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Abstract—This paper presents a model designed to detect
arbitrage opportunities, focusing on triangular and
cross-market arbitrage. Utilizing the Bellman-Ford
algorithm and graph theory, the model effectively identifies
negative cycles indicative of potential arbitrage in
high-liquidity environments, incorporating both dummy and
real-time data. Whereas it proves particularly effective for
triangular arbitrage, the model requires further refinement
to enhance its effectiveness in cross-market scenarios. In
real trading scenarios, the model faces significant challenges
such as the need for rapid execution, the impact of
transaction fees, and the demands of a volatile financial
market. The study discusses necessary model enhancements
to improve real-world applicability and execution efficiency.
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I. INTRODUCTION

Arbitrage, the practice of exploiting price discrepancies
across different markets or exchanges to generate a profit,
is a crucial strategy in financial markets. In highly liquid
markets like foreign exchange, cryptocurrencies, and
equities, slight price differences between exchanges
presents opportunities for arbitrage traders to generate
risk-free profits by buying low in one market and selling
high in another. Although arbitrage trading might appear
to be illegal, it is completely legal in most countries.
Additionally, the execution arbitrage trading restores
market efficiency, as the lower-priced assets are bid up
and the higher-priced assets are sold off [1].

Arbitrage detection is the holy grail for traders and
institutions with high-frequency trading, a type of
algorithmic trading incorporating high volume of stocks
at high speeds, as these opportunities often exist for only
a short period and require rapid execution. Furthermore,
this concept also holds significant importance in the field
of financial academia. With the growing complexity of
markets, modern approaches to arbitrage detection have
been increasingly essential, as traditional methods, such
as manual monitoring or rule-based systems, are no
longer reliable due to their slowness and inefficiency [2].

Graph theory offers a robust framework for modelling
the complex relationships between financial entities, such

as exchanges and asset pairs. In this context, financial
markets are represented as graphs, where vertices
represent assets or exchanges and edges represent the
rates between them. By utilizing graph-based algorithms,
profitable arbitrage opportunities can be detected more
efficiently. This paper will explore the Bellman-Ford
algorithm, a classical shortest-path algorithm in graph
theory, which is particularly suited for this task as it is
able to handle negative edge weights, a characteristic of
profitable arbitrage cycles in financial networks [3].

This paper aims to demonstrate how graph theory,
combined with the Bellman-Ford algorithm, can be
applied to detect arbitrage opportunities in financial
markets. By modeling exchanges and asset price
differences as a weighted directed graph, we can uncover
negative cycles indicative of arbitrage opportunities. This
paper also discusses the implementation of this approach,
the results obtained from real-world financial data, and
the challenges encountered, such as transaction costs and
market liquidity. The findings support the use of
graph-based models for automated arbitrage detection.

II. LITERATURE REVIEW

A. Graph

1) Definition: A graph G is a mathematical structure
used to model pairwise relations between objects. It is
defined as G = (¥, E). V is a non-empty set of vertices or
nodes. E is a set of edges or links that connect pairs of
vertices. This set can be empty, indicating a graph without
any edges [4].

2) Terminologies: "In the field of graph theory, various
key terminologies, which are essential to this study, are
used to describe its elements and properties [4]:

a) Vertex: An element of set V, representing entities
such as cities, stations, or data points.

b) Edge: An clement of set E, representing the
connection or relationship between two vertices.

¢) Adjacent: Two vertices are adjacent if there is an
edge connecting them directly. For instance (see Fig. 1),
vertex A is adjacent to vertices B, C, and D.

Makalah IF1220 Matematika Diskrit — Semester I Tahun 2024/2025


mailto:13523013@std.stei.itb.ac.id
mailto:omgitsnathaniels@gmail.com

d) Degree: The number of edges connected to a 3) Representations: Graphs can be represented in
vertex. For instance (see Fig. 1), vertex 4 has a degree  several ways to facilitate different operations [5]:

of 3 and vertex E has a degree of 2. a) Adjacency Matrix: A square matrix used to

represent a finite graph. The elements of the matrix

o o fr=s indicate whether pairs of vertices are adjacent or not in

Edge the graph.
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Fig. 5. Graph’s adjacency matrix representation [Source:

e) Path: A sequence of vertices where each adjacent . tml, Accessed: Dec. 31, 2024.]
pair is connected by an edge.

b) Incidence Matrix: A matrix that shows the
relationship between vertices and edges. The rows
represent vertices and columns represent edges, with
entries indicating which vertices are connected by
which edges.
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Fig. 2. Illustration of a graph with paths [Source: Lo 01000
http://www.computersciencebytes.com/array-variables/graphs/, )

Accessed: Dec. 31, 2024.] 0 1 -1-1 0 11

00 00 -1-10

f) Cycle: A path that starts and ends at the same

vertex. Fig. 6. Graph’s incidence matrix representation [Source:

° ° ¢) Adjacency List: This uses lists to represent the

‘ ° ° adjacent vertices for each vertex. It is more
space-efficient in terms of sparse graphs than an

° o ° 0 ° adjacency matrix.

tml, Accessed: Dec. 31, 2024.]

No Cycle Has Cycle
@) ® J>EF—>C
e e
Fig. 3. Illustration of graphs with and without cycle [Source: (E) = g ——{DIX -
hitps://workat tech/problem-solving/practice/detect-cycle-in-undirected- © ® s [A[ F—>[PTF—{EIX
graph, Accessed: Dec. 31, 2024.] )

g) Isolate Vertex: A vertex with no connecting edges. Fig. 7. Graph’s adjacency list representation [Source:

tml, Accessed: Dec. 31,2024.]

B. Shortest Path Algorithm

1) Definition: The shortest path algorithm is a core
concept in graph theory, used to determine the minimum
distance or cost required to travel from one node (or

e«lsmated vertex) to another within a graph. The shortest problem
S can be tackled using various algorithms, each suited for
different types of graphs and conditions [6].
Fig. 4. Illustration of isolated vertex [Source: Shortest path algorithms can be applied towards
=ala- = - g various types of graphs. A general graph is a
Accessed: Dec. 31, 2024.] mathematical structure made up of vertices (nodes) and
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edges (connections). An aspatial graph is a type of graph
where the positions of vertices are not interpreted as
physical locations in space. A spatial graph, on the other
hand, incorporates vertices that have specific locations,
represented by the endpoints of the edges. A planar graph
is a graph that can be drawn in two dimensions without
any edges crossing each other, and the edges can be
curved [7].

2) Types of Shortest Path Algorithm: Generally,
shortest path algorithms can be divided into two broad
categories:

a) Single-Source Shortest Path Algorithm: These
algorithms calculate the shortest paths from a single
source vertex to all other vertices within the graph.
They are particularly advantageous in scenarios where
the starting point is fixed, and the shortest paths of all

reachable destinations within the graph need to be
explored. Examples of single-source shortest path
algorithms are The Dijkstra Algorithm and The
Bellman-Ford Algorithm.

b) All-Pairs Shortest Path Algorithms: These
algorithms calculate the shortest paths between every
pair of vertices in a graph, serving a comprehensive

solution where all possible routes between vertices are
of interest. An example of this algorithm is the
Floyd-Warshall algorithm.

Each of these algorithms has its own strengths and is
suited for different types of graph structures. In practical
applications, the choice of algorithm depends on the
specific requirements of the problem at hand [6].

C. Negative-Weight Cycle

1) Definition: Negative-weight cycle in a graph is
defined as a cycle where the sum of the edge weights is
negative. Traversing this cycle would decrease the total
weight, leading to infinitely decreasing path lengths.

2) Characteristics: Negative-weight cycles can be
determined by several characteristics [8]:

a) Sum of Weights: The total weights of the edges in
the cycle must be less than zero or negative. If a cycle
consists of edges with weights w,, w,, ..., w,, then it is
classified as a negative-weight cycle if:

wotw, + . +Wk<0 (N

b) Impact on Shortest Paths: 1f a graph contains a
negative weight cycle that is reachable from a source
vertex, the shortest path to that vertex is not
well-defined. This is because one can keep traversing
the negative cycle to reduce the path indefinitely,
effectively leading to a distance of -oo.

F1g 8 Example of a negative- welght cycle [Source

egatzve edge wez,qhts/studv guide/SkXLDBHbuRIaOogE, Accessed:

Dec. 31, 2024.]

D. Bellman-Ford Algorithm

1) Definition: The Bellman-Ford algorithm is a widely
used method for finding the shortest paths from a single
source vertex to all other vertices in a weighted directed
graph. It is particularly notable for its ability to handle
graphs that contain edges with negative weights, which
many other shortest path algorithms, such as Dijkstra's,
cannot accommodate. The algorithm utilizes dynamic
programming techniques, specifically the "Principle of
Relaxation", where it repeatedly updates the shortest path
estimates until they converge on the optimal values [9].

2) Algorithm: The Bellman-Ford algorithm works by

these 3 general steps [9]:

a) Initialization: Begin by assigning an initial
distance to each vertex in the graph. Set the distance of
the source vertex to zero, and assign infinity as the
distance for all other vertices.

b) Relaxation Process: The algorithm then relaxes all
edges in the graph repeatedly for V' - I iterations (where
V' is the total number of vertices). In each iteration, it
checks if the current known distance to a vertex can be
improved by going through an adjacent vertex. If a
shorter path is found, the algorithm updates the
distance.

¢) Final Check for Negative Cycle: Once the V - 1
iterations are complete, the algorithm makes one final
pass through all edges. If any distance can still be
updated, this signals the presence of a negative weight
cycle.

BELLMAN-FORD (G, W, s)

: INITIALIZE-SINGLE-SOURCE (G, s)
cfori=1to|V]—1

: do for each edge (u, v) € E

: do RELAX (u, v, W)

: for each edge (1, v) € E

:do if d(v) > d(u) + W(u, v)

: return FALSE

: return TRUE

0 I NWUnNPBA WN

Fig. 9. Bellman-Ford Algorithm [Source: Introduction to Algorithms,
2nd ed. Cambridge, Accessed: Dec. 31, 2024.]
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3) Complexity: The Bellman-Ford algorithm has a time
complexity of O(V . E), where V represents the number of
vertices and E is the number of edges in the graph. While
this makes it less efficient than Dijkstra's algorithm for
graphs that do not have negative weights, it is more
versatile because it can handle graphs with negative edge
weights.

E. Arbitrage Detection Using Graph-Based Models

1) Types of Arbitrage and Their Graph
Representations: Various types of arbitrage can be
exploited using the graph theory and the Bellman-Ford
algorithm [2], [3]:

a) Currency Arbitrage: Currency arbitrage involves
taking advantage of price differences in exchange rates
across various markets.

Each currency is represented as a vertex and the
edges represent the exchange rates between the
currencies. The weights of the edges are the logarithmic
values of the exchange rates, with negative edges
indicating arbitrage opportunities.

Buy Exchange
— 1
= /
Sell
Pr’% /
Exchange

2

Fig. 10. Illustration of simple currency arbitrage [Source:
hittps.//bookmap.com/blog/what-is-arbitrage-trading, Accessed: Dec.
31,2024.]

b) Triangular Arbitrage: Triangular arbitrage occurs
when discrepancies between the exchange rates of three
currencies can be exploited. For example, if a trader can
convert currency A to B, then B to C, and finally
convert C back to A at a better rate, it forms a profitable
triangular loop.

The nodes represent each currency in the triangle and
the edges represent exchange rates. The weights of the
edge are the logarithms of the exchange rates, with
negative weights indicating a profitable cycle.

Triangular Arbitrage with Three Currency Pairs

sell 1 lot
GBP/USD

-£100,000.00

+5129,180.00

+41.22 GBP
-4.38 USD
0.00 EUR
+48.87 USD
Sell 1.1842 lot
EUR/GBP <:
-€118,420.00

+£100,041.22

Buy 1.1842 lot
EUR/USD
+€118,420.00
-§129,184.38

Fig. 11. Illustration of triangular arbitrage [Source:

Accessed: Dec. 31, 2024.]

¢) Cross-Market Arbitrage: Cross-market arbitrage
happens when the same asset is priced differently
across two or more markets. Traders exploit these
differences by buying low in one market and selling
high in another.

Each market or asset is represented as a node and the
edges represent price differences between assets or
markets. The edge weights represent the logarithmic
price differences between markets.

Market A

@ 3) Profit $1,000
ill

Market B
Cross-Exchange

coinbase,
- Arbitrage G

Investor

2) Sell1BTC

1) Buy 1BTC for $31.000

for $30.000

Fig. 12. Illustration of cross-market (cryptocurrency) arbitrage [Source:

ent-key-strategies-for-2024/, Accessed: Dec. 31, 2024.]

2)  Logarithmic  Transformation:  Logarithmic
transformation is essential for adapting classical graph
algorithms to detect arbitrage opportunities, particularly
when dealing with multiplicative factors like exchange
rates. Traditional graph algorithms, such as BFS, DFS,
Dijkstra, or A-Star, are designed to handle additive
relationships, where total path cost is the sum of
individual edge weights. However, in arbitrage scenarios
where the relationship between edges involves products,
such as exchange rates, taking the logarithm of edge
weights converts these multiplicative relationships into
additive ones [3].

This transformation enables the identification of
negative cycles in the graph. By taking the logarithm of
each exchange rate, we convert multiplication into
addition:

log(a x b x ¢) = log(a) + log(b) + log(c) (2)

To facilitate the detection of arbitrage, we use negative
logs for edge weights:

w(C, C) == log(R[][D )

3) Bellman-Ford Algorithm Utilization: In the realm of
financial arbitrage, the Bellman-Ford algorithm plays a
crucial role by identifying negative-weight cycles within
graph-based models of financial assets. These cycles are
key indicators of arbitrage opportunities. Specifically, a
negative-weight cycle suggests that initiating a transaction
cycle with a certain amount of currency and following
through the designated path will result in a return greater
than the initial investment. This confirms the potential for
arbitrage [2], [3], [9].
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The Bellman-Ford algorithm is utilized in the case of
arbitrage detection in the following manner:

a) Initialize Asset Prices: Set the price of the source
asset (starting currency pair or financial instrument) to
zero. Assign infinity as the initial price for all other
assets to represent them as initially unreachable.

b) Relax Assets Rates: For V - [ iterations (where V is
the number of assets or currency pairs), update the cost
of reaching each asset by potentially going through
another asset that offers a lower cost route.

c¢) Check for Profitable Cycles: After the main
iterations, perform one additional pass over all
exchange rates. If any asset's cost can be further

reduced, this indicates the presence of a
negative-weight cycle, revealing an arbitrage
opportunity.

d) Identify Profitable Trading Loops: Use the
negative-weight cycle detected in the previous step to
outline a sequence of trades that result in a net increase
in value, confirming the viability of the arbitrage
strategy.

III. IMPLEMENTATION

A. Programming Language and Tools

For this project’s implementation, Python was chosen
as the programming language due to its readability,
extensive library support, and its strong presence in data
analysis and scientific computing. The following libraries
are employed in this project:

a) Requests: Enables simple HTTP requests to fetch
data from external APIs, crucial for real-time financial
data retrieval.

b) NumPy: Offers extensive support for large,
multi-dimensional arrays and matrices, accompanied by
a comprehensive set of advanced mathematical
functions.

¢) Matplotlib and NetworkX: Facilitates arbitrage
graphs visualization.

d) Python Standard Libraries: Math, Time, and
Datetime libraries are utilized for mathematical
computations, time-related tasks, managing date and
time data, respectively.

B. Data Collection and Preprocessing

Three distinct experiments are conducted within this
project to encompass a wide range of scenarios in
arbitrage: forex triangular arbitrage, cryptocurrency
triangular arbitrage, and cryptocurrency cross-exchange
arbitrage.

For the forex triangular arbitrage, dummy data is
created, mimicking realistic forex market conditions. This
approach does not rely on live data, allowing for

controlled experimentation and precise evaluation:

currency_names = ['USD',
rates = np.array([
[1.0000, ©.8425, 0.7250, 113.50],
[1.1860, 1.0000, 0.8650, 134.50],
[1.3800, 1.1555, 1.0000, 148.00],
[0.0088, 0.0074, 0.0068, 1.0000]

"EUR', 'GBP', 'JPY']

1

On the other hand, for cryptocurrency-related
experiments, real-time data is fetched wusing the
CoinGecko API. This approach ensures that the project
covers both hypothetical and real-world scenarios,
providing a comprehensive analysis of arbitrage
opportunities across different markets. The retrieval of
specific cryptocurrency pairs and Bitcoin prices across
various exchanges via the CoinGecko API is outlined
below:

def get_price(coin_id, vs_currency):

URL =
f"https://api.coingecko.com/api/v3/simple/price?id
s={coin_id}&vs_currencies={vs_currency}"

try:

response = requests.get(URL)
response.raise_for_status()
data = response.json()
return data.get(coin_id,
{}).get(vs_currency)
except requests.RequestException as e:
print(f"Error fetching data for {coin_id}
in {vs_currency}: {e}")
return None

def get_bitcoin_price(exchanges):

URL =
"https://api.coingecko.com/api/v3/coins/bitcoin/ti
ckers™"

exchanges_price = []

for exchange in exchanges:
try:
url = URL.replace("{exchange_id}",

exchange)
response = requests.get(url)
response.raise_for_status()
time.sleep(0.2)
data = response.json()
tickers = data.get("tickers", [])
for ticker in tickers:
if ticker["base"] == "BTC" and
ticker["target"] == "USD":

price = ticker["last"]
if (price in exchanges_price):
continue
print(f"Bitcoin price on
{exchange.capitalize()}: {price} USD")
exchanges_price.append(price)
break

except
requests.exceptions.RequestException as e:
print(f"Error fetching data for
{exchange}: {e}")

return exchanges_price
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C. Graph Construction for Arbitrage Detection

The graph, central to our arbitrage detection algorithm,
is constructed using a Python class that encapsulates the
complexities of graph theory applied to market rates.
Here’s an outline of the implementation:

class Graph:
def __init_ (self, currency names, rates):
self._vertices = len(currency_names)
self._edges = []
self._currency_names = currency_names
self._build(rates, currency_names)

def add_edge(self, u, v, w):
if u >= self._vertices or v >=
self. _vertices or u < @ or v < 0:
raise ValueError("Vertex index out of
bound")
self._edges.append((u, v, w))

def _build(self, rates, currency_names):
for i in range(len(currency_names)):
for j in range(len(currency_names)):
if i 1= j:
# Logarithmic conversion
self.add_edge(i, j,
-log(rates[i][3]))

@property
def vertices(self):
return self._vertices

@vertices.setter
def vectices(self, vertices):
if vertices < 1:
raise ValueError("Number of vertices
must be at least 1")
self._vertices = vertices

@property
def edges(self):
return self._edges

@property
def currency_names(self):
return self._currency_names

@currency_names.setter
def currency_names(self, currency names):
self._currency_names = currency_names

def bellman_ford(graph, src):
dist = [float('Inf')] * graph.vertices
dist[src] = ©
predecessors = [None] * graph.vertices

# Relax edges V - 1 times
for _ in range(graph.vertices - 1):
for u, v, w in graph.edges:
if dist[u] != float('Inf') and dist[u]
+ w < dist[v]:
dist[v] = dist[u] + w
predecessors[v] = u

# Check for negative-weight cycles
for u, v, w in graph.edges:
if dist[u] + w < dist[v]:
return True, predecessors

return False, None

Arbitrage  detection is triggered through the
detect_arbitrage function, which employs a variety of
helper functions to navigate through the graph, identify
viable cycles, and calculate potential profits:

def detect_arbitrage(graph):
for src in range(graph.vertices):
has_cycle, predecessors =
bellman_ford(graph, src)
cycle = reconstruct_cycle(predecessors,
src)[::-1]
if has_cycle and
is_valid_arbitrage_cycle(cycle, graph):
calculate_profit(cycle, graph)

E. Arbitrage Detection Process

Arbitrage detection begins by constructing a graph with
currency symbols and their logarithmic exchange rates as
nodes and edges, respectively. The detect arbitrage
function is then called to apply the Bellman-Ford
algorithm, searching for negative cycles that indicate
potential arbitrage opportunities:

graph = Graph(symbols, exchange_rates_matrix)
detect_arbitrage(graph)

This class incorporates logarithmic conversion as a
crucial step, transforming currency exchange rates into
weights. This adjustment is vital for working with
graph-based algorithms, allowing us to spot negative
cycles that indicate potential arbitrage opportunities.

D. Bellman-Ford Algorithm Implementation

The Bellman-Ford algorithm plays a crucial role in
detecting negative cycles within our graph model, which
indicate potential arbitrage opportunities. This algorithm
methodically updates the estimated costs to reach each
vertex, looking for any reductions in cost that occur after
all vertices have been processed initially. If such a
reduction is found, it signals the presence of a negative
cycle, suggesting a profitable arbitrage path. The
implementation is outlined as follows:

IV. RESULTS AND DiscussION

A. Arbitrage Detection and Opportunities Detected

a) Foreign Exchange Triangular Arbitrage: In this
particular analysis, major currencies, such as USD
(United States Dollar), EUR (Euro), GBP (British
Pound), and JPY (Japanese Yen), are considered. The
exchange rates between these currencies were
structured into a matrix as presented in Table I. This
matrix set the stage for identifying potential triangular
arbitrage opportunities within these currencies.

Using the arbitrage detection algorithm, several
profitable cycles were identified, the details of which
are shown in Table II. Notably, the first, second, and
fourth arbitrages, despite starting from different
currencies (USD, JPY, and GBP respectively), yielded
the same profit of 6.51%. This uniformity arises
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because these cycles involve the same set of currency
exchanges, merely differing in their starting points.

TABLE I
EXCHANGE RATES BETWEEN USD, EUR, GBP, AND JPY PAIRS
Currency USD EUR GBP JPY
USD 1.000 0.8425 0.7250 113.5
EUR 1.1860 1.0000 0.8650 134.50
GPB 1.3800 1.1555 1.0000 148.00
JPY 0.0088 0.0074 0.0068 1.000

The second arbitrage detected, which encompasses
all four currencies (EUR, USD, JPY, and GBP),
produced a distinct profit of 5.77%. This highlights the
impact of incorporating a broader range of currencies
and the potential for higher returns when the cycle
extends through more exchange rates.

TABLE II
FOREIGN EXCHANGE TRIANGULAR ARBITRAGES DETECTED

Arbitrage Cycle® Profit®
USD — JPY — GBP — USD 6.51%
EUR — USD — JPY — GBP — EUR 5.77%
GBP — USD — JPY — GBP 6.51%
JPY — GBP — USD — JPY 6.51%

To check the credibility of the arbitrage detected,
mathematical proof is provided to verify the real
profitability of the instances, specifically for the first
and second arbitrages.

Fig. 13. Graph illustration of the first forex triangular arbitrage detected
[Source: Author’s visualization using NetworkX and Matplotlib]

The first arbitrage cycle (USD — JPY — GBP —
USD) utilizes the following exchange rates: USD to

JPY at 113.50, JPY to GBP at 0.0068, and GBP to USD
at 1.3800. The followings are the calculation steps,
starting with 1 USD:

1) Convert USD to JPY: Convert to 113.50 JPY.

2) Convert JPY to GBP: Convert to 0.7718 GBP.

3) Convert GBP to USD: Convert to 1.0653 USD.
The cycle completes with a return of 1.0651 USD,
representing a 6.51% increase from the initial capital.

Fig. 14. Graph illustration of the second forex triangular arbitrage
detected [Source: Author’s visualization using NetworkX and
Matplotlib]

The second arbitrage cycle (EUR — USD — JPY —
GBP — EUR) utilizes the following exchange rates:
EUR to USD at 1.1860, USD to JPY at 113.50, JPY to
GBP at 0.0068, and GBP to EUR at 1.1555. The
followings are the calculation steps, starting with 1
EUR:

1) Convert EUR to USD: Convert to 1.1860 USD.

2) Convert USD to JPY: Convert to 134.61 JPY.

3) Convert JPY to GBP: Convert to 0.9153 GBP.

4) Convert GBP to EUR: Convert to 1.0577 EUR.
The cycle completes with a return of 1.0577 EUR,
representing a 5.77% increase from the initial capital.

b) Cryptocurrency Triangular Arbitrage: For the
cryptocurrency triangular arbitrage experiment, a more
realistic approach was adopted by focusing on the
current top three cryptocurrencies by market
capitalization: Bitcoin (BTC), Ethereum (ETH), and
Ripple (XRP). This choice was driven by the significant
trading volumes and liquidity that these currencies
typically exhibit, which are crucial factors for the
viability of arbitrage opportunities.

The experiment involved fetching real-time data,
ensuring that the analysis reflects the dynamic nature of
the cryptocurrency market. The specific data used in
this study was fetched on 2025-01-04 at
18:19:13.344470. This data is comprehensively detailed
in Table III, which displays the exchange rates between
these three cryptocurrencies.

During this particular cryptocurrency triangular
arbitrage experiment, a profitable cycle was detected.
Three different cycles were examined: BTC — ETH —
XRP — BTC, ETH — XRP — BTC — ETH, and XRP
— BTC — ETH — XRP. Remarkably, all three cycles
generated an identical profit of 0.04%. This uniformity
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in profit results from the cycles incorporating the same
currency pairs, albeit in different sequences.

TABLE III
FETCHED RATES OF EACH CRYPTOCURRENCY PAIR

Pair Rate®
BTC/ETH 27.236375
BTC/XRP 40,142
ETH/BTC 0.03671743
ETH/XPR 1,474
XRP/BTC 0.00002492
XRP/ETH 0.0006784

opportunities.

¢) Cross-Market Arbitrage: This experiment is
focused on Bitcoin, using real-time data fetched from
four major cryptocurrency exchanges: Binance, Kraken,
Coinbase, and Bitstamp. The data as shown in Table IV,
gathered on 2025-01-04 at 18:33:51.379468, was used
to analyze potential arbitrage opportunities by
comparing Bitcoin prices across these platforms.

TABLE IV
BITCOIN’S PRICE ON DIFFERENT EXCHANGES

For instance, the arbitrage cycle BTC — ETH —
XRP — BTC utilizes the following exchange rates:
BTC to ETH at 27.236375 (1 BTC buys 27.236375
ETH), ETH to XRP: 1474 (1 ETH buys 1474 XRP),
and XRP to BTC: 2.492¢-05 (1 XRP buys 0.00002492
BTC). The followings are the calculation steps, starting
with 1 BTC:

1) Convert BTC to ETH: Convert to 27.236375 ETH.

2) Convert ETH to XRP: Convert to 40142 XRP.

3) Convert XRP to BTC: Convert to 1.00004 BTC.
The cycle completes with a return of 1.00004 BTC,
representing 0.04% increase from the initial capital.

BTC

XRP

Fig. 15. Graph illustration of the cryptocurrency triangular arbitrage
detected [Source: Author’s visualization using NetworkX and
Matplotlib]

The experiment reveals a modest 0.04% profit from
cryptocurrency triangular arbitrage, but real-world
conditions usually offer even slimmer margins. This is
due to tight market spreads and efficient pricing, where
quick arbitrage windows close fast, and transaction fees
can wipe out potential profits. Such conditions highlight
the importance of precise execution and large
transaction volumes to make the most of these fleeting

Exchange’ Price ($)°
Binance 97,746.80
Kraken 97,735.00

Coinbase 97,730.34
Bitstamp 97,740.40

The arbitrage detection model identified a specific
sequence, Kraken — Bitstamp — Coinbase — Kraken
of trades that theoretically should result in profit based
on slight price discrepancies between the exchanges
(start with 1 BTC):

1) Trade from Kraken to Bitstamp: Convert to
1.00006 BTC at a rate of 1.00006.

2) Trade from Bitstamp to Coinbase: Convert to
0.99995 BTC at a rate of 0.99995.

3) Trade from Coinbase to Kraken: Convert to
1.00000 BTC at a rate of 1.00005.

bitstamp
00
,,,,,,,

kraken

coinbase

Fig. 16. Graph illustration of the cryptocurrency cross-exchange

arbitrage detected [Source: Author’s visualization using NetworkX and

Matplotlib]

The inherent design of the current arbitrage detection
model is structured to always complete a cycle back to
the starting exchange, regardless of the profit or loss
encountered during the trading sequence. This
approach, while effective for identifying price
discrepancies between exchanges, systematically
returns to the initial starting point, which inherently
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neutralizes any accrued profit by the end of the cycle
with a 0% profit/loss.

Whereas this behavior particularly suits the model for
triangular arbitrage within a single market this model
shows limitations when applied to cross-market
arbitrage, where opportunities might be better seized by
not returning to the starting point but rather by
strategically ending trades at points of maximum
profitability. To address this and enhance its
effectiveness for cross-market arbitrage, the model
needs a fundamental redesign, such as profit-taking
strategy, dynamic decision making, and conditional
cycle completion.

B. Limitations and Challenges

Although the Bellman-Ford algorithm and graph theory
are powerful tools for detecting arbitrage opportunities in
financial markets, their real-world application is faced
with challenges and limitations. Timing is crucial in
trading, with arbitrage opportunities typically lasting only
a short time due to the rapid pace of financial markets..

Transaction fees also significantly impact the
profitability of arbitrage strategies. Each trade incurs costs
that vary by trading platform, transaction volume, and the
financial instruments used. These fees can quickly erode
profits from arbitrage, particularly if the strategy requires
multiple transactions to complete a cycle as the algorithm
suggests.

Market liquidity is also vital. Without sufficient
volume, trading activity might influence market prices
and compromise arbitrage opportunities. These challenges
emphasize the need for real-time data processing, fast
execution, and detailed cost-benefit analysis.. Therefore,
whereas these tools can detect potential opportunities,
their practical application requires careful consideration
of operational and market realities.

V. CONCLUSION

The Bellman-Ford Algorithm and the graph-based
model has proven effective for arbitrage detection,
particularly in triangular arbitrage, and can also be
adapted for cross-market arbitrage with further
refinements. Whereas the model efficiently uncovers
arbitrage opportunities, implementing it successfully in
real trading scenarios poses significant challenges. These
challenges include the crucial timing of trades, significant
transaction fees, and the necessity for robust market
liquidity and stability. Moreover, the fast-paced nature of
financial markets requires advanced technology for quick
and effective execution. Despite these obstacles, with
strategic modifications and improvements, the model has
great potential to exploit arbitrage opportunities across
various market conditions.
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VIL

The complete source code used for the arbitrage
detection, including real-time data fetching, arbitrage
algorithm implementation, and visualization tools, is
available on GitHub. Access the code repository here:
GitHub Repository Link
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