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Abstract— This paper explores the use of combinatorics and 

Monte Carlo simulations to analyze and calculate the probabilities 

of various card combinations in a hand. Combinatorics provides 

precise mathematical equations for simple cases, while Monte 

Carlo simulations are employed to address the complexity of 

larger, more intricate scenarios, such as calculating the likelihood 

of straights, flushes, full houses, and other hands in a deck. The 

paper also introduces practical implementations of these models, 

with code designed to compute results efficiently. By combining 

theoretical foundations with computational methods, the work 

aims to offer tools and insights that can be extended for 

applications like AI model development for the strategic card game 

Big Two. The equations and Python code presented provide a 

foundational framework that balances accuracy and efficiency, 

making them adaptable for both academic and practical uses. 

 

Keywords—Big Two, card combinations, combinatorics, Monte 

Carlo simulation 

 

I.   INTRODUCTION 

Big Two (also known as Capsa or Cus in Indonesia) is a 

shedding-type card game of Cantonese origin. The game is 

popular in Asia, and it is played by 2 to 4 players with a 52-card 

deck. The goal of the game is to be the first to play all the cards 

by forming valid combinations, such as singles, pairs, triple, or 

poker-style hands.  

Each player is given 13 random sets from a deck of shuffled 

cards. In Big Two, cards are ranked both by their values and 

suits. The ranking order is as follows value wise from lowest to 

highest would be 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A, 2 and suits 

wise it would be Diamonds (♦), Clubs (♣), Hearts (♥), Spades 

(♠). There are 4 valid combinations: singles or any single card, 

pairs or two cards of the same rank, triple, and five-card poker 

hands like straight, flush, full house, four-of-a-kind (plus one 

single), or straight flush. 

 

 
Image 1. Rules of Big Two, taken from [1] 

 

The game starts with whoever got the smallest value card 

(3♦), then each subsequent player must play a higher value 

card or combination than the one before with the same number 

of cards. When all but one player passed in succession, the 

round is over and used card are put in the waste pile. Then the 

next round starts with the last player playing. 

 

II. THEORETICAL FOUNDATION 

A. Combinatorics 

Combinatorics is a branch of mathematics that studies the 

counting, arrangement, and combination of objects. It focuses 

on finding efficient methods to count and organize discrete 

structures without the need to enumerate all possible 

configurations. Combinatorics has applications in many fields, 

including computer science, cryptography, and statistical 

physics. It provides tools for solving problems related to 

counting, probability, and the arrangement of sets of objects. 

 

B. Principle of Inclusion-Exclusion 

Combinatorics is a branch of mathematics that studies the 

counting, arrangement, and combination of objects. It focuses 

on finding efficient methods to count and organize discrete 

structures without the need to enumerate all possible 

configurations. Combinatorics has applications in many fields, 

including computer science, cryptography, and statistical 

physics. It provides tools for solving problems related to 

counting, probability, and the arrangement of sets of objects. 

 

For any finite sets 𝐴1, 𝐴2, ⋯ , An: 

∣ 𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛 ∣ ∑|𝐴𝑖|

𝑛

𝑖=1

− ∑ |𝐴𝑖 ∩ 𝐴𝑗|

1≤𝑖<𝑗≤𝑛

+ 

∑ |𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘|

1≤𝑖<𝑗<𝑘≤𝑛

− ⋯ + (−1)𝑛+1|𝐴1 ∩ 𝐴2 ∩ ⋯ ∩ 𝐴𝑛|  

 

C. Permutation 

Permutations are a fundamental concept in combinatorics, 

referring to the arrangement of objects in a specific order. The 

study of permutations helps in understanding how different 

sequences can be formed from a given set of elements. 

Permutations are widely used in various fields, including 

mathematics, computer science, and operations research. 

A permutation of a set is an arrangement of its elements in a 

specific sequence or order. If we have a set of 𝑛 distinct 

elements, the number of possible permutations of these 

elements is denoted as 𝑛! (n factorial), which is the product of 

all positive integers up to 
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𝑛: 𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × ⋯ × 2 × 1 

 

C. Combination 

Combinations are a key concept in combinatorics, referring 

to the selection of items from a larger set where the order of 

selection does not matter. The study of combinations helps in 

understanding how different groups can be formed from a 

given set of elements. Combinations are widely used in various 

fields, including mathematics, statistics, and computer science. 

A combination of a set is a selection of its elements without 

regard to the order in which they are selected. If we have a set 

of 𝑛 distinct elements, and we want to choose 𝑟 elements from 

this set, the number of possible combinations is denoted as 

(
𝑛

𝑟
) (read as "n choose r") and is given by the formula: 

𝑛

𝑟
=

𝑛!

𝑟!(𝑛−𝑟)!
 where 𝑛! (n factorial) is the product of all positive 

integers up to 𝑛. 

 

D. Monte-Carlo simulation 

Calculating probabilities in complex card games like 

determining the likelihood of specific outcomes is challenging 

because of the large number of possible hands, overlapping 

patterns, and interdependence among cards. The combinatorial 

nature of such problems often involves evaluating subsets, 

accounting for overlaps, and ensuring no double-counting, 

which becomes computationally intractable as the number of 

cards increases. This huge and complex game requires a 

simulation to identify the probability.  

 

III.   METHODOLOGY 

To simplify equation the total number of cards in a hand will 

be written as 𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑐𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒)and total number of card of 

a certain suit in a hand will be written as 𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑖𝑡(𝑐𝑎𝑟𝑑 𝑠𝑢𝑖𝑡). 

To simplify the equations, we will introduce specific notations 

for better clarity and manageability. The total number of cards 

of a particular rank or value in a player's hand will be denoted 

as 𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑐𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒)_ , where 𝑐𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒 represents the 

specific rank (e.g., Ace, 2, 3, etc.). Similarly, the total number 

of cards of a particular suit in a player's hand will be expressed 

as 𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑖𝑡(𝑐𝑎𝑟𝑑 𝑠𝑢𝑖𝑡), where 𝑐𝑎𝑟𝑑 𝑠𝑢𝑖𝑡 corresponds to one of 

the four suits (e.g., Hearts, Diamonds, Clubs, Spades). These 

notations allow us to succinctly represent counts in a player's 

hand for both specific values and suits, making it easier to 

construct equations and analyze scenarios systematically. 

 

A. Combinations of Pairs 

To define the combination of pairs in a single hand of 13 

cards, we consider the range of card values, with 3 being the 

smallest value card and 2 being the largest value card (often 

referred to as the "Big Two" card game ranking). The formula is 

constructed to iterate through all possible pairs of cards, 

symbolizing the combination of cards that can form pairs. 

 

𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑖𝑟 =  ∑ 𝐶 (
𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖)

2
)

2

𝑖=3

 

 

The number of combinations of a pair equation, when 

implemented in Python, would look something like this: 

hands_to_int is a function that converts the hand from its 

original values (e.g., rank and suit representations) into an 

array of integers representing the hand. This array facilitates 

easier mathematical operations and comparisons when 

calculating combinations. The function typically uses a 

mapping of card ranks (e.g., { '3': 3, ..., '2': 15}) to integers and 

processes each card in the hand to replace its rank with the 

corresponding integer value. This makes it possible to evaluate 

combinations efficiently, especially when paired with libraries 

like math for generating pairs, triples, or other subsets from the 

hand. 

 

 
Image 2. Number of combinations of pairs code, taken from [2] 

 

B. Combinations of threes 

Like combinations of pairs, the combinations of threes can be 

defined using a similar approach but with modified conditions 

and combination parameters. Specifically, the total number of 

triples can be calculated using the formula: 

 

𝑡𝑜𝑡𝑎𝑙𝑡𝑟𝑖𝑝𝑙𝑒 =  ∑ 𝐶 (
𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖)

3
)

2

𝑖=3

 

 

Combinations for threes just takes the program from 

combinations of pairs and change the condition and the 

combination parameters. 

 

 
Image 3. Number of combinations of triple code, taken from [2] 

 

C. Combinations of Straight 

To calculate the combinations of straights in two different 

cases, no separate straight and separate straight, the logic 

becomes increasingly complex as we consider both 

overlapping and non-overlapping sequences. Here's how the 

explanation can be expanded for clarity 

1. No Separate Straight 

The case of no separate straight refers to the scenario 

where only a single straight exists, and it consists of more 

than five consecutive cards. In this situation, the straight 

is contiguous, with all its values forming a single 

sequence without any gaps or interruptions. The equation 

for this is: 
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𝑡𝑜𝑡𝑎𝑙𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 =  𝐼𝑓 (𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑖+1 − 1 =  ⋯

= 𝑣𝑎𝑙𝑢𝑒𝑖+4 − 4) 

, ∑ ∏ 𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖+𝑘)

4

𝑘=0

𝑓𝑖𝑛𝑖𝑠ℎ−4

𝑖=𝑠𝑡𝑎𝑟𝑡

 

 

Here’s a breakdown of the terms: 

• 𝑣𝑎𝑙𝑢𝑒𝑖: Represents the rank of the 𝑖-th card. 

• 𝑠𝑡𝑎𝑟𝑡: The rank of the first card in the straight. 

• 𝑓𝑖𝑛𝑖𝑠ℎ: The rank of the last card in the straight. 

• ∏ 𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖+𝑘)
4
𝑘=0  Computes the total 

combinations by multiplying the counts of cards 

for each consecutive rank forming the straight. 

 

This ensures that only one continuous straight is 

counted, avoiding any separation or gaps. The condition 

(𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑖+1 − 1 =  ⋯ = 𝑣𝑎𝑙𝑢𝑒𝑖+4 −
4)enforces the sequence. 

 

2. Separate Straight 

The case of separate straight refers to the presence of two 

independent straights that are not connected or 

overlapping. This scenario involves a more complex 

calculation, as it requires identifying two distinct groups 

of consecutive cards within the hand. The equation for 

this is: 

 

𝑡𝑜𝑡𝑎𝑙𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 =  𝐼𝑓 (𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑖+1 − 1 =  ⋯

= 𝑣𝑎𝑙𝑢𝑒𝑖+4 − 4) 

∑ ∏ 𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖+𝑘)

4

𝑘=0

𝑓𝑖𝑛𝑖𝑠ℎ1−4

𝑖= 𝑠𝑡𝑎𝑟𝑡1

+ ∑ ∏ 𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑗+𝑚)

4

𝑚=0

𝑓𝑖𝑛𝑖𝑠ℎ2−4

𝑗= 𝑠𝑡𝑎𝑟𝑡2

 

 

The equation essentially iterates over all possible 

positions for the two separate straights, ensuring no 

overlap, and multiplies the combinations for each 

straight. 

 

The number of combinations of straights can be simplified 

in implementation to make the code more readable and 

maintainable. While the mathematical approach might be 

detailed and complex, simplifying the logic and focusing on 

clear iteration and conditions will produce the same results 

without altering correctness. 

 

 
Image 4.  Number of combinations of straight code, taken from [2] 

 

D. Combinations of Flush 

To calculate the combinations of flushes, the formula 

involves determining the total number of ways to select 5 cards 

from each suit and summing them up. The equation can be 

written as: 

𝑡𝑜𝑡𝑎𝑙𝑓𝑙𝑢𝑠ℎ =  𝐶 (
𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑖𝑡(𝑑𝑖𝑎𝑚𝑜𝑛𝑑)

5
) +  𝐶 (

𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑖𝑡(𝑐𝑙𝑜𝑣𝑒𝑟)

5
) 

+ 𝐶(
𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑖𝑡(ℎ𝑒𝑎𝑟𝑡)

5
) + 𝐶(

𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑖𝑡(𝑠𝑝𝑎𝑑𝑒)

5
)T 

 

 The number of combinations of flushes puts each number of 

cards from each suit to an array to be processed further. 

 

 
Image 5.  Number of combinations of flush code, taken from [2] 

 

E. Combinations of Full House 

This equation uses 𝑐𝑜𝑢𝑛𝑡𝑝𝑎𝑖𝑟, 𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒, and 𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠 to 

symbolize the number of pairs, triples, and fours in a deck. to 

determine all possible full houses. The unsimplified version 

breaks down each component of the calculation for clarity and 

readability, even though it can be expressed in a more compact 

form. 

 

𝑡𝑜𝑡𝑎𝑙𝑓𝑢𝑙𝑙 ℎ𝑜𝑢𝑠𝑒 =  (𝐶(4
2
) × 𝐶(3

3
) +  𝐶(4

3
) × 𝐶(3

2
)) ×

𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒 × 𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠 + 𝐶(4
3
) × 𝐶(4

2
) × 𝑃(

𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠

2
) +

𝐶(3
3
) × 𝐶(3

2
) × 𝑃(

𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒

2
) + (𝐶(4

3
) × 𝐶(2

2
) ×

𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠 +  𝐶(3
3
) × 𝐶(2

2
) × 𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒) × 𝑐𝑜𝑢𝑛𝑡𝑝𝑎𝑖𝑟   

 

Breakdown of the Terms 

 

First Term: 

This part accounts for full houses formed by a triple from a 

three-of-a-kind and a pair from a four-of-a-kind. 𝐶(4
2
): Ways 

to choose 2 cards from a four-of-a-kind to form a pair. 

𝐶(3
3
) ways to choose all 3 cards from a triple to form the three-

of-a-kind. As well as full houses formed by a pair from a three-

of-a-kind and a triple from a four-of-a-kind. 𝐶(4
3
): Ways to 

choose 3 cards from a four-of-a-kind to form a three-of-a-kind. 

𝐶(3
2
) ways to choose all 2 cards from a triple to form pair. 

𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒 × 𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠: Total combinations for selecting 

these cards. 

 

Second Term: 

Accounts for full houses are formed by selecting a pair and 

a triple from two different four-of-a-kinds. 

𝐶(4
3
) × 𝐶(4

2
) × 𝑃(

𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠

2
): Permutations of two distinct 

four-of-a-kinds. 

 

Third Term: 

Accounts for full houses are formed by selecting pairs and 
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triples from two different three-of-a-kinds. 

𝐶(3
3
) × 𝐶(3

2
) × 𝑃(

𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒

2
) : Permutations of two distinct 

three-of-a-kinds. 

 

Fourth Term: 

Combines cases where pairs are formed using two cards 

from a pair and triples from a three-of-a-kind or four-of-a-

kind. 

• 𝐶(4
3
): Ways to choose 3 cards from a four-of-a-

kind. 

• 𝐶(3
3
): Ways to choose 3 cards from a triple. 

• 𝐶(2
2
): Ways to form a pair from an existing pair. 

• 𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠 and 𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒: Counts of four-of-a-

kinds and three-of-a-kinds. 

 

The simplified version aggregates the terms with 

precomputed coefficients for clarity: 

𝑡𝑜𝑡𝑎𝑙𝑓𝑢𝑙𝑙ℎ𝑜𝑢𝑠𝑒 =  18𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒 × 𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠 + 

24𝑃 (
𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠

2
) + 3𝑃 (

𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒

2
) 

+(4𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠 + 𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒) × 𝑐𝑜𝑢𝑛𝑡𝑝𝑎𝑖𝑟  

 

 This code for number of combinations of full house used the 

unsimplified version of the equation to make it readable. 

 

 
Image 6.  Number of combinations of full house code, taken from [2] 

 

F. Combinations of Four of a Kind 

The combination of four of a kind by using an equation is as 

follows. 

 

𝑡𝑜𝑡𝑎𝑙𝑓𝑜𝑢𝑟 𝑜𝑓 𝑎 𝑘𝑖𝑛𝑑 =  ∑ 𝐶(
𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖)

4
)2

𝑖=3 × 𝐶(9
1
)  

 

• 𝐶(
𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖)

4
): The number of ways to select all 4 

cards of a single rank. 

• 𝐶(9
1
)): The number of ways to select 1 additional card 

from the remaining 9 ranks (to make the total hand 

size 5 cards). 

• ∑2
𝑖=3 : Iterates over all ranks to calculate this for 

each possible four of a kind in the deck. 

 

 

The code implementation of number of combinations of four 

of a kind is as follows. 

 

 
Image 7.  Number of combinations of four of a kind code, taken from [2] 

 

G. Combinations of Straight Flush 

The formula for calculating the total number of straight 

flushes considers sequences of cards within each suit that form 

a consecutive straight. A straight flush requires 5 or more cards 

of the same suit in consecutive ranks. To account for all 

possible straight flushes in a deck, the calculation needs to 

evaluate each suit independently and consider all valid ranges 

of consecutive cards. 

 

𝑡𝑜𝑡𝑎𝑙𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑓𝑙𝑢𝑠ℎ

=  𝐼𝑓 (𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑖+1 − 1 =  ⋯
= 𝑣𝑎𝑙𝑢𝑒𝑖+4 − 4), 

𝑓𝑖𝑛𝑖𝑠ℎ𝑑𝑖𝑎𝑚𝑜𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡𝑑𝑖𝑎𝑚𝑜𝑛𝑑 − 3 + 

𝑓𝑖𝑛𝑖𝑠ℎ𝑐𝑙𝑜𝑣𝑒𝑟 − 𝑠𝑡𝑎𝑟𝑡𝑐𝑙𝑜𝑣𝑒𝑟 − 3 + 

𝑓𝑖𝑛𝑖𝑠ℎℎ𝑒𝑎𝑟𝑡 − 𝑠𝑡𝑎𝑟𝑡ℎ𝑒𝑎𝑟𝑡 − 3 + 

𝑓𝑖𝑛𝑖𝑠ℎ𝑠𝑝𝑎𝑑𝑒 − 𝑠𝑡𝑎𝑟𝑡𝑠𝑝𝑎𝑑𝑒 − 3 

 

Explanation of Terms 

Straight Flush Condition: 

• The condition 𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑖+1 − 1 =  ⋯ =
𝑣𝑎𝑙𝑢𝑒𝑖+4 − 4 ensures that the cards form a valid 

sequence of 5 or more consecutive values. 

Range Calculation: 

• Each suit (diamonds, clubs, hearts, spades) is evaluated 

independently. 

• 𝑠𝑡𝑎𝑟𝑡𝑠𝑢𝑖𝑡: The rank of the first card in the sequence for 

the specific suit. 

• 𝑓𝑖𝑛𝑖𝑠ℎ𝑠𝑢𝑖𝑡: The rank of the last card in the sequence for 

the specific suit. 

• 𝑓𝑖𝑛𝑖𝑠ℎ𝑠𝑢𝑖𝑡 − 𝑠𝑡𝑎𝑟𝑡𝑠𝑢𝑖𝑡 − 3: This calculates the number 

of valid straight flushes within the suit. Subtracting 3 

accounts for the fact that the minimum sequence length 

is 5 cards. 

Summing Across Suits: 

• Each suit's valid straight flush combinations are 

summed to get the total number of straight flushes in the 

deck. 

The code implementation for calculating the total number of 

straight flush combinations is as follows. The logic has been 

slightly adjusted for better readability and maintainability while 

ensuring that the results remain consistent with the original 

approach. This version focuses on clarity, making it easier to 

understand the process of iterating through each suit, checking 

for valid sequences, and calculating the total number of straight 

flushes across all suits. Below is the Python code that efficiently 

computes the combinations without compromising on accuracy. 
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Image 8.  Number of combinations of straight flush code, taken from [2] 

 

G. Monte-Carlo Simulation 

Because of the complexity involved in counting all possible 

outcomes in a deck of cards, a Monte Carlo simulation offers a 

practical solution to estimate probabilities. This approach uses 

random sampling to approximate results, by passing the need 

for exhaustive enumeration of all combinations. Although the 

results from simulation are not exact, they become increasingly 

accurate as the number of iterations grows. By running the 

simulation on a large scale, such as one million randomized 

hands, the differences between simulated and exact results 

remain minimal, providing a reliable estimate. 

The simulation is implemented using the random library in 

Python to generate hands and calculate the desired outcomes. 

By efficiently managing randomness and focusing on specific 

conditions, the code ensures clarity while maintaining 

performance. With this design, it can be easily extended or 

modified to suit different card games or custom deck 

configurations. Below is the Python code, demonstrating the 

use of Monte Carlo simulation for solving complex card 

probability problems. 

 
Image 9.  Monte-Carlo simulation code, taken from [2] 

 

The results are stored in a result array, where each index 

corresponds to the count of a specific hand type observed 

during the simulation. The mapping is as follows: 

• result[0]: Number of pair occurrences 

• result[1]: Number of triple occurrences 

• result[2]: Number of straight occurrences 

• result[3]: Number of flush occurrences 

• result[4]: Number of full house occurrences 

• result[5]: Number of four-of-a-kind occurrences 

• result[6]: Number of straight flush occurrences 

Here is one of the test results from running the simulation: 

 

The unique thing I found is that the chances of a flush to 

exist in a hand is larger than a straight even though the game 

rule favours the flush to be a higher ranking than the straight. 

The game rule seems to be following poker rules which only 

account 7 cards (5 river cards and 2 player cards) that made the 

chances of straight appearing to be bigger. 

V.   CONCLUSION 

Combinatorics are incredibly useful for calculating 

combinations or possibilities in simple scenarios, providing 

precise results through mathematical equations. However, for 

more complex problems, such as evaluating all potential 

outcomes in card games, simulations like the Monte Carlo 

simulation become essential. These simulations provide 

approximate but highly accurate results by leveraging random 

sampling over large datasets. While this discussion focuses 

specifically on the combinations of cards in a hand, the 

equations and code provided here are designed to be adaptable 

and extendable. It is my hope that these tools can serve as a 

foundation for building an AI model or bot for strategic card 

games like Big Two, enabling more sophisticated decision-

making and gameplay. 

 

VI.   APPENDIX 

Source code used for the functions and simulation code of  

Big Two: https://github.com/BobSwagg13/Application-of-

Combinatorics-in-Big-Two  

Video link of explaining the code: 

https://youtu.be/WbO6TasjtX4  
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