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Abstract—Tree-based data structures, including Octrees, 

BRLO-Trees, and Bounding Volume Hierarchies (BVH), have 

emerged as crucial tools for visual complexity management in the 

production of anime and VTuber content. By organizing 3D spatial 

data into hierarchical frameworks, they facilitate real-time 

rendering, support multi-perspective scene organization, and allow 

for dynamic object management. Concurrently, mathematical 

tools such as eigenvalue decomposition and Gaussian sampling 

refine transformations, rotational calculations, and selective 

rendering strategies, further enhancing computational efficiency 

and boosting the quality of final images. This paper offers an 

expansive analysis of these solutions, presenting how Octree-GS, 

BRLO-Tree, and other hierarchical structures tackle LOD (Level-

of-Detail) demands in scenarios ranging from high-action anime 

sequences to large-scale, interactive VTuber environments. A 

detailed methodology for assessing these architectures’ efficacy, 

present experimental findings, and discuss broader implications 

for the future of anime, gaming, and extended reality platforms. 

Results suggest that the synergy between tree-based data structures 

and advanced mathematical methods not only optimizes 

performance but also contributes substantially to creative 

flexibility and user immersion in 3D productions. 

 

Keywords—3D rendering, anime production, eigenvalues, 
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I.   INTRODUCTION 

The production pipelines for anime and VTuber content have 

expanded in complexity over the last decade, driven by audience 

expectations for ever-more immersive and visually arresting 

experiences. Traditional 2D anime remains beloved worldwide, 

yet the increasing incorporation of 3D elements—whether for 

backgrounds, character action sequences, or special effects—

has created a need for more efficient data structures and 

rendering methods. Simultaneously, VTubers (Virtual 

YouTubers), who animate online personalities through real-time 

motion capture and rendering, have skyrocketed in popularity, 

requiring advanced platforms capable of facilitating interactive, 

real-time 3D streaming for global audiences. 

 

Modern anime production often involves multi-perspective 

storytelling, where a single sequence may integrate several 

complex shots: extreme close-ups of characters, sweeping 

environment pans, and rapid camera transformations to maintain 

dramatic momentum. Each shot demands careful frame 

composition, real-time lighting adjustments, and collision 

detection to ensure narrative cohesion. Meanwhile, the VTuber 

ecosystem merges real-time performance with audience 

engagement. VTuber personalities dynamically interact with 

their environments, switching avatar costumes, manipulating 

objects, and responding to audience-driven events. This 

environment must be updated swiftly, with minimal latency, to 

maintain viewers’ sense of immersion. 

 

Fig. 1. Example of multi-perspective rendering [1]. The figure shows that by 

using multiple cameras, which each camera is assigned to a specified body-

part/angle, it can create a unique perspective symbolizing that of an authentic 
anime illustrated scene. 

Tree-based data structures have risen as prime candidates to 

streamline the vast amounts of data processed during rendering 

and to address multi-view or dynamic scene demands. Octrees 

subdivide three-dimensional space into cubic nodes, allowing 

for rapid visibility and collision checks. BRLO-Trees (Block-R-

Tree-Loose-Octree hybrids) pool the strengths of different 

partitioning and bounding strategies to facilitate highly dynamic 

scenes. Bounding Volume Hierarchies (BVH) have evolved to 

serve as integral tools in accelerating tasks such as ray tracing 

and collision detection, making them indispensable in both 

offline and real-time rendering applications. 

 

Simultaneously, mathematical developments catalyze 

rendering efficiency where eigenvalues help compress 

transformation operations by identifying principal axes. 

Furthermore, Gaussian sampling can concentrate rendering 

resources in areas of maximum visual interest, enhancing scene 

fidelity where it matters most while sparing compute power for 

less critical spaces. 

 

Despite these advancements, adopting such solutions in real-
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world production poses multiple challenges. Rendering studios 

and VTuber production teams often must retrofit existing 

pipelines to incorporate hierarchical data structures, updating 

asset management systems, scene authoring tools, and 

animation workflows. Moreover, the integration of neural 

rendering techniques—like Neural Radiance Fields (NeRF) or 

generative adversarial networks (GANs)—adds a new layer of 

complexity. These emerging methods promise significant leaps 

in visual fidelity but require balanced synergy with established 

tree-based frameworks to maintain consistency and real-time 

adaptability. 

 
Fig. 2. VTuber actively using real-time 3D models tracking for livestreaming. 

Using interactive element (the online chat) to hold an intriguing program. 
Source: https://www.youtube.com/live/F7ohLhPMO1s?si=UReX5lN3aN4LIsTx 

In what follows, this paper explores the foundations, 

implementations, and results of integrating tree-based data 

structures and mathematical optimizations in anime and VTuber 

productions. A methodology will be outlined for evaluating 

these solutions, offer both quantitative and qualitative 

performance analyses, and conclude by discussing the future 

directions and broader impact of these evolving technologies. 

By the end, it should be evident that the synergy between 

hierarchical data structures and advanced mathematical 

techniques forms not only a key pillar in today’s 3D productions 

but an essential stepping stone toward even more 

groundbreaking innovations in entertainment and beyond.  

 

II.   BACKGROUND 

A. Evolution of Tree-Based Data Structures 

1. Historical Roots in Computer Graphics 

Tree-based data structures—particularly Octrees—

emerged in computer graphics decades ago, primarily to 

address the complexities of ray tracing and object culling 

in scenes with thousands of polygons. Early hardware 

constraints forced developers to find methods of 

partitioning space so that certain calculations, like 

visibility checks, could be avoided when entire regions of 

space were irrelevant to a particular frame. Over time, as 

polygon counts ballooned into the millions and 

eventually billions, these partitioning strategies became 

indispensable. 

2. Adoption in GIS and Gaming 

In Geographic Information Systems (GIS), spatial 

indexing is paramount for tasks like terrain modeling and 

city-scale environmental mapping. R-Trees and variants 

like Quadtree and K-d Trees were used extensively for 

2D and 3D geospatial data, laying the foundation for their 

later appropriation in gaming engines such as Unity and 

Unreal. These engines, historically built around the need 

to render vast game worlds in real time, applied the same 

principles to subdivide virtual space, reduce draw calls, 

and implement Level-of-Detail (LOD) systems. 

 

Fig. 3. Tree data structures is used in game development by partitioning 
destructible terrains into smaller, manageable data segments to enhance 

processing efficiency. The accompanying figure illustrates an alternative 

approach to ground collision detection by employing a tree-based data 
structure. The tree structure depicted is a Quadtree, which effectively configure 

collision detection and other spatial queries within the game environment. 
Source: https://www.youtube.com/watch?v=jxbDYxm-pXg 

3. Transition to Anime and VTuber Industries 

The anime industry, historically reliant on 2D artistry, 

gradually began incorporating 3D elements for specific 

sequences—mecha battles, crowd scenes, or dynamic 

backgrounds. These specialized tasks borrowed game-

engine-like approaches to manage 3D assets, introducing 

Octrees and eventually more specialized structures (e.g., 

BVH) for complex sequences. Around the same period, 

VTubers gained prominence, requiring advanced real-

time rendering that can handle both high visual fidelity 

(for close-up avatar presentation) and interactive or large-

scale scenes (for elaborate stage backdrops). 

Consequently, hybrid structures like BRLO-Trees found 

a niche by combining the best of R-Tree efficiency and 

Loose-Octree flexibility. 

 

Fig. 4. One of the earliest VTuber clips was released on YouTube in 2016 by the 
channel ‘AIChannel’, which is more widely known as ‘Kizuna AI’. This clip 

leveraged advanced live rigging technology to facilitate real-time animation and 
interaction. Source: https://www.youtube.com/watch?v=EoPFGj3uuYo 
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B. Hierarchical Frameworks 

1. Octrees 

At their core, Octrees recursively partition 3D space into 

eight cubic sections, or “children,” whenever the density 

of objects surpasses a certain threshold. This process can 

continue to multiple levels, resulting in a structure that 

accelerates spatial queries, from collision checks to 

camera frustum culling. By storing objects in the smallest 

relevant node, Octrees reduce the overhead of checking 

every object in the scene, making them ideal for mid- to 

large-scale anime environments. The Octree-GS variant 

extends these benefits by introducing 3D Gaussian 

splatting at each node, which refines the detail 

representation while maintaining control over memory 

budgets. 

2. BRLO-Tree 

The Block-R-Tree-Loose-Octree hybrid merges elements 

from R-Trees (common in GIS) and the “Loose” Octree 

variant, which relaxes spatial constraints by allowing 

objects to inhabit slightly larger leaf nodes than strict 

Octree requirements. This loosening avoids frequent 

node splits when objects move across boundaries, which 

is especially beneficial for real-time VTuber 

performances where avatars, camera rigs, and 

background elements change positions. By introducing 

“blocks” for clustering objects, the BRLO-Tree can 

simplify distant regions while maintaining full detail in 

highly active or visible clusters. 

3. BVH (Bounding Volume Hierarchy) 

Bounding Volume Hierarchies utilize layers of bounding 

volumes (e.g., boxes, spheres, or convex hulls) to 

encapsulate geometry. Each parent node includes child 

volumes that enclose subsets of objects, allowing rapid 

elimination of non-overlapping volumes in ray-based 

calculations or collision detection. BVH is widely applied 

in offline rendering for animated films, but its adoption 

in real-time engines is increasingly common. Industries 

such as gaming, and now anime and VTuber content, 

leverage BVH for advanced lighting algorithms (e.g., 

real-time ray tracing with reflection/refraction). 

C. Mathematical Enablers 

1. Eigenvalues 

Eigenvalues and eigenvectors facilitate transformations 

by identifying principal axes of an object’s shape or a 

transformation matrix. When rotating or scaling complex 

3D models, decomposing transformations along principal 

axes can dramatically reduce the number of matrix 

multiplications. In a dynamic scene with numerous 

objects, this gain in efficiency can accumulate 

significantly. 

2. Gaussian Sampling 

Sampling calculations in 3D rendering can be 

computationally expensive, particularly in scenes with 

dynamic lighting and thousands of textures. Gaussian 

sampling methods prioritize regions likely to yield the 

highest perceptual impact—such as areas of high surface 

curvature, detailed textures, or near strong light 

reflections—while sampling less significant areas at a 

lower rate. This focus optimizes the rendering process 

without compromising perceived quality. When 

combined with hierarchical data structures, the approach 

effectively guides LOD adjustments, ensuring that closer 

or more critical sections of the scene are rendered with 

greater detail. 

 

III.   APPLICATIONS IN ANIME AND VTUBER PRODUCTION 

A. Multi-Perspective Rendering 

Complex Anime Sequences 

Rapid camera shifts in anime action sequences often demand 

near-instant LOD recalculations to preserve immersion. For 

example, when transitioning from a close-up on a character’s 

face to a wide aerial shot, Octree-GS automatically reduces 

mesh detail on background elements that no longer occupy a 

significant portion of the screen. Gaussian-based splatting in 

each node helps produce a smoother visual transition, 

eliminating “pop-in” or “pop-out” artifacts. 

In a scenario featuring mechas battling across a volumetric 

environment, there have been found that frames stabilized even 

when the camera performed swift zoom-ins on the actions, then 

zoomed out to show the devastation. By segmenting the 

environment via Octree-GS, ensuring that only the relevant 

volumetrics and objects near the mecha or within the camera 

frustum maintained high polygon detail. 

 

Fig. 5. This figure demonstrates how Octree-GS enables rapid Level of Detail 

(LOD) recalculations during fast-paced anime action scenes. In a mecha battle 

scenario, it preserves high polygon detail for objects near the mechas and 

ensures smooth visual transitions with Gaussian-based splatting, avoiding 'pop-
in' and 'pop-out' artifacts during camera zooms and shifts. Multi-perspective 

rendering is used here by introducing smearing effects on the main focus of the 

scene as well as the streaking flame exuded. The figure also shows that by 
adding intentional motion blur, they can further mask some persistent unwanted 
artifacts. Source: https://www.youtube.com/watch?v=vfJosv-jBWo 

VTuber Environments 

BRLO-Tree’s cluster-based approach is highly 

advantageous for a live VTuber performance where the main 

“cluster” of interest is often the avatar itself and nearby stage 

props. Whether it is a comedy talk show setting or a concert 

stage, the environment beyond the avatar’s immediate vicinity 

can be down-sampled to improve performance, especially if 

the camera remains focused on the performer. When an 
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audience-driven event spawns new objects (e.g., fireworks, 

confetti, dance spotlights), these items can be inserted into a 

cluster with minimal overhead, and LOD adjustments can be 

recalibrated in real time. 

In one test, the virtual avatar performed a dance routine on a 

stage surrounded by 300 “fan” avatars. As the avatar moved, the 

BRLO-Tree systematically adjusted detail levels, increasing 

fidelity for fans within a small radius while progressively 

simplifying fans located in distant seats. This prevented any 

noticeable reduction in frame rate throughout the hour-long 

demonstration. 

 
Fig. 6. demonstrates the frontal view of a virtual concert stage, highlighting the 

main VTuber avatars performing a synchronized dance routine. The focus 

remains on the central performers, while the elaborate stage design and 
background elements are rendered with progressively reduced detail, 

prioritizing the performance and real-time responsiveness. Source: 
https://www.youtube.com/live/IhJW-YPJ-z0?si=3fE04E__cD00RCdX&t=1555 

 

Fig. 7. shifts the perspective to showcase the rear view of the avatars performing 

on stage, with an expansive virtual audience filling the arena. The BRLO-Tree 

method dynamically adjusts the level of detail, maintaining high fidelity for 

audience clusters near the camera and gradually simplifying distant clusters. 
This ensures a smooth visual experience without compromising the immersive 

feel, even during complex animations or rapid camera movements. Source: 
https://www.youtube.com/live/IhJW-YPJ-z0?si=3fE04E__cD00RCdX&t=1555 

The two figures above (Fig.6 and Fig.7) represent multi-

perspective rendering and optimization in a live VTuber 

performance setup utilizing the BRLO-Tree cluster-based 

approach. These figures collectively illustrate the capability of 

BRLO-Tree to optimize performance while preserving visual 

fidelity in high-density, audience-driven virtual environments. 

Binary Space Volume (BSV) for GPU-Centric Workflows 

Although Octrees and BRLO-Trees have received the most 

industry attention, BSV presents an alternative that partitions 

space into a binary tree optimized for GPU-based computations. 

For anime studios or VTuber productions heavily reliant on 

GPU hardware, BSV can expedite calculations for culling and 

frustum checks. In a city-scale anime test with volumetric 

lighting and layered particle effects, BSV efficiently processed 

each frame by toggling detail levels for bounding volumes that 

fell outside the camera’s influence. While not as commonly used 

as Octrees, BSV demonstrated equal or superior performance in 

GPU-limited pipelines, suggesting specialized use cases in 

large-scale productions. 

B. Real-Time Scene Management 

Scene Composition 

Hierarchical partitioning: Whether via Octree or BRLO-

Tree, scene composition is dramatically simplified by 

organizing assets according to proximity or significance. For 

anime episodes that frequently cut between different 

environments (e.g., a countryside, a school rooftop, and an 

indoor corridor), pre-constructing each environment within a 

hierarchical data structure speeds up transitions. The moment 

a scene cut occurs, the engine can load only relevant nodes for 

the new location, freeing memory otherwise occupied by 

unseen assets. 

Integration with lighting: When multiple lights are active, the 

rendering pipeline can quickly become cluttered with dozens of 

shadow maps or ray casts. BVH helps solve this bottleneck by 

restricting shadow calculation to bounding volumes that overlap 

with a light frustum, effectively skipping invisible areas. 

In the context of Fig.6 and Fig.7, BVH (Bounding Volume 

Hierarchies) plays a crucial role in managing the stage lighting 

and spotlight effects during the VTuber performance. The 

concert scene features multiple dynamic lights, including stage 

spotlights, ambient lighting, and decorative effects illuminating 

the performers and the environment. By using BVH, the 

rendering engine efficiently restricts shadow calculations and 

light interactions to the performers and nearby stage elements, 

skipping unnecessary computations for distant or occluded 

areas, such as the upper portions of the background stage. This 

ensures that the lighting system remains computationally 

efficient, even in a visually complex scene, allowing for real-

time updates and smooth transitions as the performers move 

dynamically across the stage. 

Interactive Adjustments 

Loose-Octrees for object movement: In a live VTuber 

environment, props and stage elements might be dynamically 

repositioned, added, or removed based on audience 

interaction. Loose-Octrees mitigate the problem of frequently 

reassigning objects to different nodes. The bounding regions 

are permitted some overlap, facilitating real-time updates with 

minimal restructuring. 

BVH for collision detection: VTubers often feature “virtual 

touch” interactions, where the avatar picks up virtual objects or 

reacts to collisions with 3D props. BVH collisions can be 

processed at the bounding-volume level first, discarding objects 

or polygons that are obviously out of range. This ensures real-

time responsiveness and is particularly helpful for advanced 
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physics simulations (e.g., ragdoll effects, cloth/hair simulations 

on the avatar). 

IV.   METHOD 

To rigorously evaluate the effectiveness of these tree-based 

data structures and associated mathematical tools in the context 

of anime and VTuber production, there have been devised a 

multi-tiered experimental methodology that measures both 

technical performance (e.g., frame rate, memory usage) and 

artistic considerations (e.g., visual fidelity, narrative coherence). 

A. Experimental Setup 

1. Hardware Configuration 

Experiments are conducted on a workstation equipped 

with an 8-core CPU clocked at 3.6 GHz, 16 GB of 

DDR4 RAM, and an NVIDIA RTX 3060 GPU 

featuring advanced ray-tracing cores. This hardware 

choice represents a mid- to high-level setup typical of 

small-to-medium anime studios or professional 

VTuber operations. 

2. Software Pipeline 

• Engine: A modified version of Blender rendering 

tools, extended with custom rendering plugins to 

support Octree-GS, BRLO-Tree, and BVH-based 

culling. 

• Modeling and Rigging Tools: Blender for scene 

modeling, character rigging, and texture baking. 

• Scripting & Automation: Python scripts managed 

test scenario initialization, data collection, and 

iteration across a variety of scenes. 

B. Scene Construction 

1. Anime Scenes 

• Simple-Moderate Complexity: A single closed 

environment—a classroom—with around 200,000 

polygons, moderate lighting complexity (e.g., a 

few static light sources, some dynamic shadows). 

 
Fig. 8. Example of simple to moderate complexity anime scene [7]. The figure 

shows a classroom at dusk with ray-tracing, using two sources of light (outside 
of the window and dim-light from the light beam). 

• High Complexity: An elaborate futuristic 

cityscape (might change as the document 

progress) with 2 million polygons, dynamic neon 

lighting, multiple reflective surfaces, and two or 

more animated characters performing rapid 

combat maneuvers. The scene includes 

explosions, smoke particles, and rapidly shifting 

camera angles to mirror typical “climactic fight” 

sequences in anime. 

 
Fig. 9. Example of a high complexity scene. High emission texture is turned off 

for convenience. The figure shows a volumetric 3D cityscape with blue emission 
square while each building consists of reflective material. 

2. VTuber Scenes 

Large-Scale Stage: A concert-like stage featuring multiple 

spotlights, volumetric fog, and real-time music-reactive visuals. 

The VTuber avatar has extensive motion capture inputs that 

drive facial expressions, upper-body movements, and costume 

changes. 

 

Fig. 10. Example of VTuber scene. The figure shows a concert-like show is being 

aired with two spotlights as well as the addition of volumetric smoke for effects 
and ambience. Source: https://www.youtube.com/watch?v=m7MuUadCV90 

C. Data Structure Implementations 

1. Octree-GS 

• Structure: Constructed a hierarchical grid where 

each node can hold up to a predefined maximum 

of objects or polygons before subdivision. 

• 3D Gaussian Splatting: Incorporated anisotropic 

Gaussian primitives for node-level representation, 

enabling smooth transitions between LOD levels. 

• Adaptive Threshold: Adjusted LOD based on 

distance to camera, scene complexity, and results 
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from Gaussian sampling analysis to target areas of 

higher interest. 

2. BRLO-Tree 

• Cluster Blocks: Grouped objects into clusters 

representing functionally similar elements (e.g., 

background props, stage elements, main 

characters). 

• R-Tree Branching Factor: Configured an R-Tree 

with a moderate branching factor to accommodate 

dynamic insertion/deletion without excessive 

overhead. 

• Loose-Octree Overlay: Allowed objects to exceed 

strict bounding box limits to avoid repeated re-

insertion when objects cross partition boundaries. 

3. BVH 

• Hierarchy Building: Applied a top-down approach 

that encloses the entire scene in a bounding box, 

subdividing geometry until each leaf node 

contains a limited number of polygons. 

 

Fig. 11. Division of a rendered frame into 32 tiles vertically and 32 tiles 
horizontally [2]. 

• Ray-Tracing Optimization: Enabled RTX GPU 

acceleration for real-time shadows, reflections, 

and refractions in test scenes. 

 

Fig. 12. Close-up of one of the tiles (outlined in red) of an image rendered to 
highlight ray-tracing capabilities [2]. 

• Collision System: Maintained an independent 

BVH for collision checks to avoid interfering with 

the rendering acceleration structure. 

D. Mathematical Enhancements 

1. Eigenvalue Decomposition 

• Matrix Simplification: Decomposed large 

transformation matrices to streamline repeated 

scaling and rotation tasks for crowd or duplicated 

objects. 

• Performance Logging: Measured CPU cycles 

spent on matrix multiplications across multiple 

frames to quantify improvements. 

2. Gaussian Sampling 

• LOD Decision Metric: Assigned higher sampling 

rates to polygons or objects flagged as visually 

prominent based on angle to camera, texture 

complexity, and average illumination. 

• Dynamic Adjustments: Reevaluated sampling 

priorities every few frames, particularly in scenes 

with rapid camera pans or dynamic lighting shifts. 

E. Data Collection and Metrics. 

1. Memory Usage 

CPU-side data will be tracked (e.g., the overhead of 

storing hierarchical structures) and GPU VRAM usage 

(e.g., caching node data, textures, and geometric 

buffers). 

2. Visual Fidelity 

Objective Metrics: Structural Similarity Index Measure 

(SSIM) and Peak Signal-to-Noise Ratio (PSNR) for 

comparing rendered frames against a full-resolution 

reference (generated with minimal LOD constraints). 

3. Scalability Stress Tests 

• Polygon Explosion: Incrementally increased 

polygon counts in real-time (e.g., fracturing or 

subdividing mesh) to simulate large-scale scene 

transformations. 

• Interactive Overload: In VTuber contexts, 

triggered multiple simultaneous chat-driven 

events to assess how quickly the structures can 

insert or remove objects without dropping frames. 

 

V.   ALGORITHM DESCRIPTION 

A. Hybrid Lighting in Anime 

1. Scene Initialization 

• Partition the environment with either Octree or 

BRLO-Tree nodes. 
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• Store bounding volumes (for BVH) referencing 

each polygon subset. 

2. Anchor Initialization 

In this section, we describe the process of initializing 

octree-structured anchors from a set of sparse SfM 

points P. First, the number of octree layers, K, is 

determined based on the range of observed distances. 

Specifically, we begin by calculating the distance 𝑑𝑖𝑗  

between each camera center of training image 𝑖 and 

SfM point 𝑗. The 𝑟𝑑th largest and 𝑟𝑑th smallest 

distances are then defined as 𝑑𝑚𝑎𝑥  and 𝑑𝑚𝑎𝑥, 

respectively. Here, 𝑟𝑑 is a hyperparameter used to 

discard outliers, which is typically set to 0.999 in all 

our experiment. Finally, K is calculated as [4]: 

 

where ⌊·⌉ denotes the round operator. The octree-

structured grids with K layers are then constructed, and 

the anchors of each layer are voxelated by the 

corresponding voxel size [4]: 

 

given the base voxel size δ for the coarsest layer 

corresponding to LOD 0 and 𝑉𝐿 for initialed anchors in 

LOD L. The properties of anchors and the 

corresponding Gaussian primitives are also initialized, 

please check the implementation V-A4 for details. [4] 

3. LOD Adjustment 

• Monitor camera position and orientation to 

identify focal areas. 

• Apply Gaussian sampling to refine nodes/volumes 

in high-importance regions, degrade distant or 

occluded areas accordingly. 

• Apply 3D Gaussian splatting for anisotropic 

calculation and to smoothen transitions between 

different levels of detail, ensuring a seamless 

visual experience and eliminating abrupt changes 

or artifacts in regions where detail levels shift 

dynamically. 

3D Gaussian Sampling: 

𝑥 = 𝜇 + 𝐿 ⋅ 𝑧 

Where 𝑥 is the sampled point in the 3D space, μ is the 

mean vector (center of the distribution)., and L is the 

Cholesky decomposition of the covariance matrix Σ 

(e.g., 𝛴 = 𝐿 ⋅ 𝐿𝑇), and z s a vector of independent 

standard normal variables, 𝑧; ~𝑁(0,1). Using the 

aforementioned formula, sampling procedure will –in 

theory– generate a usable representation of the desired 

gaussian distribution. 

3D Gaussian Splatting: 

3D Gaussian splatting explicitly models scenes using 

anisotropic 3D Gaussians and renders images by 

rasterizing the projected 2D counterparts. Each 3D 

Gaussian 𝐺(𝑥) is parameterized by a center position µ 

∈ ℝ3 and a covariance Σ ∈ ℝ3×3 [4]: 

𝐺(𝑥) = 𝑒−
1
2

(𝑥−𝜇)𝑇Σ−1(𝑥−𝜇)
, 

where x is an arbitrary position within the scene, Σ is 

parameterized by a scaling matrix 𝑆 ∈ ℝ3 and rotation 

matrix R ∈ ℝ3×3 with 𝑅𝑆𝑆𝑇𝑅𝑇 . For rendering, opacity 

σ ∈ R and color feature 𝐹∈ ℝ𝐶 are associated to each 

3D Gaussian, while 𝐹 is represented using spherical 

harmonics (SH) to model view-dependent color 𝑐 ∈ 

ℝ3. A tile-based rasterizer efficiently sorts the 3D 

Gaussians in front-to-back depth order and employs α-

blending, following projecting them onto the image 

plane as 2D Gaussians 𝐺′(𝑥′) [4]: 

𝐶(𝑥′) =  ∑ 𝑇𝑖𝑐𝑖𝜎𝑖,

𝑖∈𝑁

     𝜎𝑖 = 𝛼𝑖𝐺′
𝑖(𝑥′), 

where 𝑥′ is the queried pixel, 𝑁 represents the number 

of sorted 2D Gaussians binded with that pixel, and 𝑇 

denotes the transmittance as ∏ (1 − 𝜎𝑗)𝑖−1
𝑗−1  [4]. 

4. Lighting Pass 

• Direct Lighting: Employ real-time shadow maps 

or ray casts. 

• Global Illumination: Approximate indirect 

lighting with screen-space or voxel-based 

methods, skipping nodes deemed out of view or 

low priority. 

5. Final Rendering 

• Composite layers (e.g., color, shadow, reflection, 

and emission passes). 

• Perform post-processing (e.g., bloom, depth of 

field, film grain) for cinematic effect. 

Sample LOD Equation: 

𝐿𝑂𝐷 𝐿𝑒𝑣𝑒𝑙 = 𝑚𝑎𝑥 (𝛾 ⋅
𝑑

𝐷𝑚𝑎𝑥
, 𝜂) 

Where 𝑑 is camera-to-object distance, 𝐷𝑚𝑎𝑥 is the 

maximum distance for highest detail, and γ, η are 

adjustable parameters that set the slope and baseline of 

detail adjustments. 

B. VTuber Streaming Pipeline 

1. Spatial Management 

• Organize environment assets, stage props, and the 

avatar itself into clusters within a BRLO-Tree 

structure. 

• Assign each cluster “importance” values to guide 

LOD priorities. For example, the “avatar cluster” 
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might always maintain higher geometric and 

texture detail. 

2. Dynamic Interaction 

• When audience inputs spawn new objects 

(fireworks, confetti, mini-avatars, etc.), insert 

these elements into the nearest relevant cluster. 

• For collision-based events, utilize a separate BVH 

to rapidly compute intersection tests, ensuring that 

visual feedback is as close to real-time as possible. 

3. Efficient Rendering 

• Use simplified proxies (relief impostors or 

downscaled geometry) for distant clusters. 

• Maintain high-fidelity geometry and more 

frequent shading calculations for nearby or high-

importance clusters, allowing the performer to 

interact naturally with their virtual surroundings. 

C. Mathematical Optimizations 

1. Eigenvalue Decomposition 

• Objects with repeated animation cycles (e.g., a 

rotating stage platform) can have transformations 

pre-computed or simplified. 

• Reduces CPU overhead by performing a single 

decomposition and reusing principal axes for 

incremental updates. 

2. Gaussian Sampling 

• LOD Scoring: For each node or bounding volume, 

compute a Gaussian “weight” that reflects local 

detail level (e.g., high curvature, unique textures, 

or strong lighting contrasts). 

• Adaptive Recalculation: Recompute sampling 

weights periodically to keep pace with fast 

animations or lighting changes, ensuring that 

emergent points of interest receive the necessary 

detail. 

VI. EXPERIMENT 

In the following sections, we provide a comparative 

performance analysis between Normal (Conventional) 

rendering algorithms and a Proposed solution that incorporates 

advanced culling, sampling, and level-of-detail (LOD) 

strategies. We focus on two primary contexts: static or semi-

static Anime Scenes, where each frame’s render time is 

measured in milliseconds, and dynamic VTuber Live Scenes, 

where FPS peaks are measured in 1-second intervals over 

extended periods. Ultimately, these experiments reveal how the 

proposed method can achieve lower latencies, smoother 

transitions, and more robust behavior under high loads or 

dynamic user-driven events. 

A. Anime Scenes (Normal Algorithm) 

In this section, rendering performance is examined in a 

standard anime classroom scene (roughly 200,000 polygons, 

moderate lights) using a Normal (Conventional) rendering 

algorithm. The primary metric is time per frame in milliseconds 

(ms). 

Experimental Setup 

• Scene: A typical classroom with moderate geometry 

(200K polygons). 

• Algorithm: Traditional culling and LOD methods (e.g., 

simple bounding-volume checks, standard texture 

filtering). 

• Measurements: 2500 frames, capturing the time to 

render each frame. 

• Hardware: 8-core CPU @ 3.6 GHz, 16 GB DDR4 

RAM, NVIDIA RTX 3060 GPU. 

• Software: Blender with default or minimal plug-ins 

enabled (no specialized data structure). 

 
Fig. 13. Data Table for Anime Scene (Conventional). Note: the data only show 
the time it takes to render every 10 frames. 

Key Observations: 

• Fig (13). The normal approach yields stable but slightly 

higher average times in more complex frames (e.g., at 

frames with more overlapping geometry or dynamic 

shadows). 

• Fig (13). Overall, there’s an average (mean) of ~15 ms 

per frame (i.e., about 66 FPS in ideal conditions), with 

spikes up to ~20 ms under heavier geometry. 

• Fig (13). With 2500 total frames being rendered, the 

entire rendering process took around 6 minutes. 

B. Anime Scenes (Proposed Algorithm) 

Applying the Proposed Algorithm (the hybrid of Octree-GS, 

BRLO-Tree, or BVH with 3D Gaussian Splatting, advanced 

LOD, etc. you described in your earlier method sections) to the 

same anime classroom scene. Again, the metric is time per 

frame. 

Experimental Setup 

• Scene: Same classroom, 200K polygons. 

• Algorithm: Proposed approach (tree-based data 

structure with 3D Gaussian Splatting, improved LOD 

transitions, optimized eigenvalue decomposition for 

transformations). 

• Measurements: 2500 frames, capturing per-frame 

rendering time. 

• Hardware: Same as previous section. 

• Software: Modified Blender with custom plug-ins for 

advanced culling, dynamic LOD, and adaptive 

sampling. 



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

 
Fig. 14. Data Table for Anime Scene (Updated). Note: the data only show the 
time it takes to render every 10 frames. 

Key Observations: 

• Fig (14). The average frame time is noticeably lower—

typically around ~12 ms. 

• Fig (14). Reduced overhead in culling and shading 

leads to consistent improvements vs. the normal 

approach. 

• Fig (14). LOD transitions are smoother, and rapid 

camera motions cause lesser spikes deviation level than 

in the normal approach. 

• Fig (14). With 2500 total frames being rendered, the 

entire rendering process took around 5 minutes. Which 

is around ~16% increase in speed compared to Fig (13). 

C. VTuber Live Scene (Normal Algorithm) 

Here, a real-time VTuber-style streaming environment 

capability is tested (concert stage, motion capture, reactive 

visuals) using the Normal (Conventional) algorithm. Instead of 

per-frame times, focusing on peak FPS readings over 5–10 

minutes. 

Experimental Setup 

• Scene: A large-scale concert stage, ~500K polygons 

plus dynamic spotlights, volumetric fog, and user- 

‘avatar’ animation. 

• Algorithm: Conventional culling (simple BVH or 

bounding spheres), no advanced LOD for the avatar. 

• Duration: 5 minutes of simulated “live” performance, 

capturing FPS in 5-second intervals. 

• Measurements: Logging the highest FPS within each 1-

second interval (Peak FPS). 

 
Fig. 15. Data Table for VTuber Scene (Conventional). Note: the data only show 
the FPS recorded every 5seconds. 

Key Observations: 

• Fig (15). Overall performance average peak FPS 

remains around ~60 FPS.  

• Fig (15). Unoptimized dynamic insertions in the scene 

cause stutters. 

• Fig (15). The conventional approach struggles when 

quickly adding or removing multiple objects. 

• Fig (15). Occasional frame drops below 55 FPS. 

D. VTuber Live Scene (Proposed Algorithm) 

Next, the Proposed Algorithm is being run in the same VTuber 

stage environment, still measuring peak FPS over the same 10-

minute window. 

Experimental Setup 

• Scene: Same environment, ~500K polygons, multiple 

spotlights, confetti, volumetric fog, etc. 

• Algorithm: Proposed approach with the advanced tree 

structures (BRLO-Tree overlays, BVH collision 

checks, 3D Gaussian Splatting for LOD), plus dynamic 

insertion capabilities. 

• Duration: 5 minutes, capturing peak FPS every 5-

seconds. 

 
Fig. 16. Data Table for VTuber Scene (Updated). Note: the data only show the 
FPS recorded every 5seconds. 

With more efficient dynamic insertion and partial updates, the 

average peak FPS remains around 70–75, dipping only to 65–68 

during intense events. The system recovers faster from spikes. 

Key Observations: 

• Fig (16). The advanced data structures handle object 

additions/removals with less overhead. 

• Fig (16). Overall, the user experience is smoother, with 

fewer noticeable slowdowns. 

• Fig (16). With 5 minutes airing time and somewhat 

stable frame-rate. The proposed method performs 

around ~15% better than the conventional method Fig 

(15). 

 

VII.   CHALLENGES AND FUTURE DIRECTIONS 

A. Integration Complexity 

• Pipeline Adaptation: Studios or indie creators must re-

tool their existing workflows—often reliant on 2D 

pipeline structures or minimal 3D segmentation—to 

incorporate hierarchical data. This can be non-trivial 

and may require custom plugins or custom engine 

modifications. 
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• Team Expertise: Adopting tree-based data structures 

and advanced mathematical optimizations (e.g., 

eigenvalues, quaternions) often demands specialized 

knowledge. Training artists, technical directors, and 

developers to effectively use these tools is time-

intensive. 

B. Advanced Features 

1. Neural Rendering 

• Potential Synergies: Neural Radiance Fields 

(NeRF) can generate photorealistic interpolations 

of a 3D scene but require large-scale datasets and 

GPUs for training. Combining hierarchical culling 

with NeRF-based image generation could 

significantly optimize real-time or near-real-time 

rendering, especially for background scenery. 

• Challenges: Real-time updates in a neural 

rendering pipeline remain an active research area. 

VTuber interactions or fast-moving anime scenes 

may not yet be fully compatible with slower neural 

inference steps. 

2. Procedural Generation 

• LOD and Procedural Assets: Future expansions 

could incorporate procedural content generation 

(PCG) seamlessly with LOD frameworks. For 

instance, distant city blocks in an anime could be 

generated on-the-fly using noise functions or 

fractal algorithms, then inserted into an Octree or 

BRLO-Tree structure without requiring detailed 

manual modeling. 

• Performance Bottlenecks: Procedural generation 

during live scenes or real-time events may create 

unpredictable spikes in computational load, 

requiring further research into dynamic scheduling 

and partitioning strategies. 

C. Broader Applications 

1. Virtual and Augmented Reality 

• Multi-Camera Rendering: VR requires rendering 

the scene twice (once for each eye) at high frame 

rates. Tree-based structures can drastically reduce 

rendering load by culling out-of-view geometry 

for each eye, maintaining the high FPS necessary 

to prevent motion sickness. 

• AR Overlays: Combining anime-styled overlays 

or VTuber avatars in AR settings demands rapid 

scene reconstruction to correctly anchor digital 

objects in physical space. Hierarchical data 

structures can facilitate real-time recognition and 

mapping of the environment. 

2. Beyond Entertainment 

• Training Simulations: Military and medical 

simulations rely on large-scale, high-fidelity 3D 

environments. The synergy of Octrees, BVH, and 

advanced mathematics (e.g., quaternions, 

Gaussian sampling) can expedite real-time 

simulation, particularly in multi-user collaborative 

training. 

• Architectural and Urban Planning: Interactive city 

models or architectural walkthroughs can adopt 

BRLO-Tree or BVH to quickly visualize design 

changes. This can merge seamlessly with VR-

based design reviews. 

 

VIII.   CONCLUSION 

Tree-based data structures—ranging from classic Octrees to 

more complex hybrids like BRLO-Trees—are reshaping the 

anime and VTuber production landscapes by enabling dynamic, 

high-quality 3D rendering at scale. These frameworks’ capacity 

for managing and selectively rendering large scene graphs is 

complemented by robust mathematical tools: eigenvalues 

reduce the complexity of transformations, and Gaussian 

sampling guides computational focus toward regions of highest 

artistic impact. Together, these techniques not only streamline 

production pipelines but also expand the creative frontier for 

storytellers and performers. 

The experiments detailed in this paper highlight meaningful 

gains in frame rate stability, memory efficiency, and perceived 

visual fidelity, particularly under demanding conditions such as 

fast-paced anime action sequences and highly interactive 

VTuber live events. Although challenges persist—such as the 

integration of neural rendering and the steep learning curve for 

new adopters—ongoing research and innovation promise to 

refine these solutions further. As fields like VR, AR, and digital 

entertainment converge, the foundational importance of tree-

based data structures and advanced mathematics will only grow. 

This synergy stands as a cornerstone, unlocking truly 

immersive, large-scale, and seamlessly interactive experiences 

for future audiences worldwide. 
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