
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Application of Summation and Recurrence Relations

in Loss Function Computation for Gradient Descent

Steven Owen Liauw - 13523103
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
owenliauw05@gmail.com, 13523103@std.stei.itb.ac.id

Abstract—With the vast development of artificial intelligence,

machine learning is becoming more widely used. One of the loss

function optimization algorithms in machine learning is gradient

descent. The paper examines the role of summation and recurrence

relations in determining loss functions for gradient descent,

emphasizing their theoretical and computational significance. In

order to provide insights into the convergence behavior and

computational efficiency of gradient descent, summation and

recurrence relations techniques are used to describe the cumulative

influence of errors over training data. This paper highlight how

crucial these mathematical concepts are for improving

optimization strategies and offer a strong basis for future

developments in machine learning.

Keywords—Summation, Recurrence Relations, Gradient

Descent.

I. INTRODUCTION

In machine learning, gradient descent is a basic optimization

technique that is widely used to iteratively minimize loss

functions, enabling models to efficiently learn from data. Precise

calculations of the loss function and its gradient, which directly
influence parameter updates, are essential to the process's

effectiveness. Mathematical methods like summation and

recurrence relations, which are the foundation of many machine

learning systems, are essential to these calculations.

To compute mistakes across the training data and provide a

comprehensive assessment of the model's performance,

summation is essential. It computes individual errors from every

data point into one complete metric, enabling the model to

evaluate its overall performance in relation to the whole dataset.

This collection establishes the basis for determining essential

metrics, like mean squared error or cross-entropy loss, which are

important for directing the learning process. By accounting for

the total impact of errors, summation guarantees that the

gradient descent algorithm is guided by the overall patterns in

the data, instead of individual cases of false prediction.

 Recurrence relations streamline the sequential updates

needed for gradient descent, allowing for a clearer depiction of

iterative calculations. These relationships offer a structured

method to connect every iteration based on the previous one,

which simplifies computation and enhances clarity in the

optimization procedure. By reflecting the iterative aspect of

parameter changes, recurrence relations also help in analyzing

convergence characteristics, assisting in assessing if the

algorithm is moving toward an optimal solution. Collectively,

these mathematical frameworks provide improved insight into

the structure of loss functions, the interplay among model

parameters and data, and the fundamental dynamics of

convergence behavior.

This paper is intended to examine the application of

summation and recurrence relations within gradient descent,

emphasizing their theoretical significance and computational

effects. This study offers a better insight into the role of these

mathematical techniques in loss function computation by

analyzing how they support the iterative learning process.

II. THEORETICAL FRAMEWORK

A. Summation
Summation, represented by sigma notation, is a mathematical

process used to find the total of a series of numbers. It offers a

brief method to depict the sum of a sequence of terms.

∑ 𝑎𝑖

𝑛

𝑖=𝑚

The summation notation instructs us to substitute each value

of 𝑖 from 𝑚 (the lower bound) to 𝑛 (the upper bound) into

expression 𝑎𝑖, compute the terms, and then add them together.

The result is the total sum of the sequence.

 ∑ ∑ xij
n2
j=n1

m2
i=m1

Nested summation builds upon this idea by performing sums

across several dimensions, with one summation taking place

inside another. This method is frequently used to illustrate more

intricate associations, like summing values throughout rows and

columns of a dataset or merging various hierarchy levels.

B. Recurrence Relations
A recurrence relation is a mathematical expression that

specifies each term in a sequence by referring to one or more of

its earlier terms. It offers a structured method to create sequences

or series that adhere to particular rules or patterns. For example,

if 𝑎𝑛 denotes the 𝑛𝑡ℎ term of a sequence, a recurrence relation

might define 𝑎𝑛 based on the previous terms in the sequence.

This function embodies the conversion or connection between

successive terms.

mailto:owenliauw05@gmail.com
mailto:13523103@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

For instance, in the scenario of a straightforward recurrence

relation, 𝑎𝑛 = 𝑓(𝑎𝑛−1), the function f illustrates how every term

is obtained from the previous one. A typical example is the

Fibonacci sequence, where the starting values are set as 𝑎0 = 1

and 𝑎1 = 1, with later terms calculated using the formula 𝑎𝑛 =
𝑎𝑛−1 + 𝑎𝑛−2. This relation produces the sequence: 1, 1, 2, 3, 5,

8, 13, ..., in which every term is the total of the two previous

terms.

Recurrence relations are deemed linear homogeneous when

they consist of a linear combination of previous terms without

any extra external terms. This kind of relationship is expressed

as:

𝑎𝑛 = 𝑐1𝑎𝑛−1 + 𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘

where 𝑐1, 𝑐2, … , 𝑐𝑘 are constants, with 𝑐𝑘 not equal to zero.

The answer to a linear homogeneous recurrence relation is

frequently obtained by proposing a general solution in the

format 𝑎𝑛 = 𝑟𝑛, with r representing a constant. Inserting this

into the equation yields the characteristic equation:

𝑟𝑘 − 𝑐1𝑟𝑘−1 − 𝑐2𝑟𝑘−2 − ⋯ − 𝑐𝑘 = 0.

The equation above is the characteristic equation of the

recurrence relation, and its characteristic roots represent the

solutions to the equation.

C. Loss Function
 A loss function mathematically expresses the difference

between a model's predicted output and the actual target values.

It measures the difference, offering a metric that directs the

optimization procedure in machine learning and statistical

models. The main aim of the loss function is to assess the

model's performance and act as the basis for modifying

parameters to enhance accuracy.

A loss function, 𝐿, takes as input the predicted value, 𝑦pred,

and the actual target value, ytrue, and outputs a scalar value that

reflects the degree of error in the prediction. Formally, a loss

function can be expressed as:

𝐿(𝑦true, 𝑦pred)

For models with multiple predictions, the overall loss is

computed by aggregating individual losses across all data

points. This is commonly represented as:

𝐿total =
1

𝑛
∑ 𝐿 (𝑦true

(𝑖)
, 𝑦pred

(𝑖)
)

𝑛

𝑖=1

Some loss functions in regression models, such as Mean

Squared Error (MSE) and Mean Absolute Error (MAE), can be

expressed as:

MSE =
1

𝑛
∑ (𝑦pred

(𝑖)
− 𝑦true

(𝑖)
)

2
𝑛

𝑖=1

MAE =
1

𝑛
∑ |𝑦pred

(𝑖)
− 𝑦true

(𝑖)
|

𝑛

𝑖=1

While other loss functions in classification models, such as

Cross-Entropy Loss and Hinge Loss, can be expressed as:

Cross-Entropy = −
1

𝑛
∑[𝑦true

(𝑖)
log(𝑦pred

(𝑖)
)

𝑛

𝑖=1

+ (1 − 𝑦true
(𝑖)

) log(1 − 𝑦pred
(𝑖)

)]

Hinge Loss =
1

𝑛
∑ 𝑚𝑎𝑥(0,1 − 𝑦true

(𝑖)
⋅ 𝑦pred

(𝑖)
)

𝑛

𝑖=1

The loss function acts as the objective to minimized

throughout the training process. Optimization techniques, like

gradient descent, adjust model parameters in iterations to

minimize the loss. The gradient of the loss function directs the

modifications, taking the model towards an ideal solution.

D. Gradient Descent
 Gradient descent is a key optimization technique commonly

used in machine learning, statistics, and computational

mathematics to reduce a specific objective function. The

algorithm works in iterations, modifying model parameters to

minimize the function's value, eventually leading to an optimal

solution. The iterative characteristic of gradient descent makes

it especially useful for high-dimensional issues, where finding

analytical solutions is frequently unfeasible.

Figure 1. Gradient Descent Algorithm

Source: [2]

At its essence, gradient descent aims to find the minimum of a

loss function, 𝐿(θ), where θ represents the parameters of a

model. The loss function measures the difference between the

predicted and actual values, and reducing this error guarantees

that the model's predictions improve in accuracy. The gradient

of the loss function, ∇𝐿(θ), provides the direction of steepest

ascent, pointing toward the values of θ where the function

grows most rapidly. By moving in the reverse direction of the

gradient, the algorithm guarantees a reduction in the loss

function value with every iteration. The general update rule for

gradient descent is given by:

θ𝑡+1 = θ𝑡 − α∇𝐿(θ𝑡)

Where α is the learning rate, a hyperparameter that determines

the step size of each update. The choice of α is important: a

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

learning rate that is too small leads to slow convergence, while

one that is too large risks overshooting the minimum or causing

divergence. This balance is essential to ensure both efficiency

and stability in the optimization process.

Gradient descent can be categorized into three primary types

depending on the method used for calculating the gradient:

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 ⋅
1

𝑚
∑ ∇𝐿 (𝑦(𝑖), 𝑦(𝑖)̂)

𝑚

𝑖=1

1. Batch Gradient Descent: In this method, the gradient is

calculated by using the complete dataset. Although it

guarantees a steady decline towards the minimum, batch

gradient descent can be costly in terms of computation for

extensive datasets, since it necessitates handling all the

data during each iteration.

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 ⋅ ∇𝐿(𝑦(𝑖), 𝑦(𝑖)̂)

2. Stochastic Gradient Descent (SGD): Rather than using the

full dataset, SGD determines the gradient using just one

data point at each iteration. Although this approach

improves computational efficiency, the updates may

cause noise, resulting in oscillations near the minimum

instead of a smooth convergence.

𝜃𝑡+1 = 𝜃𝑡 − 𝛼 ⋅
1

𝑏
∑ ∇𝐿 (𝑦(𝑖), 𝑦(𝑖)̂)

𝑖∈𝐵

3. Mini-Batch Gradient Descent: This version finds a middle

ground between batch and stochastic methods by

calculating the gradient over small groups (mini-batches)

of the data. Mini-batch gradient descent is commonly

used in practice because of its computational

effectiveness and consistent updates.

The effectiveness of gradient descent depends on the

characteristics of the loss function. For convex functions, since

every local minimum is a global minimum, gradient descent is

assured to reach the optimal solution, as long as the learning rate

is selected correctly. Nonetheless, for non-convex functions,

like those frequently found in neural networks, gradient descent

might settle at a local minimum or saddle point instead of

reaching the global minimum. Nonetheless, non-convex

optimization frequently produces solutions that are adequately

effective for real-world applications.

E. Linear Regression

Linear regression is a basic statistical and machine learning

method used to model and examine the connection between one

or more independent variables (features) and a dependent

variable (target). The main objective of linear regression is to

identify the optimal line or hyperplane that reduces the

difference between the predicted and actual values of the

dependent variable.

The linear regression model assumes that the relationship

between the input features and the target variable is linear. For

a single feature, the model is represented as:

𝑓𝑤,𝑏(𝑥(𝑖)) = 𝑤𝑥(𝑖) + 𝑏

Where:

- 𝑓𝑤,𝑏(𝑥(𝑖)) is the predicted value for the 𝑖𝑡ℎ data point

- 𝑥(𝑖) is the input feature value.

- 𝑤 is the weight (slope of the line) that defines the

impact of the feature.

- 𝑏 is the bias (intercept), which shifts the line vertically.

For multiple features, the model generalizes to:

fw,b(x(i))  = w⊤ x(i)  +  b

Where:

- 𝑥(𝑖) is the vector of feature values for the 𝑖𝑡ℎ data point.

- 𝑤 is the vector of weights corresponding to the

features.

- w⊤ x(i) is the dot product of the weights and features.

 To find the optimal values of 𝑤 and 𝑏, gradient descent is often

used. Gradient descent iteratively adjusts 𝑤 and 𝑏 in the

direction that reduces the loss function. The update rules are

given by:

𝑤 ← 𝑤 − α
∂𝐿

∂𝑤
, 𝑏 ← 𝑏 − α

∂𝐿

∂𝑏

Where:

- α is the learning rate, controlling the step size.

-
∂𝐿

∂𝑤
 ,

∂𝐿

∂𝑏
 are the gradients of the loss function with

respect to 𝑤 and 𝑏

For multiple features, the gradient with respect to the weights

becomes:

∂𝐿

∂𝑤
=

1

𝑚
∑(𝑓𝑤,𝑏(𝑥(𝑖)) − 𝑦(𝑖))𝑥(𝑖)

𝑚

𝑖=1

III. IMPLEMENTATION

This implementation uses Python to perform simple linear

regression through gradient descent, constructed completely

from scratch. The aim is to highlight the importance of

summation and recurrence relations in the computational steps.

A. Tools

In this implementation, we will make use of:

- Numpy

- Matplotlib

- Math

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 2. Importing python libraries

Source: writer’s archive

B. Load Dataset

Figure 3. Load artificial dataset

Source: writer’s archive

C. Compute Loss Function

Figure 4. compute_loss function

Source: writer’s archive

The compute_loss function determines the Mean Squared

Error (MSE) cost associated with linear regression, It takes the

input data 𝑥 (attributes), 𝑦 (outcomes), and the model

parameters 𝑤 (weights) and 𝑏 (intercept). The function iterates

through every data point, determines the predicted value using

the linear equation, and calculates the square of the error

between the predicted value and the real target value.

D. Equations

Figure 5. compute_gradient function

Source: writer’s archive

The compute_gradient function determines the gradients of

the loss function concerning the model parameters 𝑤 (weight)

and 𝑏 (bias) in linear regression. The inputs consist of the feature

values 𝑥, target values 𝑦, along with the current parameters 𝑤

and 𝑏. For each data point, it calculates the error between the

predicted value 𝑓𝑤𝑏 = 𝑤 ⋅ 𝑥[𝑖] + 𝑏 and the actual target value

𝑦[𝑖]. The gradient with respect to 𝑤 (𝑑𝑗_𝑑𝑤) is computed by

multiplying this error by the feature value 𝑥[𝑖] and the gradient

with respect to 𝑏 (𝑑𝑗_𝑑𝑏) is the error itself. These individual

gradients are totaled across all data points and subsequently

averaged by dividing by the total number of data points. The

function returns the averaged gradients (𝑑𝑗_𝑑𝑤) and (𝑑𝑗_𝑑𝑏).

E. Gradient Descent

Figure 6. gradient_descent function

Source: writer’s archive

The gradient_descent function repeatedly modifies the model

parameters 𝑤 (weight) and 𝑏 (bias) using the

gradients derived from the gradient_function. Beginning with

starting values of 𝑤 and 𝑏 , the function modifies them towards

reducing the loss function. The learning rate (α) regulates the

magnitude of the steps taken for these updates. The historical

data of the loss values (J_history) and parameter values

(𝑝_ℎ𝑖𝑠𝑡𝑜𝑟𝑦) is recorded for future visualization. After the

specified number of iterations, the updated 𝑤,𝑏 and the history

of loss and parameters are returned.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 7. gradient_descent_recursive function

Source: writer’s archive

Alternatively, we can also make gradient descent with a

recursive approach, where each iteration is handled by a

recursive call instead of using a loop. The base case checks if

the current iteration index (𝑖) exceeds the specified number of

iterations (num_iters), in which case it stops the recursion and

returns the final results. At each recursive step, the function

calculates the gradients (𝑑𝑗_𝑑𝑤) and (𝑑𝑗_𝑑𝑏) using the

provided gradient_function. These gradients are used to modify

the parameters 𝑤 and 𝑏 using the gradient descent formula. The

revised values are subsequently saved in the history lists

together with the calculated loss via the compute_loss function.

F. Gradient Descent Visualization

Figure 8. final 𝑤 and 𝑏

Source: writer’s archive

The code runs gradient descent twice, once using a recursive

approach and once using an iterative approach to find the

optimal values of 𝑤 (weight) and 𝑏 (bias) that minimize the lost

function. It initializes the parameters and settings, then prints the

final values of 𝑤 and 𝑏 for both methods, comparing their

results.

Fig 9. plot_contour_gradient function

Source: writer’s archive

The code runs a function that plots the contour of a loss

function 𝐽(𝑤, 𝑏) for linear regression and overlays the gradient

descent path. A helper function, inbounds, also ensures that

arrows are only plotted if they fall within the visible plot range.

Figure 10. plot_loss_vs_iteration function

Source: writer’s archive

 The code runs a function, plot_loss_vs_iteration, that displays

how the loss function behaves across iterations in the process of

gradient descent. It creates two subplots, left plot displays the

loss function values over the initial 100 iterations to observe the
early stages rapid changes, while right plot displays the loss

function values starting from the 1000th iteration onward to

observe the convergence at later stages.

IV. RESULTS

A. Final 𝑤 and 𝑏

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 11. Gradient decent 𝑤 and 𝑏

Source: writer’s archive

This result shows that the recursive or iterative approach, does

not influence the convergence of the gradient descent algorithm,

provided that the mathematical calculations and

hyperparameters (learning rate and iteration count) stay the

same. Both methods successfully reduce the loss function,

resulting in identical optimal parameters.

B. Gradient descent contour map

Figure 12. Gradient descent contour map

Source: writer’s archive

The gradient descent contour map illustrates that during each

iteration, the algorithm gradually shifts toward areas of reduced

loss, ultimately stopping at the minimum point where the loss

function reaches its lowest value. This is depicted on the contour

map as a collection of red dots and arrows that outline the path

of the parameters over the loss landscape. As the gradient

descent algorithm nears the optimal values, the updates to the

parameters shrink, ensuring smooth convergence and preventing

overshooting. This visual representation validates that the

optimization procedure is operating properly and effectively

minimizes the error at every stage.

C. Plot loss vs iteration

Figure 13. Loss vs iteration

Source: writer’s archive

The graph shows loss in relation to iterations indicates that

initially in gradient descent, the loss declines rapidly as the

algorithm makes larger strides driven by steep gradients.

Gradually, the expenses drop at a slower rate, and the curve

levels off as the algorithm nears the minimum. Ultimately, the

loss stabilize, indicating that the algorithm has reached or is

nearing the optimal parameters.

V. CONCLUSION

This research explored the importance of summation and

recurrence relations in the gradient descent optimization

method. Summation provides a clear way to combine the total

error from all training samples, forming the basis for loss

function calculations. This ensures that the optimization process

focuses on the model's overall performance rather than

individual cases.

Recurrence relations allow for a systematic and repetitive

method for adjusting parameters. It is possible to standardize

and simplify the calculations needed for each step by describing

the gradient descent updates as recurrence formulae. This

guarantees steady progress in lowering the loss function and

offers a precise mathematical foundation for understanding the

algorithm's convergence behavior.

Summation and recurrence relations, when combined, form

the core of gradient descent, underpinning both its theoretical

frameworks and real-world applications. These mathematical

concepts are crucial for enabling optimization in machine

learning models and ensure that gradient descent works

efficiently whether used recursively or iteratively.

VI. Appendix
Link Video:

https://www.canva.com/design/DAGbCzc9EMM/PtwpeA7q

bBHVizJL0-

mldQ/view?utm_content=DAGbCzc9EMM&utm_campaign=d

esignshare&utm_medium=link&utm_source=recording_view

VII. ACKNOWLEDGMENT

The completion of this paper would not have been possible

without the support and encouragement of many people. First, I

thank God for providing the strength, wisdom, and

determination to finish this work.

I sincerely thank Dr. Ir. Rinaldi, M.T, the lecturer for Discrete

Mathematics (K-01), whose insightful lectures and helpful

feedback were crucial in developing the concepts examined in

this paper.

I am also deeply grateful to my parents for their constant

support, love, and encouragement throughout my studies.

Finally, I extend my thanks to my friends, whose guidance and

companionship made this work more enjoyable and meaningful.

REFERENCES

[1] Ganie, A.G., Dadvandipour, S. From big data to smart data:

a sample gradient descent approach for machine learning. J

https://www.canva.com/design/DAGbCzc9EMM/PtwpeA7qbBHVizJL0-mldQ/view?utm_content=DAGbCzc9EMM&utm_campaign=designshare&utm_medium=link&utm_source=recording_view
https://www.canva.com/design/DAGbCzc9EMM/PtwpeA7qbBHVizJL0-mldQ/view?utm_content=DAGbCzc9EMM&utm_campaign=designshare&utm_medium=link&utm_source=recording_view
https://www.canva.com/design/DAGbCzc9EMM/PtwpeA7qbBHVizJL0-mldQ/view?utm_content=DAGbCzc9EMM&utm_campaign=designshare&utm_medium=link&utm_source=recording_view
https://www.canva.com/design/DAGbCzc9EMM/PtwpeA7qbBHVizJL0-mldQ/view?utm_content=DAGbCzc9EMM&utm_campaign=designshare&utm_medium=link&utm_source=recording_view

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Big Data 10, 162 (2023). https://doi.org/10.1186/s40537-

023-00839-9.

[2] Hikmat, Saad & Abdulazeez, Adnan & Saad, Hikmat &

Haji, Adnan & Mohsin, Abdulazeez. (2021).

COMPARISON OF OPTIMIZATION TECHNIQUES

BASED ON GRADIENT DESCENT ALGORITHM: A
REVIEW PJAEE, 18 (4) (2021) COMPARISON OF

OPTIMIZATION TECHNIQUES BASED ON

GRADIENT DESCENT ALGORITHM: A REVIEW

Comparison Of Optimization Techniques Based On

Gradient Descent Algorithm: A Review--Palarch's Journal

Of Archaeology Of Egypt/Egyptology 18(4).

[3] “Homepage Rinaldi Munir.”

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/202

3-2024/10-Rekursi-dan-relasi-rekurens-(Bagian2)-

2023.pdf (accessed Dec. 28, 2024).

[4] Jupudi, Lakshmi & Scholar, Research. (2016). Stochastic

Gradient Descent using Linear Regression with Python.
IJAERA. 2. 519 -525.

[5] K. H. Rosen, "Discrete Mathematics and Its Applications,"

8th ed. New York, NY: McGraw Hill, 2019.

[6] Manorathna, Rukshan. (2020). Linear Regression with

Gradient Descent.

[7] Rani, Parvathy & Devi, Rani. (2014). Gradient descent

based linear regression approach for modeling PID

parameters. 2014 International Conference on Power

Signals Control and Computations, EPSCICON 2014. 1-4.

10.1109/EPSCICON.2014.6887482.

[8] Sarmento, Rui & Costa, Vera. (2017). Introduction to
Linear Regression. 10.4018/978-1-68318-016-6.ch006.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 31 Desember 2024

Steven Owen - 13523103

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/10-Rekursi-dan-relasi-rekurens-(Bagian2)-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/10-Rekursi-dan-relasi-rekurens-(Bagian2)-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/10-Rekursi-dan-relasi-rekurens-(Bagian2)-2023.pdf

	I. Introduction
	II. THEORETICAL FRAMEWORK
	III. Implementation
	A. Tools
	B. Load Dataset
	C. Compute Loss Function
	D. Equations
	E. Gradient Descent

	IV. Results
	V. Conclusion
	VII. Acknowledgment
	References
	PeRNYATAAN

