
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

The Role of Tree-Based Data Structures in Complex Anime and

VTubers Multi-Perspective Production
Rhio Bimo Prakoso S - 135231231

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1rhiobimoprakoso.s@gmail.com, 13523123@std.stei.itb.ac.id

Abstract—Tree-based data structures, including Octrees,

BRLO-Trees, and Bounding Volume Hierarchies (BVH), have

emerged as crucial tools for visual complexity management in the

production of anime and VTuber content. By organizing 3D spatial

data into hierarchical frameworks, they facilitate real-time

rendering, support multi-perspective scene organization, and allow

for dynamic object management. Concurrently, mathematical

tools such as eigenvalue decomposition and Gaussian sampling

refine transformations, rotational calculations, and selective

rendering strategies, further enhancing computational efficiency

and boosting the quality of final images. This paper offers an

expansive analysis of these solutions, presenting how Octree-GS,

BRLO-Tree, and other hierarchical structures tackle LOD (Level-

of-Detail) demands in scenarios ranging from high-action anime

sequences to large-scale, interactive VTuber environments. A

detailed methodology for assessing these architectures’ efficacy,

present experimental findings, and discuss broader implications

for the future of anime, gaming, and extended reality platforms.

Results suggest that the synergy between tree-based data structures

and advanced mathematical methods not only optimizes

performance but also contributes substantially to creative

flexibility and user immersion in 3D productions.

Keywords—3D rendering, anime production, eigenvalues,

Gaussian methods, tree-based data structures, VTuber workflows,

LOD strategies

I. INTRODUCTION

The production pipelines for anime and VTuber content have

expanded in complexity over the last decade, driven by audience

expectations for ever-more immersive and visually arresting

experiences. Traditional 2D anime remains beloved worldwide,

yet the increasing incorporation of 3D elements—whether for

backgrounds, character action sequences, or special effects—

has created a need for more efficient data structures and

rendering methods. Simultaneously, VTubers (Virtual

YouTubers), who animate online personalities through real-time

motion capture and rendering, have skyrocketed in popularity,

requiring advanced platforms capable of facilitating interactive,

real-time 3D streaming for global audiences.

Modern anime production often involves multi-perspective

storytelling, where a single sequence may integrate several

complex shots: extreme close-ups of characters, sweeping

environment pans, and rapid camera transformations to maintain

dramatic momentum. Each shot demands careful frame

composition, real-time lighting adjustments, and collision

detection to ensure narrative cohesion. Meanwhile, the VTuber

ecosystem merges real-time performance with audience

engagement. VTuber personalities dynamically interact with

their environments, switching avatar costumes, manipulating

objects, and responding to audience-driven events. This

environment must be updated swiftly, with minimal latency, to

maintain viewers’ sense of immersion.

Fig. 1. Example of multi-perspective rendering [1]. The figure shows that by

using multiple cameras, which each camera is assigned to a specified body-

part/angle, it can create a unique perspective symbolizing that of an authentic
anime illustrated scene.

Tree-based data structures have risen as prime candidates to

streamline the vast amounts of data processed during rendering

and to address multi-view or dynamic scene demands. Octrees

subdivide three-dimensional space into cubic nodes, allowing

for rapid visibility and collision checks. BRLO-Trees (Block-R-

Tree-Loose-Octree hybrids) pool the strengths of different

partitioning and bounding strategies to facilitate highly dynamic

scenes. Bounding Volume Hierarchies (BVH) have evolved to

serve as integral tools in accelerating tasks such as ray tracing

and collision detection, making them indispensable in both

offline and real-time rendering applications.

Simultaneously, mathematical developments catalyze

rendering efficiency where eigenvalues help compress

transformation operations by identifying principal axes.

Furthermore, Gaussian sampling can concentrate rendering

resources in areas of maximum visual interest, enhancing scene

fidelity where it matters most while sparing compute power for

less critical spaces.

Despite these advancements, adopting such solutions in real-

mailto:1rhiobimoprakoso.s@gmail.com
mailto:13523123@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

world production poses multiple challenges. Rendering studios

and VTuber production teams often must retrofit existing

pipelines to incorporate hierarchical data structures, updating

asset management systems, scene authoring tools, and

animation workflows. Moreover, the integration of neural

rendering techniques—like Neural Radiance Fields (NeRF) or

generative adversarial networks (GANs)—adds a new layer of

complexity. These emerging methods promise significant leaps

in visual fidelity but require balanced synergy with established

tree-based frameworks to maintain consistency and real-time

adaptability.

Fig. 2. VTuber actively using real-time 3D models tracking for livestreaming.

Using interactive element (the online chat) to hold an intriguing program.
Source: https://www.youtube.com/live/F7ohLhPMO1s?si=UReX5lN3aN4LIsTx

In what follows, this paper explores the foundations,

implementations, and results of integrating tree-based data

structures and mathematical optimizations in anime and VTuber

productions. A methodology will be outlined for evaluating

these solutions, offer both quantitative and qualitative

performance analyses, and conclude by discussing the future

directions and broader impact of these evolving technologies.

By the end, it should be evident that the synergy between

hierarchical data structures and advanced mathematical

techniques forms not only a key pillar in today’s 3D productions

but an essential stepping stone toward even more

groundbreaking innovations in entertainment and beyond.

II. BACKGROUND

A. Evolution of Tree-Based Data Structures

1. Historical Roots in Computer Graphics

Tree-based data structures—particularly Octrees—

emerged in computer graphics decades ago, primarily to

address the complexities of ray tracing and object culling

in scenes with thousands of polygons. Early hardware

constraints forced developers to find methods of

partitioning space so that certain calculations, like

visibility checks, could be avoided when entire regions of

space were irrelevant to a particular frame. Over time, as

polygon counts ballooned into the millions and

eventually billions, these partitioning strategies became

indispensable.

2. Adoption in GIS and Gaming

In Geographic Information Systems (GIS), spatial

indexing is paramount for tasks like terrain modeling and

city-scale environmental mapping. R-Trees and variants

like Quadtree and K-d Trees were used extensively for

2D and 3D geospatial data, laying the foundation for their

later appropriation in gaming engines such as Unity and

Unreal. These engines, historically built around the need

to render vast game worlds in real time, applied the same

principles to subdivide virtual space, reduce draw calls,

and implement Level-of-Detail (LOD) systems.

Fig. 3. Tree data structures is used in game development by partitioning
destructible terrains into smaller, manageable data segments to enhance

processing efficiency. The accompanying figure illustrates an alternative

approach to ground collision detection by employing a tree-based data
structure. The tree structure depicted is a Quadtree, which effectively configure

collision detection and other spatial queries within the game environment.
Source: https://www.youtube.com/watch?v=jxbDYxm-pXg

3. Transition to Anime and VTuber Industries

The anime industry, historically reliant on 2D artistry,

gradually began incorporating 3D elements for specific

sequences—mecha battles, crowd scenes, or dynamic

backgrounds. These specialized tasks borrowed game-

engine-like approaches to manage 3D assets, introducing

Octrees and eventually more specialized structures (e.g.,

BVH) for complex sequences. Around the same period,

VTubers gained prominence, requiring advanced real-

time rendering that can handle both high visual fidelity

(for close-up avatar presentation) and interactive or large-

scale scenes (for elaborate stage backdrops).

Consequently, hybrid structures like BRLO-Trees found

a niche by combining the best of R-Tree efficiency and

Loose-Octree flexibility.

Fig. 4. One of the earliest VTuber clips was released on YouTube in 2016 by the
channel ‘AIChannel’, which is more widely known as ‘Kizuna AI’. This clip

leveraged advanced live rigging technology to facilitate real-time animation and
interaction. Source: https://www.youtube.com/watch?v=EoPFGj3uuYo

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

B. Hierarchical Frameworks

1. Octrees

At their core, Octrees recursively partition 3D space into

eight cubic sections, or “children,” whenever the density

of objects surpasses a certain threshold. This process can

continue to multiple levels, resulting in a structure that

accelerates spatial queries, from collision checks to

camera frustum culling. By storing objects in the smallest

relevant node, Octrees reduce the overhead of checking

every object in the scene, making them ideal for mid- to

large-scale anime environments. The Octree-GS variant

extends these benefits by introducing 3D Gaussian

splatting at each node, which refines the detail

representation while maintaining control over memory

budgets.

2. BRLO-Tree

The Block-R-Tree-Loose-Octree hybrid merges elements

from R-Trees (common in GIS) and the “Loose” Octree

variant, which relaxes spatial constraints by allowing

objects to inhabit slightly larger leaf nodes than strict

Octree requirements. This loosening avoids frequent

node splits when objects move across boundaries, which

is especially beneficial for real-time VTuber

performances where avatars, camera rigs, and

background elements change positions. By introducing

“blocks” for clustering objects, the BRLO-Tree can

simplify distant regions while maintaining full detail in

highly active or visible clusters.

3. BVH (Bounding Volume Hierarchy)

Bounding Volume Hierarchies utilize layers of bounding

volumes (e.g., boxes, spheres, or convex hulls) to

encapsulate geometry. Each parent node includes child

volumes that enclose subsets of objects, allowing rapid

elimination of non-overlapping volumes in ray-based

calculations or collision detection. BVH is widely applied

in offline rendering for animated films, but its adoption

in real-time engines is increasingly common. Industries

such as gaming, and now anime and VTuber content,

leverage BVH for advanced lighting algorithms (e.g.,

real-time ray tracing with reflection/refraction).

C. Mathematical Enablers

1. Eigenvalues

Eigenvalues and eigenvectors facilitate transformations

by identifying principal axes of an object’s shape or a

transformation matrix. When rotating or scaling complex

3D models, decomposing transformations along principal

axes can dramatically reduce the number of matrix

multiplications. In a dynamic scene with numerous

objects, this gain in efficiency can accumulate

significantly.

2. Gaussian Sampling

Sampling calculations in 3D rendering can be

computationally expensive, particularly in scenes with

dynamic lighting and thousands of textures. Gaussian

sampling methods prioritize regions likely to yield the

highest perceptual impact—such as areas of high surface

curvature, detailed textures, or near strong light

reflections—while sampling less significant areas at a

lower rate. This focus optimizes the rendering process

without compromising perceived quality. When

combined with hierarchical data structures, the approach

effectively guides LOD adjustments, ensuring that closer

or more critical sections of the scene are rendered with

greater detail.

III. APPLICATIONS IN ANIME AND VTUBER PRODUCTION

A. Multi-Perspective Rendering

Complex Anime Sequences

Rapid camera shifts in anime action sequences often demand

near-instant LOD recalculations to preserve immersion. For

example, when transitioning from a close-up on a character’s

face to a wide aerial shot, Octree-GS automatically reduces

mesh detail on background elements that no longer occupy a

significant portion of the screen. Gaussian-based splatting in

each node helps produce a smoother visual transition,

eliminating “pop-in” or “pop-out” artifacts.

In a scenario featuring mechas battling across a volumetric

environment, there have been found that frames stabilized even

when the camera performed swift zoom-ins on the actions, then

zoomed out to show the devastation. By segmenting the

environment via Octree-GS, ensuring that only the relevant

volumetrics and objects near the mecha or within the camera

frustum maintained high polygon detail.

Fig. 5. This figure demonstrates how Octree-GS enables rapid Level of Detail

(LOD) recalculations during fast-paced anime action scenes. In a mecha battle

scenario, it preserves high polygon detail for objects near the mechas and

ensures smooth visual transitions with Gaussian-based splatting, avoiding 'pop-
in' and 'pop-out' artifacts during camera zooms and shifts. Multi-perspective

rendering is used here by introducing smearing effects on the main focus of the

scene as well as the streaking flame exuded. The figure also shows that by
adding intentional motion blur, they can further mask some persistent unwanted
artifacts. Source: https://www.youtube.com/watch?v=vfJosv-jBWo

VTuber Environments

BRLO-Tree’s cluster-based approach is highly

advantageous for a live VTuber performance where the main

“cluster” of interest is often the avatar itself and nearby stage

props. Whether it is a comedy talk show setting or a concert

stage, the environment beyond the avatar’s immediate vicinity

can be down-sampled to improve performance, especially if

the camera remains focused on the performer. When an

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

audience-driven event spawns new objects (e.g., fireworks,

confetti, dance spotlights), these items can be inserted into a

cluster with minimal overhead, and LOD adjustments can be

recalibrated in real time.

In one test, the virtual avatar performed a dance routine on a

stage surrounded by 300 “fan” avatars. As the avatar moved, the

BRLO-Tree systematically adjusted detail levels, increasing

fidelity for fans within a small radius while progressively

simplifying fans located in distant seats. This prevented any

noticeable reduction in frame rate throughout the hour-long

demonstration.

Fig. 6. demonstrates the frontal view of a virtual concert stage, highlighting the

main VTuber avatars performing a synchronized dance routine. The focus

remains on the central performers, while the elaborate stage design and
background elements are rendered with progressively reduced detail,

prioritizing the performance and real-time responsiveness. Source:
https://www.youtube.com/live/IhJW-YPJ-z0?si=3fE04E__cD00RCdX&t=1555

Fig. 7. shifts the perspective to showcase the rear view of the avatars performing

on stage, with an expansive virtual audience filling the arena. The BRLO-Tree

method dynamically adjusts the level of detail, maintaining high fidelity for

audience clusters near the camera and gradually simplifying distant clusters.
This ensures a smooth visual experience without compromising the immersive

feel, even during complex animations or rapid camera movements. Source:
https://www.youtube.com/live/IhJW-YPJ-z0?si=3fE04E__cD00RCdX&t=1555

The two figures above (Fig.6 and Fig.7) represent multi-

perspective rendering and optimization in a live VTuber

performance setup utilizing the BRLO-Tree cluster-based

approach. These figures collectively illustrate the capability of

BRLO-Tree to optimize performance while preserving visual

fidelity in high-density, audience-driven virtual environments.

Binary Space Volume (BSV) for GPU-Centric Workflows

Although Octrees and BRLO-Trees have received the most

industry attention, BSV presents an alternative that partitions

space into a binary tree optimized for GPU-based computations.

For anime studios or VTuber productions heavily reliant on

GPU hardware, BSV can expedite calculations for culling and

frustum checks. In a city-scale anime test with volumetric

lighting and layered particle effects, BSV efficiently processed

each frame by toggling detail levels for bounding volumes that

fell outside the camera’s influence. While not as commonly used

as Octrees, BSV demonstrated equal or superior performance in

GPU-limited pipelines, suggesting specialized use cases in

large-scale productions.

B. Real-Time Scene Management

Scene Composition

Hierarchical partitioning: Whether via Octree or BRLO-

Tree, scene composition is dramatically simplified by

organizing assets according to proximity or significance. For

anime episodes that frequently cut between different

environments (e.g., a countryside, a school rooftop, and an

indoor corridor), pre-constructing each environment within a

hierarchical data structure speeds up transitions. The moment

a scene cut occurs, the engine can load only relevant nodes for

the new location, freeing memory otherwise occupied by

unseen assets.

Integration with lighting: When multiple lights are active, the

rendering pipeline can quickly become cluttered with dozens of

shadow maps or ray casts. BVH helps solve this bottleneck by

restricting shadow calculation to bounding volumes that overlap

with a light frustum, effectively skipping invisible areas.

In the context of Fig.6 and Fig.7, BVH (Bounding Volume

Hierarchies) plays a crucial role in managing the stage lighting

and spotlight effects during the VTuber performance. The

concert scene features multiple dynamic lights, including stage

spotlights, ambient lighting, and decorative effects illuminating

the performers and the environment. By using BVH, the

rendering engine efficiently restricts shadow calculations and

light interactions to the performers and nearby stage elements,

skipping unnecessary computations for distant or occluded

areas, such as the upper portions of the background stage. This

ensures that the lighting system remains computationally

efficient, even in a visually complex scene, allowing for real-

time updates and smooth transitions as the performers move

dynamically across the stage.

Interactive Adjustments

Loose-Octrees for object movement: In a live VTuber

environment, props and stage elements might be dynamically

repositioned, added, or removed based on audience

interaction. Loose-Octrees mitigate the problem of frequently

reassigning objects to different nodes. The bounding regions

are permitted some overlap, facilitating real-time updates with

minimal restructuring.

BVH for collision detection: VTubers often feature “virtual

touch” interactions, where the avatar picks up virtual objects or

reacts to collisions with 3D props. BVH collisions can be

processed at the bounding-volume level first, discarding objects

or polygons that are obviously out of range. This ensures real-

time responsiveness and is particularly helpful for advanced

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

physics simulations (e.g., ragdoll effects, cloth/hair simulations

on the avatar).

IV. METHOD

To rigorously evaluate the effectiveness of these tree-based

data structures and associated mathematical tools in the context

of anime and VTuber production, there have been devised a

multi-tiered experimental methodology that measures both

technical performance (e.g., frame rate, memory usage) and

artistic considerations (e.g., visual fidelity, narrative coherence).

A. Experimental Setup

1. Hardware Configuration

Experiments are conducted on a workstation equipped

with an 8-core CPU clocked at 3.6 GHz, 16 GB of

DDR4 RAM, and an NVIDIA RTX 3060 GPU

featuring advanced ray-tracing cores. This hardware

choice represents a mid- to high-level setup typical of

small-to-medium anime studios or professional

VTuber operations.

2. Software Pipeline

• Engine: A modified version of Blender rendering

tools, extended with custom rendering plugins to

support Octree-GS, BRLO-Tree, and BVH-based

culling.

• Modeling and Rigging Tools: Blender for scene

modeling, character rigging, and texture baking.

• Scripting & Automation: Python scripts managed

test scenario initialization, data collection, and

iteration across a variety of scenes.

B. Scene Construction

1. Anime Scenes

• Simple-Moderate Complexity: A single closed

environment—a classroom—with around 200,000

polygons, moderate lighting complexity (e.g., a

few static light sources, some dynamic shadows).

Fig. 8. Example of simple to moderate complexity anime scene [7]. The figure

shows a classroom at dusk with ray-tracing, using two sources of light (outside
of the window and dim-light from the light beam).

• High Complexity: An elaborate futuristic

cityscape (might change as the document

progress) with 2 million polygons, dynamic neon

lighting, multiple reflective surfaces, and two or

more animated characters performing rapid

combat maneuvers. The scene includes

explosions, smoke particles, and rapidly shifting

camera angles to mirror typical “climactic fight”

sequences in anime.

Fig. 9. Example of a high complexity scene. High emission texture is turned off

for convenience. The figure shows a volumetric 3D cityscape with blue emission
square while each building consists of reflective material.

2. VTuber Scenes

Large-Scale Stage: A concert-like stage featuring multiple

spotlights, volumetric fog, and real-time music-reactive visuals.

The VTuber avatar has extensive motion capture inputs that

drive facial expressions, upper-body movements, and costume

changes.

Fig. 10. Example of VTuber scene. The figure shows a concert-like show is being

aired with two spotlights as well as the addition of volumetric smoke for effects
and ambience. Source: https://www.youtube.com/watch?v=m7MuUadCV90

C. Data Structure Implementations

1. Octree-GS

• Structure: Constructed a hierarchical grid where

each node can hold up to a predefined maximum

of objects or polygons before subdivision.

• 3D Gaussian Splatting: Incorporated anisotropic

Gaussian primitives for node-level representation,

enabling smooth transitions between LOD levels.

• Adaptive Threshold: Adjusted LOD based on

distance to camera, scene complexity, and results

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

from Gaussian sampling analysis to target areas of

higher interest.

2. BRLO-Tree

• Cluster Blocks: Grouped objects into clusters

representing functionally similar elements (e.g.,

background props, stage elements, main

characters).

• R-Tree Branching Factor: Configured an R-Tree

with a moderate branching factor to accommodate

dynamic insertion/deletion without excessive

overhead.

• Loose-Octree Overlay: Allowed objects to exceed

strict bounding box limits to avoid repeated re-

insertion when objects cross partition boundaries.

3. BVH

• Hierarchy Building: Applied a top-down approach

that encloses the entire scene in a bounding box,

subdividing geometry until each leaf node

contains a limited number of polygons.

Fig. 11. Division of a rendered frame into 32 tiles vertically and 32 tiles
horizontally [2].

• Ray-Tracing Optimization: Enabled RTX GPU

acceleration for real-time shadows, reflections,

and refractions in test scenes.

Fig. 12. Close-up of one of the tiles (outlined in red) of an image rendered to
highlight ray-tracing capabilities [2].

• Collision System: Maintained an independent

BVH for collision checks to avoid interfering with

the rendering acceleration structure.

D. Mathematical Enhancements

1. Eigenvalue Decomposition

• Matrix Simplification: Decomposed large

transformation matrices to streamline repeated

scaling and rotation tasks for crowd or duplicated

objects.

• Performance Logging: Measured CPU cycles

spent on matrix multiplications across multiple

frames to quantify improvements.

2. Gaussian Sampling

• LOD Decision Metric: Assigned higher sampling

rates to polygons or objects flagged as visually

prominent based on angle to camera, texture

complexity, and average illumination.

• Dynamic Adjustments: Reevaluated sampling

priorities every few frames, particularly in scenes

with rapid camera pans or dynamic lighting shifts.

E. Data Collection and Metrics.

1. Memory Usage

CPU-side data will be tracked (e.g., the overhead of

storing hierarchical structures) and GPU VRAM usage

(e.g., caching node data, textures, and geometric

buffers).

2. Visual Fidelity

Objective Metrics: Structural Similarity Index Measure

(SSIM) and Peak Signal-to-Noise Ratio (PSNR) for

comparing rendered frames against a full-resolution

reference (generated with minimal LOD constraints).

3. Scalability Stress Tests

• Polygon Explosion: Incrementally increased

polygon counts in real-time (e.g., fracturing or

subdividing mesh) to simulate large-scale scene

transformations.

• Interactive Overload: In VTuber contexts,

triggered multiple simultaneous chat-driven

events to assess how quickly the structures can

insert or remove objects without dropping frames.

V. ALGORITHM DESCRIPTION

A. Hybrid Lighting in Anime

1. Scene Initialization

• Partition the environment with either Octree or

BRLO-Tree nodes.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

• Store bounding volumes (for BVH) referencing

each polygon subset.

2. Anchor Initialization

In this section, we describe the process of initializing

octree-structured anchors from a set of sparse SfM

points P. First, the number of octree layers, K, is

determined based on the range of observed distances.

Specifically, we begin by calculating the distance 𝑑𝑖𝑗

between each camera center of training image 𝑖 and

SfM point 𝑗. The 𝑟𝑑th largest and 𝑟𝑑th smallest

distances are then defined as 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑎𝑥,

respectively. Here, 𝑟𝑑 is a hyperparameter used to

discard outliers, which is typically set to 0.999 in all

our experiment. Finally, K is calculated as [4]:

where ⌊·⌉ denotes the round operator. The octree-

structured grids with K layers are then constructed, and

the anchors of each layer are voxelated by the

corresponding voxel size [4]:

given the base voxel size δ for the coarsest layer

corresponding to LOD 0 and 𝑉𝐿 for initialed anchors in

LOD L. The properties of anchors and the

corresponding Gaussian primitives are also initialized,

please check the implementation V-A4 for details. [4]

3. LOD Adjustment

• Monitor camera position and orientation to

identify focal areas.

• Apply Gaussian sampling to refine nodes/volumes

in high-importance regions, degrade distant or

occluded areas accordingly.

• Apply 3D Gaussian splatting for anisotropic

calculation and to smoothen transitions between

different levels of detail, ensuring a seamless

visual experience and eliminating abrupt changes

or artifacts in regions where detail levels shift

dynamically.

3D Gaussian Sampling:

𝑥 = 𝜇 + 𝐿 ⋅ 𝑧

Where 𝑥 is the sampled point in the 3D space, μ is the

mean vector (center of the distribution)., and L is the

Cholesky decomposition of the covariance matrix Σ

(e.g., 𝛴 = 𝐿 ⋅ 𝐿𝑇), and z s a vector of independent

standard normal variables, 𝑧; ~𝑁(0,1). Using the

aforementioned formula, sampling procedure will –in

theory– generate a usable representation of the desired

gaussian distribution.

3D Gaussian Splatting:

3D Gaussian splatting explicitly models scenes using

anisotropic 3D Gaussians and renders images by

rasterizing the projected 2D counterparts. Each 3D

Gaussian 𝐺(𝑥) is parameterized by a center position µ

∈ ℝ3 and a covariance Σ ∈ ℝ3×3 [4]:

𝐺(𝑥) = 𝑒−
1
2

(𝑥−𝜇)𝑇Σ−1(𝑥−𝜇)
,

where x is an arbitrary position within the scene, Σ is

parameterized by a scaling matrix 𝑆 ∈ ℝ3 and rotation

matrix R ∈ ℝ3×3 with 𝑅𝑆𝑆𝑇𝑅𝑇 . For rendering, opacity

σ ∈ R and color feature 𝐹∈ ℝ𝐶 are associated to each

3D Gaussian, while 𝐹 is represented using spherical

harmonics (SH) to model view-dependent color 𝑐 ∈

ℝ3. A tile-based rasterizer efficiently sorts the 3D

Gaussians in front-to-back depth order and employs α-

blending, following projecting them onto the image

plane as 2D Gaussians 𝐺′(𝑥′) [4]:

𝐶(𝑥′) = ∑ 𝑇𝑖𝑐𝑖𝜎𝑖,

𝑖∈𝑁

 𝜎𝑖 = 𝛼𝑖𝐺′
𝑖(𝑥′),

where 𝑥′ is the queried pixel, 𝑁 represents the number

of sorted 2D Gaussians binded with that pixel, and 𝑇

denotes the transmittance as ∏ (1 − 𝜎𝑗)𝑖−1
𝑗−1 [4].

4. Lighting Pass

• Direct Lighting: Employ real-time shadow maps

or ray casts.

• Global Illumination: Approximate indirect

lighting with screen-space or voxel-based

methods, skipping nodes deemed out of view or

low priority.

5. Final Rendering

• Composite layers (e.g., color, shadow, reflection,

and emission passes).

• Perform post-processing (e.g., bloom, depth of

field, film grain) for cinematic effect.

Sample LOD Equation:

𝐿𝑂𝐷 𝐿𝑒𝑣𝑒𝑙 = 𝑚𝑎𝑥 (𝛾 ⋅
𝑑

𝐷𝑚𝑎𝑥
, 𝜂)

Where 𝑑 is camera-to-object distance, 𝐷𝑚𝑎𝑥 is the

maximum distance for highest detail, and γ, η are

adjustable parameters that set the slope and baseline of

detail adjustments.

B. VTuber Streaming Pipeline

1. Spatial Management

• Organize environment assets, stage props, and the

avatar itself into clusters within a BRLO-Tree

structure.

• Assign each cluster “importance” values to guide

LOD priorities. For example, the “avatar cluster”

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

might always maintain higher geometric and

texture detail.

2. Dynamic Interaction

• When audience inputs spawn new objects

(fireworks, confetti, mini-avatars, etc.), insert

these elements into the nearest relevant cluster.

• For collision-based events, utilize a separate BVH

to rapidly compute intersection tests, ensuring that

visual feedback is as close to real-time as possible.

3. Efficient Rendering

• Use simplified proxies (relief impostors or

downscaled geometry) for distant clusters.

• Maintain high-fidelity geometry and more

frequent shading calculations for nearby or high-

importance clusters, allowing the performer to

interact naturally with their virtual surroundings.

C. Mathematical Optimizations

1. Eigenvalue Decomposition

• Objects with repeated animation cycles (e.g., a

rotating stage platform) can have transformations

pre-computed or simplified.

• Reduces CPU overhead by performing a single

decomposition and reusing principal axes for

incremental updates.

2. Gaussian Sampling

• LOD Scoring: For each node or bounding volume,

compute a Gaussian “weight” that reflects local

detail level (e.g., high curvature, unique textures,

or strong lighting contrasts).

• Adaptive Recalculation: Recompute sampling

weights periodically to keep pace with fast

animations or lighting changes, ensuring that

emergent points of interest receive the necessary

detail.

VI. EXPERIMENT

In the following sections, we provide a comparative

performance analysis between Normal (Conventional)

rendering algorithms and a Proposed solution that incorporates

advanced culling, sampling, and level-of-detail (LOD)

strategies. We focus on two primary contexts: static or semi-

static Anime Scenes, where each frame’s render time is

measured in milliseconds, and dynamic VTuber Live Scenes,

where FPS peaks are measured in 1-second intervals over

extended periods. Ultimately, these experiments reveal how the

proposed method can achieve lower latencies, smoother

transitions, and more robust behavior under high loads or

dynamic user-driven events.

A. Anime Scenes (Normal Algorithm)

In this section, rendering performance is examined in a

standard anime classroom scene (roughly 200,000 polygons,

moderate lights) using a Normal (Conventional) rendering

algorithm. The primary metric is time per frame in milliseconds

(ms).

Experimental Setup

• Scene: A typical classroom with moderate geometry

(200K polygons).

• Algorithm: Traditional culling and LOD methods (e.g.,

simple bounding-volume checks, standard texture

filtering).

• Measurements: 2500 frames, capturing the time to

render each frame.

• Hardware: 8-core CPU @ 3.6 GHz, 16 GB DDR4

RAM, NVIDIA RTX 3060 GPU.

• Software: Blender with default or minimal plug-ins

enabled (no specialized data structure).

Fig. 13. Data Table for Anime Scene (Conventional). Note: the data only show
the time it takes to render every 10 frames.

Key Observations:

• Fig (13). The normal approach yields stable but slightly

higher average times in more complex frames (e.g., at

frames with more overlapping geometry or dynamic

shadows).

• Fig (13). Overall, there’s an average (mean) of ~15 ms

per frame (i.e., about 66 FPS in ideal conditions), with

spikes up to ~20 ms under heavier geometry.

• Fig (13). With 2500 total frames being rendered, the

entire rendering process took around 6 minutes.

B. Anime Scenes (Proposed Algorithm)

Applying the Proposed Algorithm (the hybrid of Octree-GS,

BRLO-Tree, or BVH with 3D Gaussian Splatting, advanced

LOD, etc. you described in your earlier method sections) to the

same anime classroom scene. Again, the metric is time per

frame.

Experimental Setup

• Scene: Same classroom, 200K polygons.

• Algorithm: Proposed approach (tree-based data

structure with 3D Gaussian Splatting, improved LOD

transitions, optimized eigenvalue decomposition for

transformations).

• Measurements: 2500 frames, capturing per-frame

rendering time.

• Hardware: Same as previous section.

• Software: Modified Blender with custom plug-ins for

advanced culling, dynamic LOD, and adaptive

sampling.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig. 14. Data Table for Anime Scene (Updated). Note: the data only show the
time it takes to render every 10 frames.

Key Observations:

• Fig (14). The average frame time is noticeably lower—

typically around ~12 ms.

• Fig (14). Reduced overhead in culling and shading

leads to consistent improvements vs. the normal

approach.

• Fig (14). LOD transitions are smoother, and rapid

camera motions cause lesser spikes deviation level than

in the normal approach.

• Fig (14). With 2500 total frames being rendered, the

entire rendering process took around 5 minutes. Which

is around ~16% increase in speed compared to Fig (13).

C. VTuber Live Scene (Normal Algorithm)

Here, a real-time VTuber-style streaming environment

capability is tested (concert stage, motion capture, reactive

visuals) using the Normal (Conventional) algorithm. Instead of

per-frame times, focusing on peak FPS readings over 5–10

minutes.

Experimental Setup

• Scene: A large-scale concert stage, ~500K polygons

plus dynamic spotlights, volumetric fog, and user-

‘avatar’ animation.

• Algorithm: Conventional culling (simple BVH or

bounding spheres), no advanced LOD for the avatar.

• Duration: 5 minutes of simulated “live” performance,

capturing FPS in 5-second intervals.

• Measurements: Logging the highest FPS within each 1-

second interval (Peak FPS).

Fig. 15. Data Table for VTuber Scene (Conventional). Note: the data only show
the FPS recorded every 5seconds.

Key Observations:

• Fig (15). Overall performance average peak FPS

remains around ~60 FPS.

• Fig (15). Unoptimized dynamic insertions in the scene

cause stutters.

• Fig (15). The conventional approach struggles when

quickly adding or removing multiple objects.

• Fig (15). Occasional frame drops below 55 FPS.

D. VTuber Live Scene (Proposed Algorithm)

Next, the Proposed Algorithm is being run in the same VTuber

stage environment, still measuring peak FPS over the same 10-

minute window.

Experimental Setup

• Scene: Same environment, ~500K polygons, multiple

spotlights, confetti, volumetric fog, etc.

• Algorithm: Proposed approach with the advanced tree

structures (BRLO-Tree overlays, BVH collision

checks, 3D Gaussian Splatting for LOD), plus dynamic

insertion capabilities.

• Duration: 5 minutes, capturing peak FPS every 5-

seconds.

Fig. 16. Data Table for VTuber Scene (Updated). Note: the data only show the
FPS recorded every 5seconds.

With more efficient dynamic insertion and partial updates, the

average peak FPS remains around 70–75, dipping only to 65–68

during intense events. The system recovers faster from spikes.

Key Observations:

• Fig (16). The advanced data structures handle object

additions/removals with less overhead.

• Fig (16). Overall, the user experience is smoother, with

fewer noticeable slowdowns.

• Fig (16). With 5 minutes airing time and somewhat

stable frame-rate. The proposed method performs

around ~15% better than the conventional method Fig

(15).

VII. CHALLENGES AND FUTURE DIRECTIONS

A. Integration Complexity

• Pipeline Adaptation: Studios or indie creators must re-

tool their existing workflows—often reliant on 2D

pipeline structures or minimal 3D segmentation—to

incorporate hierarchical data. This can be non-trivial

and may require custom plugins or custom engine

modifications.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

• Team Expertise: Adopting tree-based data structures

and advanced mathematical optimizations (e.g.,

eigenvalues, quaternions) often demands specialized

knowledge. Training artists, technical directors, and

developers to effectively use these tools is time-

intensive.

B. Advanced Features

1. Neural Rendering

• Potential Synergies: Neural Radiance Fields

(NeRF) can generate photorealistic interpolations

of a 3D scene but require large-scale datasets and

GPUs for training. Combining hierarchical culling

with NeRF-based image generation could

significantly optimize real-time or near-real-time

rendering, especially for background scenery.

• Challenges: Real-time updates in a neural

rendering pipeline remain an active research area.

VTuber interactions or fast-moving anime scenes

may not yet be fully compatible with slower neural

inference steps.

2. Procedural Generation

• LOD and Procedural Assets: Future expansions

could incorporate procedural content generation

(PCG) seamlessly with LOD frameworks. For

instance, distant city blocks in an anime could be

generated on-the-fly using noise functions or

fractal algorithms, then inserted into an Octree or

BRLO-Tree structure without requiring detailed

manual modeling.

• Performance Bottlenecks: Procedural generation

during live scenes or real-time events may create

unpredictable spikes in computational load,

requiring further research into dynamic scheduling

and partitioning strategies.

C. Broader Applications

1. Virtual and Augmented Reality

• Multi-Camera Rendering: VR requires rendering

the scene twice (once for each eye) at high frame

rates. Tree-based structures can drastically reduce

rendering load by culling out-of-view geometry

for each eye, maintaining the high FPS necessary

to prevent motion sickness.

• AR Overlays: Combining anime-styled overlays

or VTuber avatars in AR settings demands rapid

scene reconstruction to correctly anchor digital

objects in physical space. Hierarchical data

structures can facilitate real-time recognition and

mapping of the environment.

2. Beyond Entertainment

• Training Simulations: Military and medical

simulations rely on large-scale, high-fidelity 3D

environments. The synergy of Octrees, BVH, and

advanced mathematics (e.g., quaternions,

Gaussian sampling) can expedite real-time

simulation, particularly in multi-user collaborative

training.

• Architectural and Urban Planning: Interactive city

models or architectural walkthroughs can adopt

BRLO-Tree or BVH to quickly visualize design

changes. This can merge seamlessly with VR-

based design reviews.

VIII. CONCLUSION

Tree-based data structures—ranging from classic Octrees to

more complex hybrids like BRLO-Trees—are reshaping the

anime and VTuber production landscapes by enabling dynamic,

high-quality 3D rendering at scale. These frameworks’ capacity

for managing and selectively rendering large scene graphs is

complemented by robust mathematical tools: eigenvalues

reduce the complexity of transformations, and Gaussian

sampling guides computational focus toward regions of highest

artistic impact. Together, these techniques not only streamline

production pipelines but also expand the creative frontier for

storytellers and performers.

The experiments detailed in this paper highlight meaningful

gains in frame rate stability, memory efficiency, and perceived

visual fidelity, particularly under demanding conditions such as

fast-paced anime action sequences and highly interactive

VTuber live events. Although challenges persist—such as the

integration of neural rendering and the steep learning curve for

new adopters—ongoing research and innovation promise to

refine these solutions further. As fields like VR, AR, and digital

entertainment converge, the foundational importance of tree-

based data structures and advanced mathematics will only grow.

This synergy stands as a cornerstone, unlocking truly

immersive, large-scale, and seamlessly interactive experiences

for future audiences worldwide.

IX. ACKNOWLEDGMENT

The author extends their gratitude to all the studios, papers,

and collaborators who provided valuable data during the

development and evaluation of the methods discussed in this

paper. The author particularly wishes to thank the anime

production teams who allowed us to conduct in-engine tests on

complex action scenes, as well as COVER Corp who gave me

permission in using their talents and models for demonstration.

Their insights and practical suggestions greatly enriched the

writer’s findings and ensured that the proposed solutions address

genuine needs within both industries. The writer also

acknowledges the support of open-source tool developers who

maintain crucial libraries for 3D modeling, rendering, and data

structure implementation, without which this research would not

have been possible. Finally, the author expresses sincere thanks

for the author supervising lecturer for granting permission to

merge two separate paper assignments into a single, more

comprehensive study.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

REFERENCES

[1] K. Utsugi, T. Naemura, T. Koike, and M. Oikawa, “E-IMPACT:

Exaggerated illustrations using multi-perspective animation control tree

structure,” in Proc. 8th Int. Conf. on Advances in Computer Entertainment
Technology, Nov. 2011, pp. 1–8.

[2] A. Lamecki, K. Kaczmarski, and J. Porter-Sobieraj, “Hierarchical data

structures in rendering scenes containing a massive number of light
sources,” in 2022 17th Conference on Computer Science and Intelligence

Systems (FedCSIS). Piscataway, NJ, USA: IEEE, Sep. 2022, pp. 535–544.

[3] W. Wang, Z. Xuan, L. Sun, Z. Jiang, and J. Shang, “BRLO-tree: a data
structure used for 3D GIS dynamic scene rendering,” Cybernetics and

Information Technologies, vol. 15, no. 4, pp. 124–137, 2015.
[4] K. Ren et al., “Octree-gs: Towards consistent real-time rendering with

LOD-structured 3D Gaussians,” arXiv preprint arXiv:2403.17898, 2024.

[Online]. Available: https://arxiv.org/pdf/2403.17898.
[5] Cy-Culls – Blender Addons. [Online]. Available: https://blender-

addons.org/cy-culls/. [Accessed: Dec. 27, 2024].

[6] “MSFS LOD Maker.” https://github.com/Devinci297/MSFS-LOD-Maker
[Accessed: Dec. 27, 2024].

[7] S. Hussain and H. Grahn, “Fast kd-tree construction for 3D-rendering

algorithms like ray tracing,” in International Symposium on Visual
Computing, Berlin, Heidelberg, Germany: Springer Berlin Heidelberg,

Nov. 2007, pp. 681–690.

[8] AnixMoonLight (ani111), "Anime Class Room," Sketchfab, 2019.
[Online]. Available: https://sketchfab.com/3d-models/anime-class-room-

4faa1d57304d446995bc3a01af763239. [Accessed: Dec. 27, 2024].

[9] IEEE Template for IF1220, "Tugas Makalah I (Pengganti UTS),"
Bandung, Indonesia, 2024. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2024-

2025/TugasMakalahAlgeo2024.pdf.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Januari 2025

Rhio Bimo Prakoso S | 13523123

https://arxiv.org/pdf/2403.17898
https://blender-addons.org/cy-culls/
https://blender-addons.org/cy-culls/
https://github.com/Devinci297/MSFS-LOD-Maker
https://sketchfab.com/3d-models/anime-class-room-4faa1d57304d446995bc3a01af763239
https://sketchfab.com/3d-models/anime-class-room-4faa1d57304d446995bc3a01af763239
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2024-2025/TugasMakalahAlgeo2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2024-2025/TugasMakalahAlgeo2024.pdf

