
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Application of Matroid Intersection for Cost-Effective

Load Balancing

Benedict Presley – 13523067

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

presleybenedict04@gmail.com, 13523067@std.stei.itb.ac.id

Abstract— This paper addresses the degree-constrained

minimum spanning tree problem, a combinatorial optimization

challenge that arises in network design and resource allocation. By

leveraging the framework of matroid theory, specifically the

weighted matroid intersection problem, this paper presents a

solution that guarantees an optimal spanning tree while satisfying

degree constraints on specific vertices to ensure balanced load

distribution across the network.

Keywords— degree, matroid theory, minimum spanning tree,

weighted matroid intersection

I. INTRODUCTION

Network reliability is a study that focus on designing efficient

networks and ensuring their functionality despite potential

failures, resource constraints, or dynamic changes. It examines

how to design, maintain, and optimize networks to achieve

robust performance, often balancing trade-offs between cost,

efficiency, and redundancy. Network reliability is a critical

aspect of modern infrastructure, used in many fields such as

telecommunications, distributed systems, and cloud computing.

A key aspect of these studies is constructing networks that

minimize the risk of overload and maximize operational

efficiency under given constraints.

One problem in this domain involves constructing minimum-

weight spanning trees that satisfy specific degree constraints on

certain nodes, ensuring cost-effective load balancing across the

network. Traditional algorithms for minimum spanning trees,

such as Prim’s or Kruskal’s, focus solely on minimizing cost

without accounting for degree constraints, limiting their

applicability in real-world scenarios where node capacities may

be bounded. Furthermore, there are few algorithms capable of

solving this problem both optimally and efficiently, making it a

challenging and open area of research in combinatorial

optimization.

This paper explores the application of matroids for solving

constrained optimization problems. A matroid can be thought of

as a structure that captures the dependencies among elements in

a set, providing a systematic way to identify optimal subsets

under given conditions. Matroid intersection extends this idea,

enabling the simultaneous consideration of two matroids to find

a common independent set that satisfies both structures. This

capability is particularly relevant for network design problems

where multiple constraints, such as cost and degree limits, must

be addressed simultaneously. By leveraging matroid

intersection, this paper introduces a novel approach for

constructing degree-constrained minimum spanning trees,

enabling cost-effective load balancing across the network.

II. THEORETICAL BASIS

A. Set Theory
1. Definition and Notation

A set is a collection of distinct objects, which can

be finite or infinite. Objects in set are called elements.
A set is typically denoted by a pair of curly braces

containing its elements. For example: 𝑆 = {𝑎, 𝑏, 𝑐}

represents a set with three elements, 𝑎, 𝑏, and 𝑐. An

empty set contains no elements and is denoted by ∅. If

an element 𝑎 is part of a set 𝑆, it is denoted by 𝑎 ∈ 𝑆.

The size of a set 𝑆 is the number of elements

contained in 𝑆, denoted by |𝑆|.

2. Subsets and Power Sets

A subset is a set whose elements all belong to

another set. If 𝐴 ⊆ 𝐵, then every element of A is also

an element of B. The set of all subsets of S is called the

power set, denoted as 𝑃(𝑆).

For example:

𝑆 = {𝑎, 𝑏}, then 𝑃(𝑆) = {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}

3. Set Operations

The following are fundamental operations on sets

- Union

The union of two sets 𝐴 and 𝐵, denoted 𝐴 ∪ 𝐵, is

the set of all elements that are in A, B, or both.

Formally, 𝐴 ∪ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}.

- Intersection

The intersection of two sets 𝐴 and 𝐵, denoted 𝐴 ∩
𝐵, is the set of all elements that are in both 𝐴 and

𝐵. Formally, 𝐴 ∪ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}.

- Difference

The difference between two sets 𝐴 and 𝐵, denoted

𝐴 \ 𝐵, is the set of elements that are in 𝐴 but not in

𝐵. Formally, 𝐴 \ 𝐵 = {𝑥: 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵}.

- Symmetric Difference

The symmetric difference of two sets 𝐴 and 𝐵,

denoted 𝐴∆𝐵, is the set of elements that are in 𝐴

or 𝐵 but not both. Formally, 𝐴∆𝐵 = (𝐴\𝐵) ∪
(𝐵\𝐴)

- Cartesian Product

mailto:presleybenedict04@gmail.com
mailto:13523067@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

The Cartesian product of two sets 𝐴 and 𝐵,

denoted 𝐴 × 𝐵, is the set of all ordered pairs (𝑎, 𝑏),

where 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Formally 𝐴 × 𝐵 =
{(𝑎, 𝑏):𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

For example: 𝐴 = {1, 2} and 𝐵 = {𝑥, 𝑦}, then

𝐴 × 𝐵 = {(1, 𝑥), (1, 𝑦), (2, 𝑥), (2, 𝑦)}.

B. Graph Theory
A graph is a fundamental structure consisting of

vertices (or nodes) connected by edges.

1. Definition

A graph 𝐺 is formally defined as an ordered pair

𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices (or nodes)

and 𝐸 is the set of edges, where each edge connects two

vertices.

An edge 𝑒 ∈ 𝐸 can be represented as:

- Undirected edge: 𝑒 = {𝑢, 𝑣}, indicating a

bidirectional connection between 𝑢 and 𝑣.

Figure 1. Undirected edge e = {1,2}

- Directed edge: 𝑒 = (𝑢, 𝑣), indicating a directed

connection from 𝑢 to 𝑣.

Figure 2. Directed edge e = (1, 2)

2. Properties of Graphs

- Undirected Graph

Graph whose edges have no direction.
- Directed Graph (Digraph)

Graph whose edges have a direction.

Figure 3. Undirected graph (left) and directed graph (right) [Source:
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

- Unweighted Graph

Graph whose edges don’t have an assigned weight
(or cost).

- Weighted Graph

Graph whose edges have an assigned weight (or

cost), such as 𝑤(𝑒).

Figure 4. Unweighted graph (left) and weighted graph (right) [Source:

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

Note that a graph can be a combination of the elements
above.

Figure 5. directed weighted graph [Source:

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

3. Features of Graphs
- Degree of a vertex

The degree of a vertex, denoted as deg (𝑣), is the

number of edges incident to it. If the edges are

directed, degree can be categorized into in-degree

(the number of edges directed towards the vertex)
and out-degree (the number of edges directed

away from the vertex).

- Path
A sequence of vertices such that each adjacent pair

is connected by an edge. A simple path contains no

repeated vertices.
- Cycle

A path that starts and ends at the same vertex. A

graph with no cycle is called acyclic graph.
- Negative Cycle

A cycle whose total weight of edges is negative.

4. Special Graphs

- Tree

A tree is a connected, acyclic graph. If 𝑇 is a tree

with 𝑛 vertices, it has 𝑛 − 1 edges.

Figure 6. Examples of Trees [Source:
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

- Spanning Tree

A spanning tree of a graph 𝐺 is a subgraph that

includes all vertices of 𝐺 and is a tree.

Figure 7. Graph (left) and its spanning tree (right)
[Source: https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

- Bipartite Graph

A graph is bipartite if its vertex set 𝑉 can be

partitioned into two disjoint sets 𝑈 and 𝑊, such

that every edge only connects a vertex in 𝑈 to one

in 𝑊.

Figure 8. Bipartite graph [Source:

https://en.wikipedia.org/wiki/Bipartite_graph]

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://en.wikipedia.org/wiki/Bipartite_graph

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

5. Graph Representation

Graph can be represented in various ways.

- Adjacency Matrix

A 2D matrix 𝐴 of size 𝑛 × 𝑛 (where 𝑛 is the

number of vertices) is used. 𝐴𝑖𝑗 = 1 if there is an

edge between vertex 𝑖 and vertex 𝑗 and 𝐴𝑖𝑗 = 0

otherwise.

Figure 9. Unweighted adjacency matrix [Source:

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

- Weighted Adjacency Matrix

A 2D matrix 𝐴 of size 𝑛 × 𝑛 (where 𝑛 is the

number of vertices) is used. 𝐴𝑖𝑗 = 𝑤(𝑒) if there is

an edge between vertex 𝑖 and vertex 𝑗 and 𝐴𝑖𝑗 =

∞ otherwise.

Figure 10. Weighted adjacency matrix [Source:

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

- Adjacency List
For each vertex, a list of its neighbors is stored.

Figure 11. Unweighted adjacency list [Source:

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

- Weighted Adjacency List

For each vertex, a list of its neighbors and edge
weight is stored

Figure 12. Weighted adjacency list [Source:

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

- Edge List

A list of edges of the graph.

Figure 13. Edge list [Source: https://osn.toki.id/data/pemrograman-
kompetitif-dasar.pdf]

- Weighted Edge List

A list of edges and the respective weights of the

graph.

Figure 14. Weighted edge list [Source:
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

C. Minimum Spanning Tree Problem
The Minimum Spanning Tree (MST) problem is a
fundamental problem in graph theory and

combinatorial optimization. It involves finding a subset

of edges in a weighted, connected, and undirected
graph that:

- Connects all the vertices in the graph.

- Forms a tree
- Minimizes the total weight of the edges in the tree.

Formally,

Given a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices

and 𝐸 is the set of edges with associated weights 𝑤(𝑒)

for each edge 𝑒 ∈ 𝐸, the objective is to find a subset

𝑇 ⊆ 𝐸 such that:

- 𝑇 spans all vertices in 𝑉 (i.e., it connects all

vertices).

- 𝑇 forms a tree.

- The total weight ∑ 𝑤(𝑒)𝑒∈𝑇 is minimized.

This problem can be solved using various algorithms

such as Kruskal’s algorithm, Prim’s algorithm, or

Boruvka’s algorithm.

Figure 15. Graph (left) and its MST (right) [Source:
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

D. Shortest Path Problem and Bellman-Ford

Algorithm
The shortest path problem involves finding the

path between two vertices in a graph such that the sum

of the weights of the edges along the path is minimized.
Formally,

Given a graph 𝐺 = (𝑉, 𝐸). Let 𝑠 ∈ 𝑉 be the source

vertex, and let 𝑡 ∈ 𝑉 be the target vertex. The goal is to

find a path 𝑃 = (𝑠, 𝑣1, 𝑣2, … , 𝑡) where:

- 𝑃 ⊆ 𝐸 (all edges in the path belong to 𝐸)

- ∑ 𝑤(𝑢, 𝑣)(𝑢,𝑣)∈𝑃 is minimized.

For the single-source shortest path problem, the

objective is to compute the shortest path 𝑃𝑠(𝑣) for

every vertex 𝑣 ∈ 𝑉, such that 𝑑(𝑠, 𝑣) =
min ∑ 𝑤(𝑢, 𝑣)(𝑢,𝑣)∈𝑃 , where 𝑑(𝑠, 𝑣) is the shortest

distance from 𝑠 to 𝑣.

There are various algorithm that can be utilized to

solve shortest path problem, one such algorithm is the

Bellman-Ford algorithm.
The Bellman-Ford algorithm works by iteratively

relaxing all edges in a graph to compute the shortest

paths from a single source vertex to all other vertices.

It initializes the distance to the source as 0 and all other

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

vertices as infinity. Then, for |𝑉| − 1 iterations, it

checks each edge (𝑢, 𝑣) and updates the distance to

vertex 𝑣 if a shorter path through 𝑢 is found.

Figure 16. Pseudocode of Bellman-Ford algorithm [Source:

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf]

E. Disjoint Set Union (DSU)
Disjoint Set Union (DSU), also known as the

Union-Find data structure, is a data structure for

managing a collection of disjoint sets. It supports two
key operations efficiently:

1. Find: Determine the representative (or leader) of
the set containing a particular element.

2. Union: Merge two sets into one, ensuring that the

resulting sets remain disjoint.
DSU can be used to maintain and check the

connectivity of nodes in graph. DSU can also be used

to detect cycles in a graph.

F. Matroid Theory
1. Definition

A matroid 𝑀 is formally defined as an ordered pair

(𝑆, 𝐼) where 𝑆 is a finite set called the ground set and 𝐼

is a family of subsets of S, called the independent sets,

that satisfy the following axioms:

a. Non-empty property: ∅ ∈ 𝐼

b. Hereditary property: If 𝐴 ∈ 𝐼 and 𝐵 ⊆ 𝐴, then 𝐵 ∈
𝐼.

c. Exchange property: If 𝐴, 𝐵 ∈ 𝐼 and |𝐴| > |𝐵|, then

there exists 𝑥 ∈ 𝐴\𝐵 such that 𝐵 ∪ {𝑥} ∈ 𝐼.

These rules represent the idea of independence, similar
to how some sets of vectors in linear algebra are

independent or how some groups of edges in a graph

form structures without cycles.
Example:

𝑀 = (𝑆, 𝐼) where 𝑆 = {𝑥, 𝑦, 𝑧} and 𝐼 =
{∅, {𝑥}, {𝑦}, {𝑧}, {𝑥, 𝑦}, {𝑥, 𝑧}}.

2. Basis, Circuits, and Rank

- Basis

A basis of a matroid is a maximal independent set.
All bases of a matroid have the same size, otherwise we

can add something to the smaller basis from a greater

basis by the exchange property. Any independent set is
a subset of some basis (by hereditary property and

exchange property), thus knowing all the bases of a

matroid describes the whole matroid. We can construct
a basis of a matroid using Rado-Edmonds algorithm.

- Circuit

A circuit is a minimal dependent set, a dependent

set where removing any element makes it independent.
- Rank function

The rank of a matroid is the size of its bases. The

rank of a matroid can also be defined more flexibly.

Formally, 𝑟(𝐴) is the rank of a set 𝐴 in matroid 𝑀 =
(𝑆, 𝐼).

 The rank function satisfies

- 𝑟(𝐴) ≤ |𝐴| for all 𝐴 ⊆ 𝑆.

- 𝑟(𝐴) ≤ 𝑟(𝐵) if 𝐴 ⊆ 𝐵 ⊆ 𝑆.

- 𝑟(𝐴 ∪ 𝐵) + 𝑟(𝐴 ∩ 𝐵) ≤ 𝑟(𝐴) + 𝑟(𝐵).

3. Types of Matroid

Matroids are abstract structures that can represent a
wide variety of problems. Matroids can be created or

tailored to model specific problems by defining the

ground set and the independence rule. Below are some
common types of matroid.

- Graphic Matroid

A graphic matroid is derived from a graph

𝐺 = (𝑉, 𝐸), where the ground set 𝑆 is the set of

edges 𝐸 of the graph and the independent sets 𝐼 are

the subsets of 𝑆 that do not form a cycle.

- Colorful Matroid

A colorful matroid arises when elements are
grouped into distinct categories or colors. The

ground set consists of colored elements. Each

element has exactly one color. Set of elements is
independent if no pair of included elements share

a color.

- Uniform matroid

The ground set 𝑆 of a uniform matroid is any

finite set. The independent sets 𝐼 are all subsets of

𝑆 with size at most 𝑘, where 𝑘 is a fixed integer.

4. Matroid Intersection

The matroid intersection problem seeks a
maximum common independent set between two

matroids 𝑀1 = (𝑆, 𝐼1) and 𝑀2 = (𝑆, 𝐼2) defined on the

same ground set 𝑆. Formally, the problem can be stated

as finding an independent set 𝐼 that satisfies
|𝐼| = max{|𝐼′|: 𝐼′ ∈ 𝐼1 ∩ 𝐼2}

Matroid intersection is useful because it allows us

to find a structure that satisfies two different constraints
simultaneously. By identifying the largest set of

elements that are independent in both matroids, it

provides a formal framework for solving problems
where multiple requirements must be met together.

The weighted matroid intersection problem

extends the matroid intersection problem by assigning
weights to the elements of the ground set. The goal is

to find a common independent set between two

matroids that maximizes the total weight of its
elements. Formally, the problem can be stated as

finding an independent set 𝐼 that satisfies

∑ 𝑤(𝑒)

𝑒∈𝐼

= max {∑ 𝑤(𝑒)

𝑒∈𝐼′

: 𝐼′ ∈ 𝐼1 ∩ 𝐼2}

 where 𝑤(𝑒) is the weight of edge 𝑒.

https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

In order to solve matroid intersection problem,

there are two results that play a central role in the

solution of matroid intersection problem.
First, the min-max relation theorem establishes

that the maximum size of a common independent set

𝐼 ∈ 𝐼1 ∩ 𝐼2 between two matroids 𝑀1 = (𝑆, 𝐼1) and

𝑀2 = (𝑆, 𝐼2) is given by

max|𝐼| = min
𝐴⊆𝑆

(𝑟1(𝐴) + 𝑟2(𝑆\𝐴))

where 𝑟1 and 𝑟2 are the rank functions of the

matroids. This equality provides a theoretical limit for

the size of the independent set and confirms the

optimality of the solution. It guarantees that the optimal
solution is reached by ensuring tha the theoretical

upper bound is achieved.

The Edmonds-Lawler theorem extends this
concept to the weighted case, where each element in

the ground set 𝑆 is assigned a weight, and the goal is to

find a maximum-weight common independent set. This

is achieved using an augmenting path algorithm on an
“exchange graph”, where vertices represent elements

in 𝑆, and edges indicate opportunities to exchange

elements between the current independent set and the

rest of the ground set. The algorithm iteratively finds

augmenting paths to increase the total weight until no
further improvements can be made. The min-max

relation ensures that this process converges to the

theoretical maximum.

III. PROBLEM DEFINITION AND SOLUTION

A. Problem Definition

The problem tackled in this paper involves finding a cost-

effective spanning tree in a graph while satisfying specific

degree constraints on certain vertices. This type of problem

arises in network design, where constraints like capacity limits

or load balancing must be incorporated into the optimization

process. Formally the problem statement is given below.

Given an undirected, connected, and weighted graph 𝐺 =
(𝑉, 𝐸) where:

1. 𝑉 is the set of 𝑛 vertices,

2. 𝐸 is the set of edges,

3. 𝑤(𝑒) is the weight of each edge 𝑒 ∈ 𝐸.

Construct a spanning tree 𝑇 ⊆ 𝐸 that satisfies the following

conditions:

1. 𝑇 is a spanning tree, meaning it connects all vertices in 𝑉

without forming cycles.

2. For a subset of vertices 𝑉𝑘 ⊆ 𝑉 (where |𝑉𝑘| = 𝑘), each

vertex 𝑣 ∈ 𝑉𝑘 has a degree constraint 𝑑(𝑣), specifying

that the degree of 𝑣 in the spanning tree 𝑇 must not

exceed 𝑑(𝑣).

3. The total weight of the edges in T is minimized.

 B. Solution

In order to solve the degree-constrained minimum spanning

tree problem, we adopt a matroid intersection solution that

combines a graphic matroid (which ensures acyclicity) and a

degree matroid (which enforces degree constraints on the special

vertices). The first part of this solution is that we first fix a small

“forest” among the special vertices (since the number of

possible forests on a small set of special vertices is limited), and

then we attempt to complete the MST by adding other edges in

a way that respects both acyclicity and degree bounds.

We enumerate all such candidate forests 𝑇. Each forest 𝑇

represents a pre-selected set of edges between special vertices.

Once 𝑇 is fixed, only the remaining edges—those with zero or

one endpoint among the special vertices—are considered for

inclusion in the final MST. During this enumeration, if a forest

is already invalid (e.g., it contains cycles among the special

vertices or violates some degree constraint immediately), we

discard it. Otherwise, we proceed to the matroid intersection

phase.

After choosing a valid forest 𝑇 among the special vertices, we

want to find additional edges to form a minimum spanning tree

that satisfies both the acyclicity (graphic matroid) and the degree

constraints (degree matroid). In matroid intersection, we

maintain an independent set that already satisfy both matroid

properties. To improve or “augment” this set, we construct an

exchange graph whose vertices represent edges in the ground

set, and we add directed edges between these vertices according

to specific feasibility rules:

1. From unused edges to used edges if adding the unused

edge (and removing some used edge if necessary) still

satisfies both the graphic and degree matroid constraints.

2. From used edges to unused edges similarly, when

removing a used edge and adding an unused one leads to

a feasible solution.

Finding a sequence of swaps (edges in the exchange graph)

that improves the total cost is done via an augmenting path

procedure. We search for a path in the exchange graph that

begins at some “entering” edge (i.e., an unused edge that can

potentially be added) and ends at a suitable “exiting” edge. This

ensures that we get a larger independent that is closer towards

the optimal answer.

Unlike simple BFS-based augmenting path algorithms for

unweighted matroid intersection, our problem involves

weighted edges, hence the costs must be factored into each

swap. To account for these weights, we track potential

improvements using a Bellman–Ford style relaxation loop. Each

vertex in the exchange graph (representing a ground-set edge)

holds a distance value that indicates how much improvement

(cost reduction) can be obtained by flipping edges along a path

ending at that vertex. If there are multiple ways to obtain a path

with optimal value, we choose the path with the least edges

travelled since that minimizes the number of unnecessary

exchanges. Once no further improvement is possible (i.e., no

augmenting path improves the solution), we have reached a local

optimum under the chosen forest 𝑇.

Having successfully performed matroid intersection with

respect to the fixed forest 𝑇, we obtain a candidate MST that

respects the degree constraints on the special vertices. We repeat

this process for every possible forest 𝑇 among the special

vertices while keeping track of the best solution. This final best

solution is guaranteed to be a degree-constrained MST that

satisfies all of our problem requirements. We can reconstruct the

tree by using the edges in the final independent set we

maintained throughout the matroid intersection process.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

IV. IMPLEMENTATION

The implementation of the solution is written in C++ for

efficiency reasons. Due to the extensive length of the code, it

cannot be included in full within this paper. However, readers

can access the complete implementation and related

documentation on the project's GitHub repository at

https://github.com/BP04/weighted-matroid-intersection.

A. Disjoint Set Union (DSU) Class

The DSU class is responsible for tracking connected

components in the graph and checking for acyclicity. The data

structure acts as an “oracle” to efficiently check if the set being

build is independent (have no cycle). Each edge addition

corresponds to a union operation, and each cycle check is a

matter of comparing representatives.

B. prepare() Function

This subprogram is invoked before each augmentation step to

ensure consistency:

1. It initializes or clones the DSU state to match the

current set of chosen edges. All used edges are “union-

ed,” ensuring we have the correct connectivity relation

between nodes.

2. It resets the degree array so that each vertex’s

remaining capacity is reflected accurately. For every

edge in the MST, the degrees of its endpoints are

decremented.

3. With these updates, subsequent checks in augment()

can reliably determine whether adding a new edge

would break either the cycle-free condition or a degree

limit.

C. augment() Function

This procedure is the core of the matroid intersection strategy,

seeking augmenting paths in an exchange graph:

1. Preparation: A call to prepare() resets the DSU and

degree arrays to reflect which edges are currently in the

partial MST.

2. Feasibility Checks: For each edge in the ground set, we

mark whether adding it would create a cycle (safe1) and

whether adding it is permissible under the remaining

degree constraints (safe2).

3. Exchange Graph Construction: Each edge in the ground

set is treated as a node in a directed graph; edges between

these nodes represent potential “swaps” (one edge leaves

the MST, another enters) that maintain both acyclicity

and degree constraint safisfaction.

4. Bellman–Ford Routine: Since edges have weights, we

apply a Bellman–Ford routine that looks for negative-

cost paths in the exchange graph. Finding a negative-cost

path corresponds to a cost-improving series of swaps—

i.e., an augmenting path.

5. Flipping Edges: If such a path exists, we flip the chosen

edges between “used” and “unused” status, updating the

MST cost. If no such path remains, augmentation halts

for this configuration.

D. calculate() Function

Once we fix a forest among special vertices, we must

incorporate additional edges from the ground set to complete a

spanning tree of all 𝑁 vertices. The calculate function manages

this integration:

1. It begins with a certain number of edges already placed,

so need indicates how many more edges are necessary.

The initial cost of the current forest is init_cost.

2. Repeatedly, the function calls augment(), which attempts

to improve the current set of edges via exchange. If an

augmentation is successful, calculate() checks whether

the resulting cost is promising (i.e., better than the best-

known answer) and whether the correct number of edges

has been reached.

3. If all needed edges can be integrated successfully while

respecting degree constraints and avoiding cycles,

calculate returns the final cost. Otherwise, it returns −1

to indicate infeasibility.

E. build_answer() Function

This function implements the enumeration of every possible

forests among the first 𝑘 special vertices. Internally,

build_answer() works recursively. The function keeps track of

which special vertex it is working on right now. When the edges

have been assigned to this vertex, the function move on to the

next vertex. When all potential edges has been assigned between

all special vertices, the code verify if these chosen edges form a

valid forest using DSU, and whether the configuration satisfy

degree constraints on each special vertex. If valid, we progress

to finishing the MST with the calculate() function.

V. TESTS AND RESULTS

Given the testcase below
Number of vertices and special vertices respectively

10 5

Label of special vertices and degree constraint

0 5

1 3

2 4

3 2

4 1

Adjacency Matrix
29 49 33 12 55 15 32 62 37

61 26 15 58 15 22 8 58

37 16 9 39 20 14 58

10 15 40 3 19 55

53 13 37 44 52

23 59 58 4

69 80 29

89 28
48

Running the above test case we get

https://github.com/BP04/weighted-matroid-intersection

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Hence we’ve constructed the degree-constrained minimum

spanning tree. Below is the visualization of the tree given by the

code.

Figure 17. Visual of the constructed degree-constrained MST

The implementation was also tested on the benchmark

problem DIY Tree from Codeforces. This problem provides a

well-built test cases for evaluating the correctness and efficiency

of the solution under realistic constraints. The test cases include

various graphs with degree constraints and edge weights,

ensuring that the implementation handles a wide range of

scenarios effectively. The implementation passed all test cases

thus demonstrating its correctness and ability to efficiently solve

the problem while adhering to the specified constraints.

Figure 18. Result of testing implementation to benchmark problem

VI. CONCLUSION

In this paper, we explored the application of matroid theory

and the weighted matroid intersection algorithm to solve the

degree-constrained minimum spanning tree problem. By

leveraging the Edmonds-Lawler theorem and the min-max

relation, we developed an approach that guarantees an optimal

solution, as demonstrated through testing on the benchmark

problem. The implementation successfully handles a wide range

of scenarios, consistently providing the correct and optimal

spanning tree.

However, while the solution is theoretically sound and

achieves optimality, the computational time required to compute

the tree can become significant for larger graphs. This shows a

potential area for improvement, where further optimizations or

heuristic approaches could be explored.

Despite these limitations, the methodology presented here

showcases the power of matroid theory in solving constrained

optimization problems.

VII. APPENDIX

GitHub: https://github.com/BP04/weighted-matroid-

intersection

VIII. ACKNOWLEDGMENTS

The author sincerely thanks God Almighty for providing the

strength and opportunity to complete this paper successfully.

The author also extends deep appreciation to Dr. Ir. Rinaldi,

M.T., lecturer of the IF1220 Discrete Mathematics course, for

his guidance, encouragement, and support throughout the

semester and during the preparation of this paper. Additionally,

the author extends thanks to Mr. Ilya Zylev (ATSTNG) for their

insightful and comprehensive blog on matroid intersection,

which served as a valuable resource in developing this paper.

REFERENCES

[1] R. Munir, “Himpunan (Part 1),” Informatika STEI ITB, Bandung,

Indonesia. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/02-

Himpunan(2024)-1.pdf. [Accessed: Jan. 6, 2025].A

[2] R. Munir, “Himpunan (Part 2),” Informatika STEI ITB, Bandung,

Indonesia. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/03-

Himpunan(2024)-2.pdf. [Accessed: Jan. 6, 2025].

[3] R. Munir, “Graf (Bagian 1),” Informatika STEI ITB, Bandung, Indonesia.

[Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf. [Accessed: Jan. 6, 2025].

[4] R. Munir, “Graf (Bagian 2),” Informatika STEI ITB, Bandung, Indonesia.

[Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-

Graf-Bagian2-2024.pdf. [Accessed: Jan. 6, 2025].

[5] R. Munir, “Pohon (Bagian 1),” Informatika STEI ITB, Bandung,

Indonesia. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-

Pohon-Bag1-2024.pdf. [Accessed: Jan. 6, 2025].

[6] J. Oxley, “Matroids,” Cornell University, Ithaca, NY, USA. [Online].

Available:

https://www.cs.cornell.edu/courses/cs6820/2022fa/Handouts/oxley-

matroids.pdf. [Accessed: Jan. 7, 2025].

[7] TOKI, “Pemrograman Kompetitif Dasar,” OSN TOKI. [Online].

Available: https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf.

[Accessed: Jan. 7, 2025].

https://codeforces.com/contest/1556/problem/H
https://codeforces.com/
https://github.com/BP04/weighted-matroid-intersection
https://github.com/BP04/weighted-matroid-intersection
https://codeforces.com/profile/ATSTNG
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/02-Himpunan(2024)-1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/02-Himpunan(2024)-1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/03-Himpunan(2024)-2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/03-Himpunan(2024)-2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://www.cs.cornell.edu/courses/cs6820/2022fa/Handouts/oxley-matroids.pdf
https://www.cs.cornell.edu/courses/cs6820/2022fa/Handouts/oxley-matroids.pdf
https://osn.toki.id/data/pemrograman-kompetitif-dasar.pdf

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 7 Januari 2025

Benedict Presley (13523067)

