
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Use of Graph and Probability Theory in

Spotify's Smart Shuffle Recommendations

Angelina Efrina Prahastaputri - 135230601,2
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1efrinaprahastaputri@gmail.com, 213523060@std.stei.itb.ac.id

Abstract—This paper explores the use of graph theory and

probability theory in Spotify’s Smart Shuffle Recommendations on

generating song shuffle and recommendations through different

approaches. We will explore how CBF and IBCF works. The result

of this research aims to get a better understanding about Spotify’s

Smart Shuffle Recommendations to improve song shuffle and

recommendations, further enhancing the user experience on

listening and enjoying music.

Keywords—Graph Theory, Probability Theory, Spotify’s Smart

Shuffle Recommendations, User Experience.

I. INTRODUCTION

In this modern era of entertainment media, music became one

of the most popular media known in society. One of the most

popular music-streaming platforms, Spotify, has become one of

the first of its kind to transform the way people can listen and

enjoy music. Even though Spotify has provided unlimited access

to an unlimited number of songs across various genres, artists,

etc., there are still challenges and difficulties on enhancing the

user experience especially about managing and understanding

the complexity of user’s preferences. To face these challenges

and difficulties, Spotify keeps on trying to improve its features

to enhance the user experience.

One of Spotify’s features that has helped users explore their

music taste is called Smart Shuffle Recommendations. This

feature combines shuffling and recommendations between

songs to help create continuous experience for users. This

shuffling and recommendations algorithm plays an important

role in enhancing the user experience by creating satisfaction but

at the same time preventing boredom. That’s the reason why we

need a deeper understanding of how songs are correlated to each

other, either through the same genres, artists, vibes, etc.

The author chose the title “Use of Graph and Probability

Theory in Spotify’s Smart Shuffle Recommendations” not only

because it is now widely used by Spotify’s users, but also

because it’s important to know how songs inside the Spotify’s

environment correlated to each other more importantly by using

graph theory to know each song’s attributes and probability

theory to know how songs are spread throughout a playlist. This

paper discusses how Spotify’s Smart Shuffle Recommendations

works by using graph and probability theory to get a better

understanding behind the shuffling and recommendations

algorithm. With better understanding, the author hopes that this

paper can help enhance Spotify users’ experience on listening

and enjoying music

II. THEORETICAL BASIS

A. Graph Theory

A.1. Definition

Graph is generally used to represent discrete objects and their

relationships. A graph G = (V, E) consists of V, a nonempty set

of vertices (or nodes) and E, a set of edges. Each edge has either

one or two vertices associated with it, called its endpoints. An

edge is said to connect its endpoints [2].

A.2. Terminologies

Figure 2.1 Simple Graph

Source: Discrete Mathematics and Application to Computer

Science 8th Edition

a. Vertices/Nodes

Vertices or nodes in a graph represent objects or entities. It is

typically denoted by letters. Vertices can store attributes or other

information corresponding to their objects or entities.

Based on Fig. 2.1, v1, v2, v3, v4, and v5 are the graph’s vertices.

On any other application, these vertices can represent

information such as locations, objects, names, etc.

b. Edges

Edges in a graph are the connections or relationships between

pair of vertices. It is typically denoted as (u, v) where u and v

are vertices.

Based on Fig. 2.1, e1, e2, e3, e4, e5, and e6 are the graph’s edges.

A vertice can have more than one edge connected to it. An edge

mailto:1efrinaprahastaputri@gmail.com
mailto:213523060@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

can also connect a vertice with the vertice itself, this connection

is called loop.

c. Adjacent

Two vertices u and v in an undirected graph G are called

adjacent (or neighbors) in G if u and v are endpoints of an edge

e of G [2]. Based on Fig. 2.1, v1 and v4 are adjacent (connected

by e1), and v1 and v5 are adjacent (connected by e2).

d. Incident

An edge e with vertices u and v as its endpoints is called

incident with vertices u and v and e is said to connect u and v

[3]. Based on Fig. 2.1, e1 is incident with v1 and v4, e2 is incident

with v1 and v5.

e. Degree

The degree of a vertex in an undirected graph is the number

of edges incident with it, except that a loop at a vertex

contributes twice to the degree of that vertex. The degree of the

vertex v is denoted by deg(v) [2]. Based on Fig. 2.1, deg(v1) is

2 and deg(v2) is 3.

f. Path

A path is a sequence of edges that begins at a vertex of a graph

and travels from vertex to vertex along edges of the graph. As

the path travels along its edges, it visits the vertices along this

path, that is, the endpoints of these edges [2]. A path with the

length of n starts from v0 and ends on vn in a graph consists of

alternating row of vertices and edges [2]. Based on Fig. 2.1, one

of the paths from v1 to v3 is v1-e1-v4-e3-v2-e4-v5-e5-v3.

g. Cycle/Circuit

A cycle or a circuit is a path that starts and ends on the same

vertice [2]. Based on Fig. 2.1, one of the circuits is v1-e1-v4-e3-

v2-e4-v5-e2-v1, which starts and ends on v1.

h. Connectedness

An undirected graph is called connected if there is a path

between every pair of distinct vertices of the graph. An

undirected graph that is not connected is called disconnected.

We say that we disconnect a graph when we remove vertices or

edges, or both, to produce a disconnected subgraph. A directed

graph is strongly connected if there is a path from a to b and

from b to a whenever a and b are vertices in the graph. A directed

graph is weakly connected if there is a path between every two

vertices in the underlying undirected graph [2].

Figure 2.2 Connected Graph (G1) and

Disconnected Graph (G2)

Source: Discrete Mathematics and Application to Computer

Science 8th Edition

i. Subgraph

When edges and vertices are removed from a graph, without

removing endpoints of any remaining edges, a smaller graph is

obtained. Such a graph is called a subgraph of the original graph.

A subgraph of a graph G = (V, E) is a graph H = (W, F), where

W ⊆ V and F ⊆ E. A subgraph H of G is a proper subgraph of

G if H = G. Let G = (V, E) be a simple graph. The subgraph

induced by a subset W of the vertex set V is the graph (W, F),

where the edge set F contains an edge in E if and only if both

endpoints of this edge are in W [2].

Figure 2.3 Subgraph of K5

Source: Discrete Mathematics and Application to Computer

Science 8th Edition

j. Cut-Set

Cut-set of a connected graph G is a set that contains edges that

if removed from graph G makes graph G a disconnected graph.

Cut-set always creates two separate graph components [3].

(a) (b)

Figure 2.4 Before (a) and After (b) Cut-Set of a Graph

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

 Based on Fig. 2.4, graph (a) is a connected graph and graph

(b) are components after cut-set of graph (a).

A.3. Simple Graph

Simple graph is a graph that does not contain any loop or

multiple edges between the same pair of vertices as shown in

Fig. 2.1.

A.3. Unsimple Graph

Unsimple graph is a graph that contains any loop or multiple

edges between the same pair of vertices.

Figure 2.5 Unsimple Graph

Source: Discrete Mathematics and Application to Computer

Science 8th Edition

Unsimple graph is divided into two categories. First,

multigraph, a graph that contains multiple edges between the

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

same pair of vertices but no loop. Second, pseudograph, a graph

that contains both loop and multiple edges between the same

pair of vertices. Fig. 2.5 is a pseudograph.

Figure 2.6 Multigraph

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

A.4. Undirected Graph

Undirected graph is a graph where each edge does not have

any certain directions. The connections between vertices are

reciprocal. Based on Fig. 2.7, the connection between a and b

vertices is reciprocal. The edge only means that there is

connection between two vertices [3].

Figure 2.7 Undirected Graph

Source: Discrete Mathematics and Application to Computer

Science 8th Edition

A.5. Directed Graph

Directed graph is a graph where each edge certain any certain

directions. The connections between vertices are not reciprocal.

When (u, v) is an edge of the graph G with directed edges, u is

said to be adjacent to v and v is said to be adjacent from u. The

vertex u is called the initial vertex of (u, v), and v is called the

terminal or end vertex of (u, v). The initial vertex and terminal

vertex of a loop are the same. In a graph with directed edges the

in-degree of a vertex v, denoted by deg-(v), is the number of

edges with v as their terminal vertex. The out-degree of v,

denoted by deg+(v), is the number of edges with v as their initial

vertex. Based on Fig. 2.7, the connection between a and b

vertices is not reciprocal. [2].

Figure 2.8 Directed Graph

Source: Discrete Mathematics and Application to Computer

Science 8th Edition

A.6. Complete Graph

A complete graph on n vertices, denoted by Kn, is a simple

graph that contains exactly one edge between each pair of

distinct vertices. A simple graph for which there is at least one

pair of distinct vertices not connected by an edge is called

noncomplete []. A complete graph’s unique property is that

every vertex has the same number of degree.

Figure 2.8 Complete Graphs

Source: Discrete Mathematics and Application to Computer

Science 8th Edition

A.7. Bipartite Graph

A simple graph G is called bipartite if its vertex set V can be

partitioned into two disjoint sets V1 and V2 such that every edge

in the graph connects a vertex in V1 and a vertex in V2 (so that

no edge in G connects either two vertices in V1 or two vertices

in V2). When this condition holds, we call the pair (V1, V2) a

bipartition of the vertex set V of G [2].

Figure 2.9 Bipartite Graph

Source: Discrete Mathematics and Application to Computer

Science 8th Edition

Fig. 2.9 is a bipartite graph because its vertex set is the union

of two disjoint sets, {a, b, d} and {c, e, f, g}, and each edge

connects a vertex in one of these subsets to a vertex in the other

subset [2].

A.8. Weighted Graph

Weighted graph is a graph with weight assigned to each edge.

The weight of the edge is typically represented by number as

shown in Fig. 2.10.

Figure 2.10 Weighted Graph

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

B. Probability Theory

B.1. Finite Probability

An experiment is a procedure that yields one of a given set of

possible outcomes. The sample space of the experiment is the

set of possible outcomes. An event is a subset of the sample

space. Laplace’s definition of the probability of an event with

finitely many possible outcomes will now be stated.

Figure 2.11 Finite Probability

Source: Discrete Mathematics and Application to Computer

Science 8th Edition

According to Laplace’s definition, the probability of an event

is between 0 and 1. To see this, note that if E is an event from a

finite sample space S, then 0 ≤ |E| ≤ |S|, because E ⊆ S. Thus, 0

≤ p(E) = |E|/|S| ≤ 1. Let E be an event in a sample space S. The

probability of the event Eo = S − E, the complementary event of

E, is given by p(Eo) = 1 − p(E). [2].

B.2. Bayes’ Theorem

we can find the conditional probability that an event F occurs,

given that an event E has occurred, when we know p(E | F), p(E

| F), and p(F). The result we can obtain is called Bayes’ theorem

[2].

Figure 2.12 Bayes' Theorem

Source: Discrete Mathematics and Application to Computer

Science 8th Edition

B.3. Permutations and Combinations

A permutation of a set of distinct objects is an ordered

arrangement of these objects. We also are interested in ordered

arrangements of some of the elements of a set. An ordered

arrangement of r elements of a set is called an r-permutation. Let

S = {1, 2, 3}. The ordered arrangement 3, 1, 2 is a permutation

of S. The ordered arrangement 3, 2 is a 2-permutation of S. The

number of r-permutations of a set with n elements is denoted by

P (n, r). We can find P (n, r) using the product rule.

Figure 2.13 Permutation

Source: Discrete Mathematics and Application to Computer

Science 8th Edition

An r-combination of elements of a set is an unordered

selection of r elements from the set. Thus, an r-combination is

simply a subset of the set with r elements. Let S be the set {1, 2,

3, 4}. Then {1, 3, 4} is a 3-combination from S. The number of

r-combinations of a set with n distinct elements is denoted by

C(n, r) [2].

Figure 2.14 Combination

Source: Discrete Mathematics and Application to Computer

Science 8th Edition

C. Smart Shuffle Recommendations

There are two ways to shuffle your playlist in Spotify. First is

the regular Shuffle. It is able to shuffle any playlist, album, or

artist profile to mix up what song plays next. Second, is the one

we will focus on this paper, Smart Shuffle. It is the default play

mode that keeps listening sessions fresh not only by shuffling

your playlist but also by mixing in recommendations that match

the vibe. Any recommendation will have a spark symbol next to

the artist name [4].

Figure 2.15 Spotify’s Shuffle Feature

Source: https://support.spotify.com/id-en/article/shuffle-

play/

(a)

(b)

Figure 2.16 Spotify’s Smart Shuffle Recommendations

Based on Fig. 2.14, (a) shows a song that is already in the

playlist, indicated by the checkmark symbol on the far right.

Meanwhile, (b) shows a song that isn’t in the playlist, indicated

by the nonexistent checkmark symbol and the plus symbol (for

adding song to the playlist). There is also a spark symbol next to

the artist name that indicates the song is a recommendation from

the Smart Shuffle. Song recommendation from Smart Shuffle

will appear every three songs.

https://support.spotify.com/id-en/article/shuffle-play/
https://support.spotify.com/id-en/article/shuffle-play/

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

III. IMPLEMENTATION

Spotify initially used the Fisher-Yates shuffle algorithm to

randomize playlists, which produces a perfectly random order

for songs. However, users still perceived this randomness as

“not random enough” because songs by the same artist could

play consecutively creating clusters that felt unshuffled. To

address this, Spotify developed an algorithm that spaces out

songs by the same artist throughout the playlist, reducing

noticeable clustering. This approach creates sequence that feels

“more random” to listeners even though it’s technically less

random than the original method. This adjustment

acknowledged the “gambler’s fallacy” where people expect

outcomes to balance out in short term. By spacing out songs

from the same artist, Spotify’s shuffle aligns better with user

expectations of randomness, enhancing the listening experience

[4].

In this paper, we will focus on the implementation of graph

theory and probability theory via two different approaches,

content-based filtering and item-based collaborative filtering.

A. Content-Based Filtering

Content-Based Filtering algorithm for Spotify’s Smart

Shuffle recommends songs based on the features of the song

itself. It includes extracting features from songs that have been

listened to by the user. Such features for example, genre, artist,

tempo, or even mood/vibe. We will represent songs as nodes and

song features as edge weights between the nodes, creating a

weighted graph model. Next, we will calculate the similarity of

two features using cosine similarity to get the shortest

path/distance between two songs based on feature similarity to

get recommendations. To create randomness, we will add

random walks over the feature graph to probabilistically explore

connected nodes and recommend based on visitation

probability.

Not only that, but we will also integrate Bayes’ theorem to

build a Bayesian network where nodes are features and songs,

and edges represent probabilistic dependencies. Then, we will

assign probabilities to edges based on similarity scores, using

these to rank recommendations.

Figure 3.1 Building Feature Graph

Figure 3.2 Random Walk Over the Feature Graph

Figure 3.3 Calculating Similarity Between Features

Figure 3.4 Getting Recommendations from Feature Graph

B. Item-Based Collaborative Filtering

Item-Based Collaborative Filtering algorithm for Spotify’s

Smart Shuffle recommends songs based on their relationship to

other songs in the dataset. We will represent users and songs as

two sets of nodes, and edges as user-song interactions, creating

a bipartite graph model. Then, we will apply projection to create

a song-song similarity graph.

Not only that, but we will also use probabilistic models to

calculate the likelihood of two songs being listened to together

and recommend songs based on the highest probabilities.

Figure 3.5 Building Bipartite Graph

Figure 3.6 Projecting the Bipartite Graph

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 3.7 Getting Recommendations from Projection

IV. ANALYSIS

A. Content-Based Filtering

Here’s the dataset for analysis:

Figure 4.1 Dataset for CBF

Here’s the result for the dataset:

Figure 4.2 Feature Graph for Dataset

B. Item-Based Collaborative Filtering

Here’s the dataset for analysis:

Figure 4.3 Dataset for IBCF

Here’s the result for the dataset:

Figure 4.4 Bipartite Graph Projection for Dataset

In this paper, we explored the implementation of

recommendation systems using Graph Theory and Probability

Theory, specifically applied to song recommendations as in

Spotify’s Smart Shuffle. We focused on Content-Based Filtering

(CBF) and Item-Based Collaborative Filtering (IBCF), both of

which leverage graph structures to model relationships between

songs, users, and song features.

VI. CONCLUSION

This project demonstrated how graph theory and probability

theory can be effectively used in building recommendation

systems. Both Content-Based Filtering and Item-Based

Collaborative Filtering benefit from these methods:

1. Graph Theory helps visualize and model relationships

between entities (songs, users, or song features) in a

meaningful way, enabling the construction of projection

graphs that uncover similarities.

2. Probability Theory enables the ranking of potential

recommendations, making sure that highly connected or

similar items are more likely to be recommended based on

their probability.
Both methods provide complementary approaches for

generating music recommendations: while IBCF focuses on

shared user preferences, CBF leverages song characteristics

directly. These techniques are foundational in music

recommendation systems like Spotify’s Smart Shuffle feature,

which combines user data, content features, and probabilistic

models to offer dynamic, personalized recommendations.

Further research could involve incorporating hybrid filtering

approaches, combining both CBF and IBCF, or exploring more

advanced machine learning models like matrix factorization,

which have shown great promise in large-scale recommendation

systems.

VII. ACKNOWLEDGEMENT

The author would like to express their gratitude to several

parties that helped the making of this paper. First and foremost,

sincere thanks to God for guiding the author through the entire

process of making this paper from learning, researching, and

writing, until eventually this paper is complete. The author also

acknowledges the immense support and guidance from the

lecturer of IF1220 Discrete Mathematics, Mr. Rila Mandala and

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Mr. Rinaldi Munir, that has significantly helped the author

enrich their knowledge. Special thanks also to the author’s

family, friends, and all the ITB Informatics students for the

unwavering support throughout the entire semester.

Through this paper, the author hopes it can bring more

knowledge for the author and for the readers on better

understanding about the use of graph and probability theory in

one of the mostly used music-streaming platform features,

Spotify Smart Shuffle Recommendations.

REFERENCES

[1] Fernando, Jason. (2023). “Pemodelan Hubungan Antar Lagu dalam

Spotify Menggunakan Teori Graf dan Wrapper untuk Pengalaman

Pengguna yang Lebih Personal”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-

2024/Makalah2023/Makalah-Matdis-2023%20(156).pdf accessed on

January 6, 2025.

[2] K. H. Rosen. (2018). Discrete Mathematics and Application to Computer

Science 8th Edition. Mc Graw-Hill, Inc.

[3] Munir, Rinaldi. (2024). “IF2120 Matematika Diskrit – Semester I Tahun

2024/2025”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/matdis24-25.htm accessed on January 6, 2025.

[4] Spotify Engineering. (2014). “How to Shuffle Songs?”

https://engineering.atspotify.com/2014/02/how-to-shuffle-songs/

accessed on January 6, 2025.

[5] Spotify. (2024). “Shuffle Play”.

https://support.spotify.com/id-en/article/shuffle-play/ accessed on January

8, 2025.

[6] Varun. (2020). “Cosine similarity: How does it measures the similarity,

Maths behind and usage in Python”.

https://towardsdatascience.com/cosine-similarity-how-does-it-measure-

the-similarity-maths-behind-and-usage-in-python-50ad30aad7db

accessed on January 8, 2025.

[7]

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 6 Januari 2025

Angelina Efrina Prahastaputri 13523060

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/Makalah2023/Makalah-Matdis-2023%20(156).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/Makalah2023/Makalah-Matdis-2023%20(156).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/matdis24-25.htm
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/matdis24-25.htm
https://engineering.atspotify.com/2014/02/how-to-shuffle-songs/
https://support.spotify.com/id-en/article/shuffle-play/
https://towardsdatascience.com/cosine-similarity-how-does-it-measure-the-similarity-maths-behind-and-usage-in-python-50ad30aad7db
https://towardsdatascience.com/cosine-similarity-how-does-it-measure-the-similarity-maths-behind-and-usage-in-python-50ad30aad7db

