 

encapsulates essential elements of competitive strategy, making 

it a valuable tool for both educational purposes and theoretical 

analysis. The game’s limited complexity allows for exhaustive 

exploration of all possible game states and move sequences, 

providing a clear framework for understanding optimal play and 

strategic planning. 

 

 

Figure 1. Tic-Tac-Toe gameboard illustration 

(Source:https://www.canva.com/design/DAGaNN5GAmc/P1QUp3JUdDYAJE

_JmiHOTA/edit) 

 

The study of optimal strategies in Tic-Tac-Toe has been a 

subject of interest for mathematicians and educators alike, 

primarily due to its deterministic nature and the finite number of 

possible game outcomes. By systematically analyzing every 

potential move and its subsequent ramifications, researchers can 

elucidate the principles that govern winning, losing, and 

drawing scenarios. This comprehensive analysis not only 

reinforces foundational mathematical concepts but also offers 

insights into more complex strategic interactions found in 

advanced games and real-world-decision-making processes. 

Combinatorial tree analysis emerges as a powerful 

methodological approach for dissecting the strategic landscape 

of Tic-Tac-Toe. A game tree, representing all possible moves 

and their outcomes, serves as the backbone on this analysis. By 

constructing and traversing this tree, one can systematically 

evaluate each move’s potential, identify patterns, and determine 

the most advantageous strategies. Combinatorial techniques 

further enhance this process by enabling the enumeration and 

classification of game states, facilitating the identification of 

symmetrical positions and the reduction of computational 

complexity. 

This paper aims to demonstrate how combinatorial tree 

analysis can be effectively employed to uncover and validate 

optimal strategies in Tic-Tac-Toe, by meticulously constructing 

the game tree and applying combinatorial principles, we seek to 

provide a comprehensive framework for understanding the 

game’s dynamics. The analysis will focus on evaluating specific 

game conditions, assessing the probabilities of various 

outcomes, and illustrating how strategic decisions can lead to 

consistent success or inevitability of a draw when both players 

engage optimally. 

 

II. RELATED WORKS 

The analysis of optimal strategies in Tic-Tac-Toe has been a 

focal point in the study of combinatorial game theory and 

algorithmic strategy development. This section reviews the 

pivotal research and methodologies that have contributed to 

understanding and optimizing gameplay in Tic-Tac-Toe. 

 

A. Foundational Game Theory and Tic-Tac-Toe 

Analysis 

Von Neumann and Morgenstern laid the groundwork for 

modern game theory, introducing concepts such as minimax 

strategies that are directly applicable to deterministic games like 

Tic-Tac-Toe [1]. Their seminal work established the 
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mathematical framework for analyzing competitive interactions 

and optimal decision-making. 

Borel was among the first to explore simple games, providing 

early insights into deterministic outcomes based on optimal 

play, which are fundamental to understanding Tic-Tac-Toe's 

inherent strategy [2]. 

 

B. Combinatorial Game Theory 

Berlekamp, Conway, and Guy in Winning Ways for Your 

Mathematical Plays offered comprehensive techniques for 

analyzing impartial and partisan games. Their methodologies for 

enumerating game states and evaluating move sequences have 

been instrumental in constructing exhaustive game trees for Tic-

Tac-Toe [3]. 

Conway further advanced combinatorial game theory with 

concepts like surreal numbers and game values, enriching the 

mathematical tools available for dissecting optimal strategies in 

deterministic games [4]. 

 

C. Game Tree Construction and Analysis 

Shannon introduced the concept of game trees in his paper on 

programming computers to play chess, a methodology that has 

been adapted for simpler games like Tic-Tac-Toe. His 

exploration of game tree complexity underpins the 

combinatorial approaches used in exhaustive move sequence 

analysis [5]. 

The minimax algorithm, a cornerstone in determining optimal 

strategies, has been extensively studied and refined. Early 

implementations focused on games like Tic-Tac-Toe to 

demonstrate its effectiveness in strategic decision-making 

without relying on artificial intelligence [6]. 

 

D. Probabilistic Methods in Game Analysis 

While Tic-Tac-Toe is inherently deterministic, probabilistic 

methods have been applied to assess the likelihood of various 

outcomes based on different move sequences. Studies have 

utilized combinatorial probability to evaluate the chances of 

winning, losing, or drawing from specific game states [7]. 

Research comparing Tic-Tac-Toe with more complex games 

like Connect Four and Gomoku has highlighted the scalability 

of combinatorial tree analysis. These comparisons underscore 

the applicability of combinatorial methods across different 

levels of game complexity [8]. 

 

III. THEORETICAL FRAMEWORK 

A. Tic-Tac-Toe Game Mechanics 

Tic-Tac-Toe is a classic two-player game characterized by its 

simplicity and strategic depth. The game is played on a 3x3 grid, 

where each of the two players takes turns marking a cell with 

their respective symbols, typically 'X' and 'O'. The primary 

objective is to be the first player to align three of their symbols 

horizontally, vertically, or diagonally, thereby securing a win. 

The game commences with an empty grid, and players alternate 

turns, with 'X' traditionally making the first move. 

The game board of Tic-Tac-Toe consists of nine cells 

arranged in a 3x3 grid. Each cell can exist in one of three distinct 

states: empty, marked with an ‘X’, or marked with an ‘O’. This 

simple yet structured layout provides a clear framework for 

tracking the progression of layout provides a clear framework 

for tracking the progression of the game and the placement of 

each player’s symbols. 

Players alternate turns throughout the game, with 'X' 

traditionally making the first move. During each turn, a player 

selects an unoccupied cell to place their respective symbol ('X' 

or 'O'). This alternating sequence ensures fairness and strategic 

depth, as each player responds to the opponent's previous move 

while advancing their own strategy. 

As we can see on Figure 2, a player achieves victory by 

placing three of their symbols in a straight line. This alignment 

can occur horizontally across any of the three rows, vertically 

down any of the three columns, or diagonally from one corner 

of the grid to the opposite corner. These clear and concise 

winning conditions define the objective of the game and guide 

players in formulating their strategies. 

A player incurs a loss if their opponent successfully forms a 

winning alignment during their turn. This condition underscores 

the reactive nature of Tic-Tac-Toe, where players must not only 

pursue their own strategies but also vigilantly defend against the 

opponent's attempts to secure a win. The loss condition 

highlights the balance between offensive and defensive play that 

is crucial for optimal strategy formulation. 

 

 

Figure 2. Winning condition for 'O' and Losing condition for 'X' illustration 

(Source:https://www.canva.com/design/DAGaNN5GAmc/P1QUp3JUdDYAJE

_JmiHOTA/edit) 

If all nine cells on the board become occupied without either 

player fulfilling the winning conditions, the game concludes in 

a draw as shown on Figure 3. This outcome emphasizes the 

importance of strategic play, as both players must work to block 

each other's attempts to form a winning alignment. 

 

 

Figure 3. Draw condition for 'O' and 'X 

(Source:https://www.canva.com/design/DAGaNN5GAmc/P1QUp3JUdDYAJE

_JmiHOTA/edit) 

B. Combinatorial Game Mechanics 

Combinatorics, a fundamental branch of mathematics, deals 

with the study of counting, arrangement, and combination of 

objects within a defined set. Its principles are pivotal in 

understanding and analyzing discrete structures and processes, 

making it an indispensable tool in various fields, including game 

theory and strategic decision-making. In the context of Tic-Tac-

Toe, combinatorial concepts provide the mathematical 
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foundation necessary to systematically explore all possible 

game states and move sequences, thereby enabling the 

identification of optimal strategies. 

At its core, combinatorics involves calculating the number of 

ways certain patterns or structures can emerge from a given set 

of elements. This involves key concepts such as permutations 

and combinations, which quantify the different arrangements 

and selections possible within the game's framework. For 

instance, determining the number of possible ways to place 'X' 

and 'O' on the Tic-Tac-Toe grid at any stage of the game is a 

direct application of combinatorial calculations. 

One of the primary applications of combinatorics in Tic-Tac-

Toe is the enumeration of all potential game states. By 

systematically counting the various configurations of the board, 

combinatorial methods ensure that every possible scenario is 

accounted for. This exhaustive enumeration is crucial for 

constructing a comprehensive game tree, which serves as the 

basis for analyzing strategic moves and outcomes. 

Understanding the total number of game states also aids in 

assessing the game's complexity and the feasibility of 

performing an exhaustive analysis. 

To effectively enumerate and analyze game states in Tic-Tac-

Toe, two fundamental combinatorial concepts are employed: 

permutations and combinations. These concepts facilitate the 

calculation of the number of possible arrangements of 'X' and 

'O' on the game board under various conditions. Permutations 

refer to the number of ways to arrange a set of objects in a 

specific order. In the context of Tic-Tac-Toe, permutations can 

be used to determine the number of distinct sequences of moves 

leading to a particular game state. The formula for calculating 

permutations is given by:  

 

𝑃(𝑛, 𝑟) =
𝑛!

(𝑛 − 𝑟)!
 

 

Where:  

• 𝑃(𝑛, 𝑟) is the number of permutations, 

• 𝑛 is the total number of available positions (cells), 

• 𝑟 is the number of positions to be filled,  

• 𝑛! Denotes the factorial of 𝑛. 

 

Combinations, on the other hand, refer to the number of ways 

to select a subset of objects without regard to the order of 

selection. In Tic-Tac-Toe, combinations are useful for 

determining the number of unique game states regardless of the 

sequence in which the moves were made. 

 

𝐶(𝑛, 𝑟) =
𝑛!

𝑟! (𝑛 − 𝑟)!
 

 

Where:  

• 𝐶(𝑛, 𝑟) is the number of combinations, 

• 𝑛 is the total number of available positions, 

• 𝑟 is the number of positions to be filled,  

• 𝑛! Denotes the factorial of 𝑛. 

 

C. Tree Theory and Node Concepts 

In computer science and discrete mathematics, a tree is a 

widely used abstract data type that simulates a hierarchical tree 

structure, with a set of connected nodes. Trees are fundamental 

in various applications, including data storage, search 

algorithms, and the representation of hierarchical relationships. 

The study of tree structures encompasses understanding their 

properties, types, and the relationships between their constituent 

elements. At the core of tree structures are nodes and edges:  

• Nodes: are the fundamental units of a tree, 

representing individual elements within the 

structure. Each node can store data and may have 

connections to other nodes. 

• Edges: These are the connections between nodes, 

indicating the relationship or hierarchy between 

them. 

Understanding the different types of nodes within a tree is 

essential for analyzing and traversing tree structures effectively. 

The primary classifications include:  

• Root Node: This is the topmost node in a tree from 

which all other nodes descend. A tree has exactly 

one root node, which serves as the entry point for 

traversing the tree. 

• Parent and Child Nodes: In a hierarchical tree, a 

parent node is any node that has one or more nodes 

connected below it, known as child nodes. 

Conversely, a child node is directly connected to and 

dependent on a parent node. 

• Leaf Nodes: Also known as terminal nodes, these 

nodes do not have any children. They represent the 

endpoints of the tree branches. 

• Internal Nodes: These are nodes that have at least 

one child node. Internal nodes lie between the root 

and the leaf nodes, serving as connectors within the 

tree. 

• Sibling Nodes: Nodes that share the same parent are 

referred to as siblings. They reside as the same 

hierarchical level within the tree. 

 

Figure 4. Tree structure illustration 

(Source:https://www.canva.com/design/DAGaNN5GAmc/P1QUp3JUdDYAJE

_JmiHOTA/edit) 

Formally, a tree can be defined as a connected, acyclic graph. It 

can be represented mathematically as 𝑇 = (𝑉, 𝐸), where: 

• 𝑉 is the set of vertices (nodes).  

• 𝐸 Is the set of edges connecting the vertices. 
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Various specialized tree structures have been developed to 

address specific need, in a binary tree each node has at most two 

children, commonly referred to as the left and right child. Binary 

trees are fundamental in implementing binary search trees and 

heaps. On the other hand, N-Ary Trees, its nodes can have up to 

N children, providing greater flexibility in representing complex 

hierarchical relationships. Balanced trees inherit balanced 

structure to ensure optimal performance for insertion, deletion, 

and search operations. Examples include AVL trees and Red-

Black trees. While Game trees are specialized trees used in game 

theory to represent all possible moves and outcomes in a game. 

Each node represents a game state, and edges represent player 

moves. 

In the context of combinatorial analysis, nodes serve as 

critical points for evaluating and enumerating all possible 

configurations within a problem space. Each node encapsulates 

a unique state or decision, allowing for systematic exploration 

and optimization of strategies. Understanding the role and 

properties of nodes within trees facilitates the construction of 

comprehensive game tree, enabling the identification of optimal 

paths and strategies in deterministic environments. 

 

IV.   METHOD 

A. Combinatorial Tree Construction and Overview 

To analyze optimal strategies in Tic-Tac-Toe, we employed a 

combinatorial tree approach that systematically explores all 

possible game states and move sequences. The foundation of our 

methodology is the construction of a comprehensive game tree, 

which serves as a hierarchical representation of every 

conceivable move from the initial empty board to terminal states 

(win, loss, or draw). To be more detailed, the combinatorial tree 

evaluates the shortest path of every possibility (winning, losing, 

or draw) on each child node to determine its best move avoiding 

a lose or draw conditions.  

 

Figure 5. Our Combinatorial Tree Tic-Tac-Toe Model 

(Source:https://www.canva.com/design/DAGaNN5GAmc/P1QUp3JUdDYAJE

_JmiHOTA/edit) 

 In the Beginning, a combinatorial Tic-Tac-Toe tree have 9 

nodes of children, which each node determines the condition of 

which box will be filled with ‘X’, assuming ‘X’ starts the first 

move, as shown on Figure 5. The global root determines its 

beginning state, which the board were still empty, neither ‘X’ 

nor ‘O’ has moved yet. Every move executed, either ‘X’ or ‘O’, 

it enhances to the next stage of node depending on which box in 

the Tic-Tac-Toe is being filled. For example, player 1 decide to 

place ‘X’ in box 1 (1,1), then, the main node will enhance to the 

node 1 in the combinatorial tree and ignore the rest of the global 

root children’s nodes. 

The node will then identify the shortest winning, losing, and 

drawing node (which in this case the leaf node) throughout its 

generation node and determine its best move depending on the 

possibilities. Doing the same thing, traversing through its next 

node until the next node its Null, then the game ended. 

 

 
Figure 6. Function To Determine Available Moves 

(Source: https://github.com/brii26/Tic-Tac-Toe-Combinatorial-Tree)  

The Tic-Tac-Toe board is modeled as a linear list of nine 

elements, corresponding to the nine cells of the 3x3 grid. Each 

cell can be in one of three states: empty (' '), marked with 'X', or 

marked with 'O'. This linear representation facilitates easy 

indexing and manipulation of the board state within the 

algorithm. The get_available_moves function identifies all 

unoccupied cells by scanning the board list and returns the 

indices of cells that are still empty, ensuring that only valid 

moves are considered during tree traversal. 

The check_winner function assesses whether a player has 

achieved a winning alignment by evaluating predefined win 

conditions. These conditions include all possible rows, columns, 

and diagonals where a player can align three of their symbols. 

By iterating through these conditions, the function determines if 

the current player has secured a victory, thereby identifying 

terminal states in the game tree. 

 

 

 
Figure 7. Function to check winner in every round 

(Source: https://github.com/brii26/Tic-Tac-Toe-Combinatorial-Tree)  

The core of the combinatorial tree construction lies in the 

recursive exploration of game states. Starting from the initial 

empty board, the algorithm alternates between players 'X' and 

'O', generating child nodes for each possible move. This 

recursive process continues until a terminal state is reached, 

either a win for one of the players or a draw. To manage 

computational complexity, we implemented memoization 

using Python's functools.lru_cache decorator. This 

optimization caches the results of previously evaluated game 

states, preventing redundant computations and significantly 

enhancing the efficiency of the tree traversal. 
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The compute_shortest_paths function serves as the 

backbone of our game tree analysis, enabling the evaluation of 

each game state’s potential outcomes under optimal play 

conditions which will be disclosed in the next section. By 

recursively exploring all possible moves and leveraging 

memorization to cache results, the algorithm efficiently 

navigates the expansive game tree of Tic-Tac-Toe. 

 

B. Minimax Algorithm Implementation 

The Minimax algorithm is integral to determining optimal 

strategies in deterministic, two-player games like Tic-Tac-Toe. 

It operates by simulating all possible moves and countermoves, 

evaluating the desirability of each resulting game state from the 

perspective of both players. The goal is to maximize the player's 

minimum gain, ensuring that the chosen move leads to the most 

favourable outcome while minimizing the opponent's 

opportunities. 

In our implementation, the compute_shortest_paths 

function inspired by the Minimax logic. It evaluates the shortest 

paths to victory, defeat, or draw for each possible move, 

assigning utility values accordingly. Terminal states are 

assigned specific utility values: +1 for an 'X' win, -1 for an 'O' 

win, and 0 for a draw. These values propagate up the game tree, 

allowing each player to choose moves that optimize their 

chances of winning while minimizing the opponent's 

opportunities. 

 

 
Figure 8. Our core combinatorial tree algorithm 

(Source: https://github.com/brii26/Tic-Tac-Toe-Combinatorial-Tree)  

This function recursively assesses each game state, 

determining the shortest paths to each possible outcome and 

assigning utility values that guide optimal move selection. By 

doing so, it effectively balances offensive and defensive 

strategies, ensuring that players make the most informed and 

advantageous decisions throughout the game. 

 

C. Probability Assessment and Move Recommendation  

Beyond determining optimal strategies, our implementation 

provides probabilistic insights into the potential outcomes of 

each available move. This feature aids players in making 

informed decisions by highlighting the likelihood of achieving 

a win, loss, or draw based on their current game state. 

The display_move_probabilities function calculates 

these probabilities by analysing the shortest paths to each 

possible outcome from every available move. It inversely 

weights these paths, emphasizing shorter paths to favourable 

outcomes (wins) and longer paths to unfavourable ones (losses). 

The probabilities are then normalized to present a clear 

percentage distribution for each move's potential outcomes. 

Additionally, the system incorporates a move 

recommendation feature that suggests the most strategically 

advantageous move based on the calculated probabilities. For 

player 'X', the recommendation prioritizes moves that maximize 

the probability of an 'X' win while minimizing the probability of 

an 'O' win. Conversely, for player 'O', the focus shifts to 

maximizing 'O' win probabilities and minimizing 'X' win 

chances. 

 

 
Figure 9. Function to display every probability in every round 

(Source: https://github.com/brii26/Tic-Tac-Toe-Combinatorial-Tree)  
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This function enhances user interaction by providing real-time 

feedback on the strategic implications of each possible move. 

By presenting a clear probability distribution and 

recommending the most advantageous move, it empowers 

players to make informed decisions that align with optimal play 

strategies.     

The formula implemented on determining the best move is 

based on the shortest length of a node through its local root 

dividing the shortest winning condition of ‘X’ or ‘O’ with the 

total length of the shortest winning, losing, and draw condition. 

In certain cases where there are no chance of a player to get a 

draw or a lose, the shortest length won’t be counted producing a 

solid 100% winning chance for the winner. 

 

V.   RESULTS & DISCUSSION 

This section presents the outcomes of the combinatorial tree 

analysis applied to Tic-Tac-Toe, demonstrating the algorithm's 

effectiveness in determining optimal strategies across different 

game states. The analysis focuses on three primary scenarios: 

the initial game state, a random mid-game state, and a scenario 

where Player O intentionally throws the game. 

 

A. Initial Game State Analysis 

At the start of the game, the Tic-Tac-Toe board is entirely 

empty, presenting all nine cells as available moves for Player X. 

The algorithm evaluates each possible initial move to determine 

the probabilities of winning, losing, or drawing, assuming 

optimal play from both participants. 

 

 
Figure 10. Initial game state condition  

(Source: https://github.com/brii26/Tic-Tac-Toe-Combinatorial-Tree) 

In the initial state, the algorithm assigns an identical 

probability distribution across all nine possible initial moves for 

Player X:  

• X win probability: 43.48% 

• O win probability: 34.78% 

• Draw probability: 21.74% 

 

This uniform distribution suggests that, from a probabilistic 

standpoint, no single first move offers a significant advantage 

over others. However, the algorithm recommends Move 1 as the 

best move. 

B. Random Mid-Game State Analysis 

Following the initial moves, the board state is as follows, with 

Player X having chosen Move 1 and Player O responding with 

Move 2, resulting changes in the board as shown on Figure 12. 

 

 
Figure 11. O responds to X first move executing the best move 

(Source: https://github.com/brii26/Tic-Tac-Toe-Combinatorial-Tree) 

 

 
Figure 12. Board state after O responds 

(Source: https://github.com/brii26/Tic-Tac-Toe-Combinatorial-Tree) 

At this mid-game stage shown on Figure 11, the algorithm 

reassesses the probabilities for Player X's potential moves. The 

updated probabilities indicate a slight increase in Player X's 

chance of winning (45.90%) and a decrease in the chance of 

losing (34.43%), with the draw probability slightly lower 

(19.67%) compared to the initial state. The consistent 

probabilities across available moves suggest that Player X 

maintains a relatively balanced set of options, with each move 

offering similar prospects. 
 

C. Intentional Loss Scenario 

As shown on Figure 13, Player X makes a move that sets up 

Player O for a guaranteed win at box 5, however Player O 

responds x move immediately with a surprising decision, instead 

of placing its position at box 9 , avoiding Player X to win the 

game , Player O decides to throw the game by position itself to 

box 3 , creating an absolute win for Player X on the next move. 
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Figure 13. Player O throws the game by position itself at box 3 

(Source: https://github.com/brii26/Tic-Tac-Toe-Combinatorial-Tree)  

In this scenario, the algorithm identifies Move 9 as an absolute 

winning move for Player X, assigning a 100.00% probability of 

winning while nullifying the chances of Player O to win or draw. 

This move completes a diagonal alignment for Player X, 

securing an immediate victory. 

 

 
Figure 14. Player X won the game 

(Source: https://github.com/brii26/Tic-Tac-Toe-Combinatorial-Tree) 
 

D. Optimal Play Leading to a Draw 

When both players adhere strictly to the algorithm's 

recommended optimal moves, the game progresses without 

either player achieving a winning alignment, resulting in a draw. 
 

 
Figure 15. Draw between Player O and Player X 

(Source: https://github.com/brii26/Tic-Tac-Toe-Combinatorial-Tree) 

This outcome illustrates that when both players follow the 

algorithm's recommendations, the game concludes in a draw. 

The balanced move selections and probability assessments 

ensure that neither player gains an insurmountable advantage, 

leading to an inevitable tie. 
 

VI.   CONCLUSION 

This study successfully demonstrates the application of 

combinatorial tree analysis in determining optimal strategies for 

Tic-Tac-Toe. By implementing an algorithm inspired by the 

Minimax framework, the research effectively evaluates all 

possible game states and move sequences to provide 

probabilistic assessments of potential outcomes. The algorithm's 

ability to assign win, loss, and draw probabilities to each move, 

as evidenced in various game scenarios, underscores its 

robustness in strategic decision-making. The initial game state 

analysis revealed that all starting moves hold equal potential, 

with the algorithm strategically recommending corner positions 

to maximize future winning opportunities. This alignment with 

traditional Tic-Tac-Toe strategies highlights the algorithm’s 

foundational strength in recognizing and leveraging advantages 

inherent in the game's combinatorial tree structure. 

As the game progresses to mid-game states, the algorithm 

dynamically adjusts its probability assessments based on the 

evolving board configuration. This adaptability ensures that 

recommended moves remain optimal, enhancing Player X's 

chances of winning while simultaneously minimizing Player O's 

opportunities. The ability to recall and update probabilities in 

response to the opponent's moves demonstrates the algorithm’s 

proficiency in navigating complex game states and maintaining 

strategic foresight. Furthermore, the intentional loss scenario 

showcased the algorithm’s capability to identify and execute 

decisive moves that lead to guaranteed victories, thereby 

reinforcing its effectiveness in enforcing optimal play within the 

combinatorial tree framework. 

Overall, the combinatorial tree analysis enriches the 

traditional Minimax approach by incorporating probabilistic 

evaluations and dynamic assessments, providing a more 

nuanced and informative framework for strategic decision-

making in Tic-Tac-Toe. The algorithm not only facilitates 

optimal move selection but also enhances the understanding of 

strategic balance, ensuring that games between two informed 

players result in fair and balanced outcomes. This study 

underscores the potential of combinatorial tree methodologies 

as powerful tools in game theory, offering valuable insights into 

optimal strategies and decision-making processes.  

 

VII.   APPENDIX 

• YouTube video explaining the paper:  

https://youtu.be/eJb0yRSlhJU  

• GitHub repository for the project:  

https://github.com/brii26/Tic-Tac-Toe-Combinatorial-

Tree  
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