
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Automatic Beatmap Creation for The Video Game

osu! Through The Use of Abstract Syntax Trees to

Analyze Musical Rhythms

Arlow Emmanuel Hergara - 135231611

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1arlow5761@gmail.com, 13523161@std.stei.itb.ac.id

Abstract—The Abstract Syntax Tree is an interesting data

structure that is mainly used in the field of programming language

design. While its use in that specific field has been found to be

irreplaceable, it still hasn’t found any major uses outside of that

field. This is odd considering the concept of formal language that

the AST operates on is not limited in uses to that field. Thus this

paper was created as a means to explore the possibly untapped

potential of the AST by employing for beatmap creation in the

video game osu!. Through the creation of a hypothetical software,

this paper explores how AST could be used to complete a task that

it is not commonly used for.

Keywords—Abstract Syntax Trees, osu!, pattern generation

I. INTRODUCTION

The Abstract Syntax Tree (AST) is a well-known structure in

the world of modern programming language design, commonly

used in compilers and interpreters for code analysis,

optimization, and compilation. While ASTs have been found to

play an important role in modern programming language design,

their application in other fields are still limited. This opens up

an interesting question of what are the unexplored possibilities

of using ASTs in fields outside of programming language

design. As such this paper is an attempt at exploring those

possibilities by uniquely using ASTs to solve a niche problem,

that is the creation of osu! beatmaps.

This paper explores the conceptual design and

implementation of a hypothetical software solution aimed at

generating osu! beatmaps directly from MIDI files. The core

premise is to investigate the feasibility of automating beatmap

creation by leveraging the structured nature of MIDI data and

the hierarchical representation capabilities of ASTs. By treating

beatmap generation as a problem analogous to code

compilation, the proposed software envisions MIDI files as the

"source code" and osu! beatmaps as the "executable program."

The translation process involves parsing the musical elements

encoded in MIDI, such as notes, timing, and dynamics, and

converting them into corresponding rhythmic and spatial

patterns suitable for osu!'s gameplay.

This paper consists of several sections: introduction,

background, methodology, discussion, and conclusion. The

introduction section—that is the current section—provides an

introduction to the topic of the paper and the reasons behind the

creation of the paper. The background section explains the

necessary background knowledge needed to understand the

more domain-specific information of the paper. The

methodology section explains how the process of creating a

beatmap creation software would go and how such a software

would work in the first place. The discussion section explains

the possible strengths and weaknesses of using ASTs in such a

software were it to be actually implemented and any interesting

observations from the method proposed to create such a

software. The conclusion section summarizes the information

within this paper and the key takeaways to be had.

II. BACKGROUND

A. osu!

Fig. 1. osu! main menu.

osu! is a free-to-play rhythm game created by Dean “peppy”

Herbert in 2007. While being almost two decades old as of

writing this paper, the game is still actively maintained and

updated. The game has several modes of gameplay that the

players can choose from: standard, mania, taiko, and catch the

beat. These modes change the gameplay drastically, each feeling

like an entirely different game. The most popular mode and the

one that is used in this paper is the standard mode.

osu!’s standard mode is a mode where the gameplay mainly

consists of clicking circles on the screen in sync with the rhythm

of a level. This gameplay mode was the very first mode ever

added to the game and is very similar to osu!’s original source

of inspiration, a Nintendo DS rhythm game going by the name

Osu! Tatakae Ouendan!. Levels (or beatmaps as the game calls

them) in the standard mode are comprised of three elements:

circles, sliders, and spinners. These three elements combine with

mailto:1arlow5761@gmail.com
mailto:13523161@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

one another inside of a beatmap to create interesting patterns and

exciting gameplay challenges.

Fig. 2. osu! standard mode circles.

Circles in osu! standard are the most basic objects in a

beatmap. As the name suggests, these objects take the form of

circles when they appear in a beatmap. The player must hit these

circles by clicking them at the correct time and in the correct

order. Failure to do so results in a miss which negatively impacts

the player’s results.

Fig. 3. osu! standard mode slider.

Sliders in osu! standard are a variation of the circle objects.

They consist of three main parts: the sliderhead, the sliderbody,

and the slidertail. The sliderhead acts like a normal circle that

needs to be hit at the start of the slider. After hitting the

sliderhead, a sliderball will appear that travels from the

sliderhead to the slidertail following the path of the sliderbody.

While the sliderball is present, the user must hold down their

click button and follow the position of the sliderball. When the

sliderball reaches the slidertail, it disappears, registers the slider

as successfully being hit, and allowing the user to let go of the

click.

Fig. 4. osu! standard mode spinner.

The spinner object is the most different object compared to

circles and sliders. When a spinner appears in a beatmap, it fills

up the entire screen, prompting the user to click and drag the

cursor while making a spinning movement. The spinner stays on

the screen for a specified amount of time giving players a chance

to spin as fast as they can in order to gain points. The faster a

player spins, the more points that they can get from a spinner.

When time specified for the spinner has run out, the spinner

disappears. At that time, if the player did not spin fast enough,

they get a miss.

Fig. 5. osu! beatmap clear screen.

As any other rhythm game, one of the main goals of playing

beatmaps in osu! is to improve and get better results. That reason

is the source of motivation for many players to keep playing the

game. The game displays these results as a combination of

multiple metrics that describes a player’s performance.

First, there is health, a performance metric that is shown

through the player’s health bar. The player’s health decreases

constantly while playing eventually reducing it to zero. Hitting

objects grants health for the player while missing objects

reduces health even further. When the player’s health reaches

zero (except from the constant health drain), the player loses and

cannot complete the rest of the beatmap.

The second metric for measuring the player’s performance is

their accuracy. The accuracy measures how accurate the player

is at hitting objects in the beatmap. The closer the player hit

objects to their specified timings, the higher the accuracy will

be. Higher accuracy leads to higher ratings at the end of playing

the beatmap.

The third metric for measuring performance is the score.

When players hit an object, they gain score and combo. The total

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

score that is received from that hit is calculated by the score from

the hit and the total combo that the player has. When a player

misses an object, they lose their combo.

Fig. 6. osu! global leaderboard.

For certain beatmaps that have been marked as ranked, there

is another performance metric that is calculated by the game

called performance points (PP). PP is considered to be the most

accurate measure of a player’s performance. The PP that a player

gains from playing a beatmap is calculated with a complex

algorithm that is frequently updated to ensure a fair and accurate

rating of player performance. As PP is considered a very

accurate measurement of performance, it is the used as the main

method of ranking players in the game’s leaderboard.

Fig. 7. osu! ranked beatmaps listing.

One of the most interesting parts of osu! that makes it stand

out amongst other rhythm games is the community generated

content. Unlike other rhythm games where the levels are created

by the developer, osu! beatmaps are created by the players

themselves. Regular players can try creating a beatmap by using

the editor function inside the game and they can also publish

their beatmap to the public if they want. While anyone can

publish beatmaps, most beatmaps end up as unranked, meaning

they do not generate PP for players playing them and they also

do not have a leaderboard (except for beatmaps in the loved

category). For beatmaps to be ranked, they must go through a

quality assurance process that is also done by members in the

osu! community with special roles. Players that are regularly

able to make beatmaps that end up being ranked are called

mappers in the community.

B. Abstract Syntax Tree

Fig. 8. A small AST.

An Abstract Syntax Tree (AST) is a data structure that is

commonly used in source code compilation. The AST provides

a way to store the structured data from text written in a formal

language with a specific grammar in a hierarchical way. In

source code compilation, the AST is used as a way to represent

a program after parsing its source code. The use of ASTs to

represent programs during compilation makes it easier to do

semantic analysis on it, allowing the compiler to understand

what the program does and even find ways to optimize it.

As the name suggests, the Abstract Syntax Tree stores

information with an abstract syntax. The data structure does not

store unnecessary details of the language like formatting or

punctuation. Instead, it focuses on representing the structure of

the input such that each node in the tree represents a specific

construct of some sort. This abstraction of the unnecessary

language details is what makes AST desirable for code

compilation.

While Abstract Syntax Trees primarily have a use in

programming language design, the data structure itself is not

bound to only do tasks for that specific field. The AST can

represent any text with a formal language and grammar. In fact,

there are uses of AST outside of programming language design.

Examples of these uses include natural language processing

where ASTs are used to represent real natural sentences,

identifying malicious code in the field of cybersecurity, and

many more.

In the case of this paper, the Abstract Syntax Tree is used to

create a hierarchical representation of musical data. If there

exists a language where the words are notes and the grammar is

different patterns in music, then an AST of musical data can be

created. An AST representing musical data can then reveal the

structures of the musical piece.

C. MIDI Specification

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig. 8. A MIDI track in audacity.

The Musical Instrument Digital Interface (MIDI)

Specification defines the protocol, interface, and file format

used for the exchange of musical data between different devices.

Unlike standard audio formats, MIDI signals do not actually

transmit audio signals. Instead, the MIDI signals contain event

messages, which are messages that notify when an event

occurred on the source device of the MIDI signal. This

difference between standard audio files and MIDI files. While

standard audio files are used to store the sound produced by an

instrument or device, MIDI files are used to store the different

states of an instrument or device when being used.

MIDI files are stored using the .mid or .midi extensions. A

typical MIDI file contains a header chunk followed by one or

more track chunk. The header chunk contains metadata

information about the MIDI file that is useful when trying to

read the data contained in the file. The track chunks contain the

actual MIDI event data that make up the MIDI signal.

The header chunk consists of a header chunk identifier, the

length of the header chunk, the format of the MIDI file, the

number of track chunks in the file and the division value. The

identifier and length are used to verify the that the chunk is

indeed a header chunk. The format is used to determine how the

track chunks should be read. A format value of 0 means that the

file contains a single track, a format value of 1 means that the

file contains multiple tracks and a format value of 2 means that

the file contains multiple song. MIDI formats 0 and 1 are

common while format 2 is seen less frequently. The number of

tracks in the file is used for the reading program to determine

how much data should be read by the program before stopping.

The division value of the header corresponds to the number of

ticks (time points) that are in a beat.

The track chunks consist of a track chunk identifier, the length

of the track event sequence, and a sequence of track events that

make up the track chunk. As with the header chunk, the

identifier is used to verify that the data is indeed a track chunk.

Each track event is composed of the timestamp of the event and

the event itself. Events in a MIDI file can be one of three types:

midi events, meta events, and system exclusive events.

MIDI events are events that happen on specific MIDI

channels and usually corresponds with how notes are played.

Common MIDI events that are typically used are note on and

note off messages. As the name implies the note on and note off

messages specify when a certain note in a channel is turned on

and off. The note on and note off messages can also contain

velocity information which represents how hard the instrument

was struck when the note was played.

Meta events are events that don’t affect the sound of notes and

are not specific to one channel but to the entire track. While most

meta events are optional, all tracks need at least one meta event

signaling the end of a track. Having meta events and being able

to process those events can also result in a better experience as

some of meta events contain information that can be useful for

playback such as the tempo, name of the instrument used, and

the time signature of the track. With such information, a more

accurate playback can be created using a MIDI file.

System exclusive (sysex) events are events that are exclusive

to a particular system. As their name suggests, sysex events can

store any information that the system wants it to hold. Typically,

sysex events contain the id of the manufacturer of the device

used to produce the event so devices can determine whether or

not they can read that specific sysex. If the device recognizes the

id, it will process the sysex but if not then the sysex is ignored.

MIDI files are used in the context of this paper as they provide

an easy way of decomposing musical notes. As standard audio

file formats store the combined audio wave signal of all sounds,

it is difficult to decompose the combined wave into its building

blocks. Whereas with MIDI files, the stored data is the notes

being played themselves. Thus, such a format is perfect for

representing musical data in a way that can be accessed easily.

III. METHODOLOGY

In order to construct a program that can create osu! standard

mode beatmaps from MIDI files using Abstract Syntax Trees, a

formal language must first be defined. To do this, the text that

will be represented as an AST is determined beforehand. For this

paper, the information that needs to be represented is the musical

information, primarily when notes start and stop. Thus, all note

on and off events within the MIDI file needs to be extracted,

appended with their track number information, and combined

into one single note event sequence. This single note event

sequence that contains information about the track, channel,

note number, and note event will be used as the text. Because of

this, it can be determined that the words in the formal language

will consist of all the possible timestamps, note numbers, event

types, and channel numbers.

After determining the words of the formal language, the

formal grammar of the language is constructed. There are many

ways to create the grammar of the language. Different grammars

will result in different ASTs, representing different structures

and concepts in music. However, all grammar must at the very

least contain a rule that defines a note. As previously, a note was

decomposed into consisting of different words, it must now be

reconstructed using a grammar rule. Ideally, a note should

combine both note on and note off events as to keep its

representation as simple as possible. As the end goal of this

process is to create osu! beatmaps, a grammar rule should also

be added to determine if a note should become a circle or a

slider. A simple grammar rule that can be used for this is that

notes that last longer than a certain threshold become sliders

while the rest become circles. However, a different grammar

rule can be used to produce different and more interesting

results. After assigning notes to be either circles and sliders,

another grammar rule must be added to determine which circles

and sliders stay when two or more are present at the same time.

This rule is required as traditionally, osu! standard beatmaps do

not require more than 1 button at a time be pressed.

After applying the previous grammar rules to obtain a string

of circles and sliders representing the beatmap’s rhythm, it is

time to encode location information to each circle and slider.

Just as previously done to generate the overall rhythm of the

beatmap, generation of object location will be done by applying

grammar rules to the current language. The simplest way to add

location information to each object is to create several grammar

rules that map specific object rhythmic patterns to specific

object spatial patterns. Doing so results in objects being grouped

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

into specific patterns in the playfield. However, the resulting

patterns would not create a fun gameplay experience as the same

patterns would map to the exact same locations. This problem

can be fixed by adding more grammar rules that group these

patterns into larger patterns that could create different patterns

in the playfield such as by offsetting each pattern in the larger

pattern by a certain amount to create a sense of progression

between patterns. The processing of adding new grammar rules

to create larger and larger patterns can be repeated to create more

interesting and complex level designs.

After designing the language with all the necessary words and

grammar rules, the AST can be successfully constructed to

represent the beatmap structure from the MIDI file. After

creating the AST, all that’s left to do is to actually construct the

beatmap. The beatmap can be constructed by creating objects

for every circle and slider that appears in the hierarchical

structure. Then for every object, the path that it takes from the

root node to the node representing the object is determined. This

path will go through all the patterns that determine the position

of the object allowing the calculation of the object’s final

position. The end result should be a beatmap that is created

completely automatically.

IV. DISCUSSION

In the methodology section, a detailed process for creating a

program capable of generating osu! beatmaps from MIDI files

through the use of Abstract Syntax Trees (ASTs) was described.

This method demonstrated that ASTs could theoretically serve

as a tool for translating musical information into beatmaps in a

structured and systematic manner. The approach relies on the

existence of a formal language for beatmap creation, where the

rules and patterns of a beatmap are encoded as grammar rules.

While this provides a clear and logical framework for

generation, the creation of such a language presents significant

challenges. Specifically, the encoding of various beatmap

patterns as grammar rules is a labor-intensive task, as each

pattern must be explicitly defined. Furthermore, the complexity

of the grammar increases with the desire for more intricate or

diverse patterns, potentially leading to diminishing returns in

terms of effort versus output quality.

An intriguing observation arising from this method is the

distinct separation between the rhythmic and spatial components

of beatmap generation. The rhythmic patterns, which are

directly derived from the timing and structure of the MIDI file,

are essentially independent of the spatial placement of objects

on the screen. This separation highlights the possibility of

splitting the beatmap creation process into two distinct steps:

rhythm generation and spatial arrangement. Such a modular

approach not only simplifies the problem but also opens the door

for combining different methods or algorithms tailored to each

aspect. For instance, rhythm generation could be achieved

through deterministic rules based on musical structure, while

spatial arrangement could leverage machine learning or

probabilistic methods to create visually appealing and varied

patterns. This dual-process methodology suggests that a hybrid

approach might lead to better outcomes by leveraging the

strengths of multiple techniques.

Despite the promise shown by the described method, it also

reveals certain limitations and areas for improvement in using

ASTs for beatmap creation. One significant limitation is the

deterministic nature of the generated patterns due to the fixed

grammar rules employed. While deterministic patterns ensure

consistency and adherence to the defined rules, they can result

in beatmaps that lack variety, potentially making them repetitive

and uninspiring for players. To address this, introducing

mechanisms for variability within the AST framework could

enhance the diversity and creativity of the generated beatmaps.

As an example, adaptive grammar rules could be incorporated

to create more dynamic and unpredictable patterns.

Additionally, integrating user-defined preferences or adaptive

algorithms could further enhance the process, allowing for

greater customization and alignment with player expectations.

V. CONCLUSION

This paper has shown the possibility of an interesting use case

for the Abstract Syntax Tree as data structure used to generate

osu! standard mode beatmaps from MIDI files. This shows that

the Abstract Syntax Tree still has untapped potential and could

have more use cases that have still not been discovered. As with

the specific topic of this paper itself, while the method for

creating a beatmap generation software has been described, a

functional implementation of it has not yet been attempted. As

such, the next step forward should be the creation of such a

software to prove the feasibility of using Abstract Syntax Trees

for more unconventional use cases.

VI. ACKNOWLEDGMENT

The author would like to acknowledge their professor for

teaching a subject that would inevitably lead them to research

such an interesting topic. The author would also like to

acknowledge the help of a long-time friend who inspired the

possibility of such an interesting idea. The author would also

like to acknowledge their other friends who kept the author

motivated to continue doing research on this paper’s topic.

Lastly, the author would like to thank their parents for their

unconditional support with this paper and with everything else

that the author has faced.

REFERENCES

[1] D. Thain, Introduction to Compilers and Language Design, 2nd ed.

University of Notre Dame, 2023. [Online]. Available:
https://www3.nd.edu/~dthain/compilerbook/compilerbook.pdf [Accessed:

Jan 8, 2025]

[2] "osu! wiki main page," osu! wiki. [Online]. Available:
https://osu.ppy.sh/wiki/en/Main_page. [Accessed: Jan. 8, 2025].

[3] "Standard MIDI File Format," McGill University. [Online]. Available:

https://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfilefor
mat.html. [Accessed: Jan. 8, 2025].

https://www3.nd.edu/~dthain/compilerbook/compilerbook.pdf
https://osu.ppy.sh/wiki/en/Main_page
https://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.html
https://www.music.mcgill.ca/~ich/classes/mumt306/StandardMIDIfileformat.html

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Januari 2025

Arlow Emmanuel Hergara

13523161

