
Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Application of Number Theory in Error Detection Systems
(Hamming Codes)

Sakti Bimasena - 135230531,2
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

113523053@mahasiswa.itb.ac.id, 2sbimasena@gmail.com

Abstract—Accurate data transmission becomes more
important for communication and information systems in the
modern age. Hamming code is one of the most well-known
error detection and correction techniques in digital data
transmission. In this paper, number theory is discussed in
error detection systems, with special emphasis on the concept
of parity bits and the basic principles of Hamming Codes.
This paper also discusses how number theory, such as modulo
arithmetic and congruence properties, function in the
implementation of error detection systems. This paper
demonstrates the ability of Hamming Code to find and
correct single-bit errors and its limitations to handle multi-bit
errors through Python program implementation and a
number of tests. The results of the analysis show that number
theory plays an important role in the development and
effectiveness of contemporary error detection systems.

Keywords—Hamming codes, error detection, number

theory, parity bits, data transmission

I. INTRODUCTION
In this digital age, reliable data transmission is very

important for communication and information systems.
However, data transmission processes encounter many
obstacles that result in an error in the data. Encountering
these obstacles can be very dangerous, especially in high-
risk applications such as industrial control systems,
satellite communications, and banking systems [1].

To solve this problem, many error detection and error
correction methods have been developed. One of the most
famous ones are Hamming codes that can detect and
correct single-bit errors in data. This method was created
by Richard W. Hamming in 1950 and uses a mathematical
approach that is linked to number theory such as binary
properties and arithmetic modulo operations [1],[2].

Concepts like binary representation, modulo operations,
and prime number properties are very important to
calculating parity bits that are used to detect and correct
error. Number theory plays a big part in the development
of hamming code algorithm dan code structure. This
relationship shows how basic number theory can be used
to solve real problems in information technology.

The purpose of this paper is to see how number theory is
used in error detection systems, with focus on hamming
codes. The paper will discuss the basic theory of hamming
codes, how the program will be implemented, and analysis
on experiment data. It is hoped that this discussion can

bring better understanding as to the role of number theory
in contemporary technology.

II. THEORETICAL FOUNDATION

A. Hamming Codes
Hamming codes is an error correction technique that is

used to find and correct single-bit errors in digital data.
Richard W. Hamming developed this method in 1950 to
increase the reliability of communication systems. The
working principle of hamming codes involve the addition
of parity bits into the original data. Parity bits are used to
satisfy certain conditions based on the combination of bits
in the data, and they help find the position of the error if an
error were to happen in transmission.

A.1. Parity Bits
The original data that consisted of m bits, is expanded

with r parity bits as so the total length of the data would be
𝑛 = 𝑚 + 𝑟. The number r can be calculated by using the
following formula:

2! ≥ 𝑚 + 𝑟 + 1

This equation makes sure that there are enough parity

bits to detect and correct errors in data. For example, if the
number of data bits is 4 (𝑑", 𝑑#, 𝑑$, 𝑑%), by using the above
equation, you would need at least 3 parity bits (2$ ≥ 4 +
3 + 1) to be able to sufficiently detect and correct single-
bit errors.

Before continuing, first know that there are two types of
parity bits, even parity bits and odd parity bits. A parity bit
will be added to the original data to make sure the total
amount of ones in the data is even or odd. For both types,
the value of the parity bits is dependent on the number of
ones that appear in a certain number of bits. In the case of
even parity bits, if that amount is odd, the value of the
parity bit is one, as so the total amount of ones that appear
in that certain group of bits is even. If the total amount of
ones is already even, the value of the parity bit is zero. For
odd parity bits, it is the exact opposite, if the number of
ones is even, the parity bit is set to one as to make sure the
total number of ones is odd. For the rest of this paper, the
type of parity bits that will be used is even parity bits.

A.2. Creating Hamming codes
The creation of hamming code starts by determining the

mailto:113523053@mahasiswa.itb.ac.id
mailto:2sbimasena@gmail.com

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

value of each parity bit. To do that, first keep in mind the
position of every bit, starting from one, in binary form, like
1, 10, 11, and so on. Then, the positions are classified into
two main groups: parity bits and data bits. Bit positions that
are a power of two, are classified as parity bits. All the
other bits are classified as data bits, these bits are the ones
that will carry the actual information that will be
transmitted.

According to its position in binary representation, every
data bit contributes to a certain amount of parity bits. For
example, the parity bit in the position of one (𝑝") covers
all bit positions that has a one in the least significant
position in the binary representation, like 1, 3, 5, 7, etc. the
parity bit in the position of two (𝑝#) covers all bit positions
that has a one as its second digit (2, 3, 6, 7, etc.). Then the
parity bit in the position of 4 (𝑝%) covers all bit positions
that has a one as its third digit (4-7, 12-15, etc.). A parity
bit mathematically includes all bits where when a bitwise
AND operation is performed between the parity bit
position and the associated bit position, the value is non-
zero. The parity bits value is then set depending on the type

of parity bits that is used.
Fig. 2.1 Parity bits coverage

Source: https://www.geeksforgeeks.org/hamming-code-
in-computer-network

To put this into perspective, if the data that wants to be

transmitted is 1101010, to make the hamming code, start
by placing the parity bits in the specified position. The final
position would look like this:

(𝑝", 𝑝#, 1, 𝑝%, 1,0,1, 𝑝&, 0,1,0)

𝑝" covers all positions that have 1 in its least significant
position (1, 3, 5, 7, 9, 11). With the first position being the
far right, there are 3 total ones, since we use even parity
bits, 𝑝" is set to one. Then move on to the second parity bit

and so on. It gets much harder to count manually each
occurrence of ones the larger the data gets. This can be
replaced by using an algorithm that uses XOR for each
digit. For example, for 𝑝#, we can calculate its value by
taking the bits in the position 3, 6, 7, 10, and 11 and using
XOR each bit like this:

0⨁0⨁1⨁1⨁1 = 1

A.3. Error Detection and Correction
By using the parity bits that was calculated in the

encoding process, Hamming codes can detect errors in
transmission. Each parity bit value will be recalculated
when the data has reached its destination. The calculation
will be done the same as when the data was encoded,
namely by using binary rules to select bits at certain
positions. This parity bit value will then be compared to the
parity bit value that was sent with the data.

Hamming code uses something called error syndrome,
which is the XOR result between the received parity bit
value and the recalculated parity bit value, to determine the
position of the incorrect parity bit. Data is considered error-
free if all recalculated parity bit values match the received
parity bit values.

Each digit in this error syndrome corresponds to a
comparison result for a particular parity bit. If the error
syndrome is equal to zero (0000), there are no errors found.
On the contrary, a non-zero value shows the position of the
incorrect bit. For example, if the error syndrome has a
value of 0011 (3), this means that the bit in the third
position is incorrect. The bit can be corrected by flipping
its value (from 1 to 0, or 0 to 1) after finding its position.

Fig. 2.2 Error detection visualization
Source: https://www.expertsmind.com/questions/show-
the-error-correction-by-hamming-code-30191826.aspx

B. Number Theory in Hamming Code
Number theory, a branch of pure mathematics that

discusses the properties of whole numbers, has an
important role in the development and implementation of
hamming code. Hamming code takes advantage of
principles like modulo arithmetic, congruency, and whole
number properties to detect and correct errors in data
transmission.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

B.1. Modulo Arithmetic
In hamming code, parity bit calculation depends on

modulo arithmetic. This operation is used to determine the
even odd parity value from a subset if data. For example,
if the total number of ones in a certain number of bits is
even, the parity value will be set to zero, and if the number
of ones is odd, the parity value will be one. I In this case,
the modulo 2 operation is used to ensure that the result of
the calculation always lies in the domain {0, 1}.

B.2. Congruency
The bits checked by each parity bit are grouped based on

the concept of congruence. In binary bit position
representation, modulo properties is used to determine
which bits are covered by a parity bit. For example, a
binary position with a particular value can be used to
determine whether that bit is controlled by a particular
parity bit, which corresponds to a bitwise AND at that
position. This supports mathematical detection of fault
positions and enables effective data management.

B.3 Whole Number Properties
Hamming codes also rely on the properties of integer

division, such as the ability to determine the remainder of
a division. This operation is important for calculating the
error syndrome, which is the difference between the
received parity value and the recalculated parity value. The
error syndrome is represented in binary form and indicates
the position of the error in the data. This binary
representation allows the system to directly correct the
erroneous bits.

III. IMPLEMENTATION PROGRAM

The implementation of Hamming code using Python is
described in detail in this section. This program is intended
to handle the data encoding process, which includes adding
parity bits, as well as to find errors and repair corrupted
data. The main functions and their working mechanisms
are discussed in this explanation.

The number of parity bits (r) required to protect the data
is the first step in encoding. Parity bits are additional bits
used to detect and correct errors. The length of the original
data (m) is used to determine the number of parity bits
using the following formula:

2! ≥ 𝑚 + 𝑟 + 1

This formula makes sure that the parity bits are sufficient

in covering all data bits. In this python implementation,
calculate_parity_positions function calculates r iteratively.
For example, it the original data contains 7 bits, then r is
calculated to be 4 because 2% ≥ 7 + 4 + 1. So the total
length of the data transmitted is 7+4 = 11 bits.

Fig. 3.1 calculate_parity_positions function

Source: Author

After calculating the amount of parity bits, the next step
is inserting the parity bits into their position (powers of 2).
In the beginning, the parity bits hold the value 0 as a
placeholder. On the other hand, the data bits are inserted
according to their original sequence. insert_parity_bits
function does this task like this:

Fig. 3.2 insert_parity_bits function
Source: Author

For example, if the original data is 1101010, the function

returns [0,0,1,0,1,0,1,0,1,0,1] with the parity bits being at
position 1, 2, 4, and 8.

The parity bit is calculated by XORing all the bits it
covers. A parity bit covers the bits at positions where a
particular binary digit is 1. The calculate_parity_values
function performs this calculation:

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Fig. 3.3 calcuate_parity_value function
Source: Author

 The congruence property is used to calculate parity bit
values to determine which data bits are covered by each
parity bit. Parity bits cover only a certain subset of the
overall data. For example, the parity bit at position p1=1
covers the bits with a particular binary position, while the
parity bit at position p2=2 covers a different subset. To
determine whether a bit is within the range of a particular
parity bit, this implementation uses the modular property.
If, a bit position k is within the range of the parity bit at
position p, it follows this equation:

𝑘 mod (2 × 𝑝) ≥ 𝑝

This means, if the result of modulus operation between

bit k with 2 x p is bigger or equal with p, then the bit is
covered by that parity bit. This ensures that the coverage of
each parity bit is consistent with the Hamming structure
code.

For example, for the parity bit in position 1 (p1), the data
bits it covers are located in position 1, 3, 5, 7, 9, etc.
because 𝑘 mod 2 ≥ 1. On the other hand, for the parity bit
in position 2 (p2), the data bits it covers are located in
position 2, 3, 6, 7, 10, etc. because 𝑘 mod 4 ≥ 2. This
implementation is done through a loop that uses this
condition to check each data position. The parity_sum
variable is added by every bit that fulfills this condition.
This variable stores the total amount of bits that is covered.
The parity bit value can be obtained by calculating the
modulus 2 result of the parity_sum after the calculation is
complete. This method is effective because it can identify
the bit coverage directly using modular operations without
the need to manually map the positions. In this way, the
process of calculating the parity bit value can be automated
for all types of data.

In this section, the implementation concentrates on
detecting and correcting errors in data that has been
encoded using Hamming codes. The function
detect_and_correct_error(encoded) accepts an encoded
parameter, which is a list of encoded data that may contain
errors.

The first step is calculating the error syndrome. This is
used to know if there are errors and where those errors are
located. The program calculates the parity values of each
parity bit position based on the encoded data. Specifically,
the program iterates through the encoded data to determine
whether a particular bit should contribute to the parity sum
based on its position compared to the current parity bit.

The syndrome array holds every error syndrome bit. A
non-zero error syndrome bit signifies an error in the
encoded data. A bitwise XOR operation on the parity
position where the syndrome bit is 1 is used to calculate the
location of the error.

The program corrects the error by flipping the bit in the
error location by using a XOR operation
(encoded[error_pos - 1] ^= 1). Lastly, the function prints
the error syndrome, the location of the error, and before

and after correction data. If there are no errors, the program
only tells the user that there are no errors.

Fig. 3.4 detect_and_correct_error function
Source: Author

IV. ANALYSIS

The performance of the error detection algorithm was
assessed across a variety of scenarios. Every scenario was
created to resemble actual situations and evaluate how
accurate the mathematical model is.

For each testcase, unless stated otherwise, the data that
will be transmitted is 1011011. The encoded data that has
been calculated and inserted by the program is below.

Fig. 4.1 Original data and after encoded
Source: Author

Fig. 4.2 First testcase result
Source: Author

For the first testcase, an error occurs in the first position,

or first bit, of the received data. The program calculates the
syndrome bit and finds that there is an error in position 1
produced by the syndrome bit. Then, using the detected
error position, the program corrects the erroneous bit and
returns the correct data. This shows that the system has the
ability to detect and correct errors in position.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

Fig. 4.3 Second testcase result

Source: Author

The error occurs at the third position of the received data
in the second test case. After the data is received, the
detect_and_correct_error() function again detects the error
position and corrects the wrong bit. After the correction,
the received data becomes the correct data again. This
shows that the Hamming system can correct errors at non-
parity positions such as 1, 2, 4, 8 and so on. This shows the
ability of the system to find and correct errors in bits that
are not parity bits.

The condition where the received data does not contain
errors is tested in the third test case. The
detect_and_correct_error() function does not find any
errors and produces the same received data. This shows the
ability of the Hamming system to distinguish correct data
from incorrect data. Therefore, the system will not make
corrections if there are no errors, showing the system's
ability to find normal situations that do not require
correction.

Fig. 4.4 Third testcase result
Source: Author

Fig. 4.5 Fourth testcase result
Source: Author

For the fourth testcase, errors in multiple locations are

simulated by flipping the 5th and 6th bits simultaneously.
When the detect_and_correct_error function ran, the
system uses the error syndrome to detect and calculate the
position of errors. The error syndrome result for this test
case is [0,0,1,1] which signifies that there is an error at the
third position. Then the program flips the third bit.

But in reality, the errors at bits 5 and 6 was not correctly
detected. In this implementation, the program can only
detect and correct single-bit errors. Because more than one
error occurred, the error syndrome produced is not
sufficient to identify the two error locations accurately. As
a result, the system only detects and corrects the third bit,
even though the errors happen at the 5th and 6th bit. This
shows a limitation in the hamming code system that can
only detect single-bit errors, and if there are more than one
error, the data that is corrected is more than likely not
accurate.

Hamming codes work well for detecting and correcting
single bit errors, but they cannot handle more than one bit
error at a time. Therefore, if a system needs to handle
multiple or more errors, more complex methods, such as
more robust error detection and correction codes, must be
considered.

V. CONCLUSION

Based on the results of the implementation and analysis
that have been carried out, it can be concluded that number
theory plays an important role in the development of error
detection systems, especially Hamming Codes. The
implementation of Hamming Code using number theory
concepts such as modulo arithmetic and congruence
properties has proven effective in detecting and correcting
single bit errors in data transmission. The developed
program successfully implements the Hamming Code
algorithm using XOR operations and parity bit
calculations, demonstrating the practical application of
mathematical concepts in programming.

Testing shows that the program can detect and correct
single bit errors accurately in many positions, but it cannot
handla multi bit errors, this shows that more complex
methods are needed for applications that need higher
reliability. This study shows that basic mathematical ideas,
like number theory, can be used to solve real informational
technology problems.

It is recommended to study more advanced error
detection and correction techniques that can handle multi-
bit errors and optimize the implementation to improve
computational efficiency for further development.

VI. APPENDIX
The github repository for the program used in this paper

can be accessed here:
https://github.com/sbimasena/Hamming-code-application

VII. ACKNOWLEDGMENT
As the author of this paper, I would like to express my

sincere gratitude to all parties who have provided support
and inspiration during the writing process so that I can
complete this paper entitled “Application of Outer Product
for Vehicle Collision Detection in Automatic Navigation
System” well. I would like to thank:

1. Dr. Ir. Rinaldi, M.T. and Ir. Rila Mandala,
M.Eng., Ph.D. as the lecturers of IF2123 Aljabar
Linier dan Geometri for the teaching of materials
that have been shared in the Informatics
Engineering class.

2. Both my parents for always supporting me. Their
presence and positive affirmations always gives
me the strength to finish this paper well.

3. My friends at Informatics Engineering class,
who always cheer me up during the stressful
times of creating this paper.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB –Semester I Tahun 2024/2025

REFERENCES

[1] Hamming, Richard Wesley (1950). "Error detecting and error
correcting codes” (PDF). Bell System Technical
Journal. 29 (2): 147–160.

[2] A Pandey, H. (2024, July 26). Hamming code in Computer
Network. GeeksforGeeks.
https://www.geeksforgeeks.org/hamming-code-in-computer-
network/?ref=gcse_outind

[3] Munir, Rinaldi. (2023). “Teori Bilangan (Bagian 1)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/15-Teori-Bilangan-Bagian1-2024.pdf

[4] Munir, Rinaldi. (2023). “Teori Bilangan (Bagian 2)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/16-Teori-Bilangan-Bagian2-2024.pdf

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 4 Januari 2024

Sakti Bimasena - 13523053

