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Abstract—This paper explores the use of graph theory and 

probability theory in Spotify’s Smart Shuffle Recommendations on 

generating song shuffle and recommendations through different 

approaches. We will explore how CBF and IBCF works. The result 

of this research aims to get a better understanding about Spotify’s 

Smart Shuffle Recommendations to improve song shuffle and 

recommendations, further enhancing the user experience on 

listening and enjoying music. 
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I.   INTRODUCTION 

In this modern era of entertainment media, music became one 

of the most popular media known in society. One of the most 

popular music-streaming platforms, Spotify, has become one of 

the first of its kind to transform the way people can listen and 

enjoy music. Even though Spotify has provided unlimited access 

to an unlimited number of songs across various genres, artists, 

etc., there are still challenges and difficulties on enhancing the 

user experience especially about managing and understanding 

the complexity of user’s preferences. To face these challenges 

and difficulties, Spotify keeps on trying to improve its features 

to enhance the user experience. 

One of Spotify’s features that has helped users explore their 

music taste is called Smart Shuffle Recommendations. This 

feature combines shuffling and recommendations between 

songs to help create continuous experience for users. This 

shuffling and recommendations algorithm plays an important 

role in enhancing the user experience by creating satisfaction but 

at the same time preventing boredom. That’s the reason why we 

need a deeper understanding of how songs are correlated to each 

other, either through the same genres, artists, vibes, etc. 

The author chose the title “Use of Graph and Probability 

Theory in Spotify’s Smart Shuffle Recommendations” not only 

because it is now widely used by Spotify’s users, but also 

because it’s important to know how songs inside the Spotify’s 

environment correlated to each other more importantly by using 

graph theory to know each song’s attributes and probability 

theory to know how songs are spread throughout a playlist. This 

paper discusses how Spotify’s Smart Shuffle Recommendations 

works by using graph and probability theory to get a better 

understanding behind the shuffling and recommendations 

algorithm. With better understanding, the author hopes that this 

paper can help enhance Spotify users’ experience on listening 

and enjoying music 

 

 

II. THEORETICAL BASIS 

A. Graph Theory 

A.1. Definition 

Graph is generally used to represent discrete objects and their 

relationships. A graph G = (V, E) consists of V, a nonempty set 

of vertices (or nodes) and E, a set of edges. Each edge has either 

one or two vertices associated with it, called its endpoints. An 

edge is said to connect its endpoints [2]. 

 

A.2. Terminologies 

 

 
Figure 2.1 Simple Graph 

Source: Discrete Mathematics and Application to Computer 

Science 8th Edition 

 

a. Vertices/Nodes 

Vertices or nodes in a graph represent objects or entities. It is 

typically denoted by letters. Vertices can store attributes or other 

information corresponding to their objects or entities. 

Based on Fig. 2.1, v1, v2, v3, v4, and v5 are the graph’s vertices. 

On any other application, these vertices can represent 

information such as locations, objects, names, etc.  

b. Edges 

Edges in a graph are the connections or relationships between 

pair of vertices. It is typically denoted as (u, v) where u and v 

are vertices. 

Based on Fig. 2.1, e1, e2, e3, e4, e5, and e6 are the graph’s edges. 

A vertice can have more than one edge connected to it. An edge 
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can also connect a vertice with the vertice itself, this connection 

is called loop. 

c. Adjacent 

Two vertices u and v in an undirected graph G are called 

adjacent (or neighbors) in G if u and v are endpoints of an edge 

e of G [2]. Based on Fig. 2.1, v1 and v4 are adjacent (connected 

by e1), and v1 and v5 are adjacent (connected by e2).  

d. Incident 

An edge e with vertices u and v as its endpoints is called 

incident with vertices u and v and e is said to connect u and v 

[3]. Based on Fig. 2.1, e1 is incident with v1 and v4, e2 is incident 

with v1 and v5.  

e. Degree 

The degree of a vertex in an undirected graph is the number 

of edges incident with it, except that a loop at a vertex 

contributes twice to the degree of that vertex. The degree of the 

vertex v is denoted by deg(v) [2]. Based on Fig. 2.1, deg(v1) is 

2 and deg(v2) is 3. 

f. Path 

A path is a sequence of edges that begins at a vertex of a graph 

and travels from vertex to vertex along edges of the graph. As 

the path travels along its edges, it visits the vertices along this 

path, that is, the endpoints of these edges [2]. A path with the 

length of n starts from v0 and ends on vn in a graph consists of 

alternating row of vertices and edges [2]. Based on Fig. 2.1, one 

of the paths from v1 to v3 is v1-e1-v4-e3-v2-e4-v5-e5-v3.  

g. Cycle/Circuit 

A cycle or a circuit is a path that starts and ends on the same 

vertice [2]. Based on Fig. 2.1, one of the circuits is v1-e1-v4-e3-

v2-e4-v5-e2-v1, which starts and ends on v1. 

h. Connectedness 

An undirected graph is called connected if there is a path 

between every pair of distinct vertices of the graph. An 

undirected graph that is not connected is called disconnected. 

We say that we disconnect a graph when we remove vertices or 

edges, or both, to produce a disconnected subgraph. A directed 

graph is strongly connected if there is a path from a to b and 

from b to a whenever a and b are vertices in the graph. A directed 

graph is weakly connected if there is a path between every two 

vertices in the underlying undirected graph [2]. 

 
Figure 2.2 Connected Graph (G1) and  

Disconnected Graph (G2) 

Source: Discrete Mathematics and Application to Computer 

Science 8th Edition 

 

i. Subgraph 

When edges and vertices are removed from a graph, without 

removing endpoints of any remaining edges, a smaller graph is 

obtained. Such a graph is called a subgraph of the original graph. 

A subgraph of a graph G = (V, E) is a graph H = (W, F), where 

W ⊆ V and F ⊆ E. A subgraph H of G is a proper subgraph of 

G if H = G. Let G = (V, E) be a simple graph. The subgraph 

induced by a subset W of the vertex set V is the graph (W, F), 

where the edge set F contains an edge in E if and only if both 

endpoints of this edge are in W [2]. 

 
Figure 2.3 Subgraph of K5 

Source: Discrete Mathematics and Application to Computer 

Science 8th Edition 

 

j. Cut-Set 

Cut-set of a connected graph G is a set that contains edges that 

if removed from graph G makes graph G a disconnected graph. 

Cut-set always creates two separate graph components [3]. 

 

   
(a)                                        (b) 

Figure 2.4 Before (a) and After (b) Cut-Set of a Graph 

Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf  

 

 Based on Fig. 2.4, graph (a) is a connected graph and graph 

(b) are components after cut-set of graph (a). 

 

A.3. Simple Graph 

Simple graph is a graph that does not contain any loop or 

multiple edges between the same pair of vertices as shown in 

Fig. 2.1. 

 

A.3. Unsimple Graph 

Unsimple graph is a graph that contains any loop or multiple 

edges between the same pair of vertices. 

 
Figure 2.5 Unsimple Graph 

Source: Discrete Mathematics and Application to Computer 

Science 8th Edition 

 

Unsimple graph is divided into two categories. First, 

multigraph, a graph that contains multiple edges between the 
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same pair of vertices but no loop. Second, pseudograph, a graph 

that contains both loop and multiple edges between the same 

pair of vertices. Fig. 2.5 is a pseudograph. 

 

 
Figure 2.6 Multigraph 

Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf 

 

A.4. Undirected Graph 

Undirected graph is a graph where each edge does not have 

any certain directions. The connections between vertices are 

reciprocal. Based on Fig. 2.7, the connection between a and b 

vertices is reciprocal. The edge only means that there is 

connection between two vertices [3].  

 
Figure 2.7 Undirected Graph 

Source: Discrete Mathematics and Application to Computer 

Science 8th Edition 

 

A.5. Directed Graph 

Directed graph is a graph where each edge certain any certain 

directions. The connections between vertices are not reciprocal. 

When (u, v) is an edge of the graph G with directed edges, u is 

said to be adjacent to v and v is said to be adjacent from u. The 

vertex u is called the initial vertex of (u, v), and v is called the 

terminal or end vertex of (u, v). The initial vertex and terminal 

vertex of a loop are the same. In a graph with directed edges the 

in-degree of a vertex v, denoted by deg-(v), is the number of 

edges with v as their terminal vertex. The out-degree of v, 

denoted by deg+(v), is the number of edges with v as their initial 

vertex.  Based on Fig. 2.7, the connection between a and b 

vertices is not reciprocal. [2]. 

 
Figure 2.8 Directed Graph 

Source: Discrete Mathematics and Application to Computer 

Science 8th Edition 

 

A.6. Complete Graph 

A complete graph on n vertices, denoted by Kn, is a simple 

graph that contains exactly one edge between each pair of 

distinct vertices. A simple graph for which there is at least one 

pair of distinct vertices not connected by an edge is called 

noncomplete [ ].  A complete graph’s unique property is that 

every vertex has the same number of degree. 

 
Figure 2.8 Complete Graphs 

Source: Discrete Mathematics and Application to Computer 

Science 8th Edition 

 

A.7. Bipartite Graph 

A simple graph G is called bipartite if its vertex set V can be 

partitioned into two disjoint sets V1 and V2 such that every edge 

in the graph connects a vertex in V1 and a vertex in V2 (so that 

no edge in G connects either two vertices in V1 or two vertices 

in V2). When this condition holds, we call the pair (V1, V2) a 

bipartition of the vertex set V of G [2]. 

 

 
Figure 2.9 Bipartite Graph 

Source: Discrete Mathematics and Application to Computer 

Science 8th Edition 

 

Fig. 2.9 is a bipartite graph because its vertex set is the union 

of two disjoint sets, {a, b, d} and {c, e, f, g}, and each edge 

connects a vertex in one of these subsets to a vertex in the other 

subset [2].  

 

A.8. Weighted Graph 

Weighted graph is a graph with weight assigned to each edge. 

The weight of the edge is typically represented by number as 

shown in Fig. 2.10. 

 
Figure 2.10 Weighted Graph 

Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf 
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B. Probability Theory 

B.1. Finite Probability 

An experiment is a procedure that yields one of a given set of 

possible outcomes. The sample space of the experiment is the 

set of possible outcomes. An event is a subset of the sample 

space. Laplace’s definition of the probability of an event with 

finitely many possible outcomes will now be stated.  

 

 
Figure 2.11 Finite Probability 

Source: Discrete Mathematics and Application to Computer 

Science 8th Edition 

 

According to Laplace’s definition, the probability of an event 

is between 0 and 1. To see this, note that if E is an event from a 

finite sample space S, then 0 ≤ |E| ≤ |S|, because E ⊆ S. Thus, 0 

≤ p(E) = |E|/|S| ≤ 1. Let E be an event in a sample space S. The 

probability of the event Eo = S − E, the complementary event of 

E, is given by p(Eo) = 1 − p(E). [2]. 

 

B.2. Bayes’ Theorem 

we can find the conditional probability that an event F occurs, 

given that an event E has occurred, when we know p(E | F), p(E 

| F), and p(F). The result we can obtain is called Bayes’ theorem 

[2]. 

 
Figure 2.12 Bayes' Theorem 

Source: Discrete Mathematics and Application to Computer 

Science 8th Edition 

 

B.3. Permutations and Combinations 

A permutation of a set of distinct objects is an ordered 

arrangement of these objects. We also are interested in ordered 

arrangements of some of the elements of a set. An ordered 

arrangement of r elements of a set is called an r-permutation. Let 

S = {1, 2, 3}. The ordered arrangement 3, 1, 2 is a permutation 

of S. The ordered arrangement 3, 2 is a 2-permutation of S. The 

number of r-permutations of a set with n elements is denoted by 

P (n, r). We can find P (n, r) using the product rule. 

 
Figure 2.13 Permutation 

Source: Discrete Mathematics and Application to Computer 

Science 8th Edition 

 

An r-combination of elements of a set is an unordered 

selection of r elements from the set. Thus, an r-combination is 

simply a subset of the set with r elements. Let S be the set {1, 2, 

3, 4}. Then {1, 3, 4} is a 3-combination from S. The number of 

r-combinations of a set with n distinct elements is denoted by 

C(n, r) [2]. 

 
Figure 2.14 Combination 

Source: Discrete Mathematics and Application to Computer 

Science 8th Edition 

 

C. Smart Shuffle Recommendations 

There are two ways to shuffle your playlist in Spotify. First is 

the regular Shuffle. It is able to shuffle any playlist, album, or 

artist profile to mix up what song plays next. Second, is the one 

we will focus on this paper, Smart Shuffle. It is the default play 

mode that keeps listening sessions fresh not only by shuffling 

your playlist but also by mixing in recommendations that match 

the vibe. Any recommendation will have a spark symbol next to 

the artist name [4]. 

 

 
Figure 2.15 Spotify’s Shuffle Feature 

Source: https://support.spotify.com/id-en/article/shuffle-

play/  

 

 
(a) 

 

 
(b) 

Figure 2.16 Spotify’s Smart Shuffle Recommendations 

 

Based on Fig. 2.14, (a) shows a song that is already in the 

playlist, indicated by the checkmark symbol on the far right. 

Meanwhile, (b) shows a song that isn’t in the playlist, indicated 

by the nonexistent checkmark symbol and the plus symbol (for 

adding song to the playlist). There is also a spark symbol next to 

the artist name that indicates the song is a recommendation from 

the Smart Shuffle. Song recommendation from Smart Shuffle 

will appear every three songs. 
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III. IMPLEMENTATION 

Spotify initially used the Fisher-Yates shuffle algorithm to 

randomize playlists, which produces a perfectly random order 

for songs. However, users still perceived this randomness as 

“not random enough” because songs by the same artist could 

play consecutively creating clusters that felt unshuffled. To 

address this, Spotify developed an algorithm that spaces out 

songs by the same artist throughout the playlist, reducing 

noticeable clustering. This approach creates sequence that feels 

“more random” to listeners even though it’s technically less 

random than the original method. This adjustment 

acknowledged the “gambler’s fallacy” where people expect 

outcomes to balance out in short term. By spacing out songs 

from the same artist, Spotify’s shuffle aligns better with user 

expectations of randomness, enhancing the listening experience 

[4]. 

In this paper, we will focus on the implementation of graph 

theory and probability theory via two different approaches, 

content-based filtering and item-based collaborative filtering. 

 

A. Content-Based Filtering 

Content-Based Filtering algorithm for Spotify’s Smart 

Shuffle recommends songs based on the features of the song 

itself. It includes extracting features from songs that have been 

listened to by the user. Such features for example, genre, artist, 

tempo, or even mood/vibe. We will represent songs as nodes and 

song features as edge weights between the nodes, creating a 

weighted graph model. Next, we will calculate the similarity of 

two features using cosine similarity to get the shortest 

path/distance between two songs based on feature similarity to 

get recommendations. To create randomness, we will add 

random walks over the feature graph to probabilistically explore 

connected nodes and recommend based on visitation 

probability. 

Not only that, but we will also integrate Bayes’ theorem to 

build a Bayesian network where nodes are features and songs, 

and edges represent probabilistic dependencies. Then, we will 

assign probabilities to edges based on similarity scores, using 

these to rank recommendations. 

 

 
Figure 3.1 Building Feature Graph 

 

 
Figure 3.2 Random Walk Over the Feature Graph 

 

 
Figure 3.3 Calculating Similarity Between Features 

 

 
Figure 3.4 Getting Recommendations from Feature Graph 

 

B. Item-Based Collaborative Filtering 

Item-Based Collaborative Filtering algorithm for Spotify’s 

Smart Shuffle recommends songs based on their relationship to 

other songs in the dataset. We will represent users and songs as 

two sets of nodes, and edges as user-song interactions, creating 

a bipartite graph model. Then, we will apply projection to create 

a song-song similarity graph.  

Not only that, but we will also use probabilistic models to 

calculate the likelihood of two songs being listened to together 

and recommend songs based on the highest probabilities. 

 
Figure 3.5 Building Bipartite Graph 

 

 
Figure 3.6 Projecting the Bipartite Graph 
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Figure 3.7 Getting Recommendations from Projection 

 

IV.   ANALYSIS 

A. Content-Based Filtering 

Here’s the dataset for analysis: 

 
Figure 4.1 Dataset for CBF 

 

Here’s the result for the dataset: 

 

 
Figure 4.2 Feature Graph for Dataset 

 

B. Item-Based Collaborative Filtering 

Here’s the dataset for analysis: 

 
Figure 4.3 Dataset for IBCF 

 

Here’s the result for the dataset: 

 
Figure 4.4 Bipartite Graph Projection for Dataset 

 

In this paper, we explored the implementation of 

recommendation systems using Graph Theory and Probability 

Theory, specifically applied to song recommendations as in 

Spotify’s Smart Shuffle. We focused on Content-Based Filtering 

(CBF) and Item-Based Collaborative Filtering (IBCF), both of 

which leverage graph structures to model relationships between 

songs, users, and song features. 

 

VI.   CONCLUSION 

This project demonstrated how graph theory and probability 

theory can be effectively used in building recommendation 

systems. Both Content-Based Filtering and Item-Based 

Collaborative Filtering benefit from these methods: 

1. Graph Theory helps visualize and model relationships 

between entities (songs, users, or song features) in a 

meaningful way, enabling the construction of projection 

graphs that uncover similarities. 

2. Probability Theory enables the ranking of potential 

recommendations, making sure that highly connected or 

similar items are more likely to be recommended based on 

their probability. 
Both methods provide complementary approaches for 

generating music recommendations: while IBCF focuses on 

shared user preferences, CBF leverages song characteristics 

directly. These techniques are foundational in music 

recommendation systems like Spotify’s Smart Shuffle feature, 

which combines user data, content features, and probabilistic 

models to offer dynamic, personalized recommendations. 

Further research could involve incorporating hybrid filtering 

approaches, combining both CBF and IBCF, or exploring more 

advanced machine learning models like matrix factorization, 

which have shown great promise in large-scale recommendation 

systems. 
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