
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

The Mathematics of Luck: Number Theory in the

Gacha System of Love and Deepspace

Bertha Soliany Frandi - 135230261

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1bertha,soliany@gmail.com, 13523026@std.stei.itb.ac.id

Abstract—This paper explores the implementation and analysis

of gacha systems in the context of "Love and Deepspace," focusing

on integrating number theory principles such as modular

arithmetic and probabilities. This study highlights the design and

functionality of gacha systems, demonstrating how they replicate

the dynamics of real-world gacha games within the limitations of

the Ren'Py engine. Additionally, the paper evaluates the

effectiveness of the implemented system through simulated results,

providing insights into the statistical behavior and user experience

of the gacha system. By examining the intersection of mathematics

and game design, this research underscores the importance of

mathematical principles in shaping interactive entertainment while

addressing the ethical and economic considerations surrounding

gacha mechanics.

Keywords—Gacha Systems, Number Theory, Otome Games,

Pseudorandom Number Generation.

I. INTRODUCTION

The charm of games has enchanted players all over the world.

This is particularly true for games that involve elements of

unpredictability and strategy. Among these, games that combine

gacha system and otome games hold a unique place in gamer’s

heartper. These types of games blend mathematics, storytelling,

and chance to create engaging experiences. This paper emerges

from the author’s fascination with these games. As a dedicated

player of both gacha and otome games, the intricate mechanics

and mathematical frameworks underpinning their design have

often sparked curiosity and inspired deeper investigation.

The word gacha is derived from the Japanese term for capsule

toy vending machine, gachapon. Gachapon itself is an

onomatopoeia where gacha is the sound of the turning in the

vending machine and pon is the sound that the capsule makes

when falling. Gacha systems employ probability-driven

mechanics that dictate outcomes ranging from acquiring rare

items to shaping narrative paths. These systems are

characterized by their reliance on randomized rewards, where

players expend in-game resources or real-world currency for a

chance to obtain desired items. The mechanics often involve

layered probability structures, such as pity systems and drop-

rate adjustments, which add complexity to the player’s decision-

making process. On the other hand, otome games are narrative-

driven experiences that center on romantic storytelling. These

games provide players with choices that influence the

progression and outcomes of the plot. When gacha mechanics

are integrated into otome games, they create a dynamic interplay

between statistical odds and emotional engagement,

encouraging players to strategize while immersing themselves

in the storyline. This blend of mathematical unpredictability and

narrative depth exemplifies how entertainment and intellectual

intrigue can coexist within modern gaming.

The urgency of this study stems from the increasing

prevalence of gacha systems across global gaming platforms and

their impact on player behavior, economics, and design ethics.

By examining the mathematical structures within these systems,

this paper aims to demystify their mechanics, fostering a greater

understanding of how probabilities and algorithms influence

player experiences. Furthermore, this exploration seeks to shed

light on the implications of these systems, particularly in

promoting responsible gaming and informed decision-making

among players.

The primary objective of this research is to bridge the gap

between mathematical theory and practical application within

the context of gacha systems and otome games. Through an

analysis of number theory, this study aspires to provide insights

into the design strategies that govern these games, emphasizing

their role in shaping player engagement. By doing so, this paper

contributes to the broader discourse on the integration of

mathematics in gaming, underscoring its significance as both an

art form and a discipline rooted in logic and chance.

II. THEORETICAL FOUNDATION

A. Number Theory

Number theory is devoted to the study of integers and integer-

valued functions. It is a branch of pure mathematics. Its

historical significance lies in its applications to cryptography,

coding theory, and the development of algorithms in computer

science. Fundamental concepts in number theory include

divisors, prime numbers, and modular arithmetic.

Prime numbers, defined as integers greater than one with no

divisors other than one and themselves, play a pivotal role in

modern cryptographic protocols and randomization algorithms.

These properties are crucial for creating secure and fair gacha

systems.

Modular arithmetic, which involves computations with

remainders, serves as the backbone of numerous cryptographic

algorithms, such as RSA encryption. The concept of greatest

common divisors (GCD) and the Euclidean algorithm further

enhance our ability to simplify and solve problems involving

mailto:1bertha,soliany@gmail.com
mailto:13523026@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

integers. To put it simply modular arithmetic is a system of

arithmetic for integers where numbers "wrap around" after

reaching a certain value, called the modulus. In gacha systems,

modular arithmetic underpins the Pseudorandom Number

Generators (PRNGs) that ensure fairness and unpredictability.

A Pseudorandom Number Generator (PRNG) is an algorithm

designed to produce sequences of numbers that appear random

but are generated deterministically using mathematical

formulas. One of the simplest and most widely used PRNGs is

the Linear Congruential Generator (LCG). LCG generates

numbers based on the recursive formula.

𝑋𝑛+1 = (𝑎𝑋𝑛 + 𝑐) 𝑚𝑜𝑑 𝑚

Parameter a is the multiplier, c is the increment, m is the

modulus, and Xn is the current number in sequence (or seed).

The modulus m ensures the output remains within a specific

range, while the constants a and c affect the quality of the

randomness and the length of the cycle before numbers start

repeating. PRNGs like LCG are computationally efficient and

ideal for simulations, gaming randomness, and other non-

cryptographic applications. However, because they are

deterministic and have limited periods, they are unsuitable for

high-security tasks like cryptography, where truly random or

cryptographically secure random numbers are required.

In number theory, probability and combinatorics is a relevant

topic. Number theory often intersects with probability in

calculating the likelihood of outcomes in gacha systems.

Understanding these principles helps quantify the odds of

obtaining rare items based on predefined drop rates.

Another critical aspect of number theory is its exploration of

congruences. The study of congruences, initiated by Carl

Friedrich Gauss, enables the development of efficient

algorithms for solving systems of linear and non-linear

equations over integers. Additionally, advanced topics such as

Euler’s totient function and Fermat’s Little Theorem provide

foundational tools for evaluating large modular exponentiations

in cryptographic systems. This body of work demonstrates how

number theory bridges abstract mathematical principles and

practical computational applications.

B. Gacha Games

One of many subgenres of mobile and video games is gacha

games. Gacha games employ a monetization mechanism

inspired by Japanese capsule toy vending machines. In gacha

games, players spend in-game currency to receive randomized

virtual items. The gacha system has evolved into a global

phenomenon, blending entertainment and monetization

strategies.

Common gacha models include “Standard,” “Limited-Time,”

and “Step-Up” banners, each offering varying probabilities of

acquiring high-value items or characters. Standard Gacha is the

most basic form where players roll for items with fixed

probabilities. Limited-time gacha offer exclusive rewards that

are only available during specific times. Step-Up gacha

increases rewards or higher probabilities for rare items as

players perform consecutive rolls.

To enhance player satisfaction, developers often incorporate

“pity systems” to guarantee rare items after a specific number of

attempts, addressing player frustration and promoting continued

engagement. There are “soft pity” and “hard pity”. A "soft pity"

system gradually increases the probability of obtaining rare

items, while a "hard pity" system guarantees a rare item after a

fixed number of pulls.

C. Love and Deepspace

“Love and Deepspace,” a next-generation otome game

developed by Infold Games, introduces groundbreaking

innovations in the genre of romantic visual novels. Set in a

futuristic universe, the game combines elements of space

exploration, political intrigue, battle systems, and complex

character relationships. Players assume the role of a

customizable protagonist navigating interstellar conflicts while

forming romantic bonds with a diverse cast of characters.

The game’s appeal is enhanced by its advanced graphics

engine, immersive storytelling, and integration of gacha

mechanics. Players collect in-game assets, such as costumes and

memories used for battle, by participating in gacha draws. The

gacha mechanics in "Love and Deepspace" include a system

where players can perform single summons or multi-summons

(typically ten at a time) to acquire memories. Each memory is

assigned a star rating, indicating its rarity and power, with

higher-starred memories being significantly rarer. Talking about

memory, memory is a character card that players can acquire.

Memory is used for the battle system that the players need to

accomplish to advance the story. To put it simply, a higher-

starred memory is required for the gameplay.

In Love and Deepspace, the gacha itself has the name of

Xspace Echo. This is a “Normal” banner with a hard pity of 70

pulls. In all gacha banners, 150 Diamonds (the in-game

currency) are needed for one single pull. So, the player needs to

have 1500 to do 10 pulls. Usually, for every banner, the rate for

memory is 92% for three-starred memory, 7% for four-starred

memory, and 1% for five-starred memory. For every 10 pulls,

it is guaranteed to obtain a four-star memory while for every 70

pulls, it is guaranteed to obtain a five-star memory. There is also

an indication that Love and Deepspace gacha systems have a

soft pity system, but this information is not yet to be official.

Through this theoretical framework, this paper builds a

foundation for analyzing how mathematical principles and

design strategies converge in the gacha systems of "Love and

Deepspace." The findings aim to contribute to the broader

understanding of gaming mechanics and player engagement.

III. IMPLEMENTATION

For the implementation of the gacha system, the author use

Ren’Py, a visual novel engine known for its flexibility and

simplicity. Ren'Py was chosen for this project because it

provides a suitable platform for simulating a gacha-like

experience while maintaining a balance between functionality

and accessibility. Although the resulting system cannot match

the visual and technical quality of real gacha games, it

effectively replicates the core mechanics and atmosphere. The

gacha system is built using a Pseudorandom Number Generator

(PRNG) alongside custom functions. These functions

implement both hard pity and soft pity systems, ensuring

fairness and replicating the reward dynamics typical of actual

gacha games.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

A. Pseudorandom Number Generators (PRNGs)

Fig. 3.1 PRNG Function (Source: Author).

The provided code implements a simple Pseudorandom

Number Generator (PRNG) using a Linear Congruential

Generator (LCG). It generates reproducible random sequences

based on the initial seed. a is a constant multiplier for the LCG

formula which determines the randomness properties. c is a

constant increment that ensures the generated sequence does not

become trivial (i.e., all zeros). m is the modulus which defines

the range of values generated by the LCG. In this case, m is set

to 232 which allows a large range of random values. seed is the

starting value of the random sequence. It is set based on the

current time (milliseconds). This ensures the seed remains

within the range defined by the modulus.

𝑠𝑒𝑒𝑑 = (𝑎 × 𝑠𝑒𝑒𝑑 + 𝑐) 𝑚𝑜𝑑 𝑚

This formula updates the seed to a new value based on the

multiplier, increment, and modulus. This formula is the core of

the LCG. The return value for the prng function is normalized

so the output is suitable for applications requiring a fractional

random value. The result of 𝑠𝑒𝑒𝑑 ÷ 𝑚 scales the generated

number to range between 0 to 1 (inclusive).

B. Drawing

The implementation of handling pulling results is the core of

a gacha system. For drawing, there are two Python functions and

one Ren’Py label. There is a function for an overall drawing

process and there is function for handling pity system alongside

drawing the memory one by one. The Ren’Py label is used for

showing the result that has been through the two Python

functions.

Draw function determines the results of pulls. After checking

if the player has enough resources to pull it then deduct the

balance that the player has. The function then loops through the

number of pulls and calls the other function for drawing,

draw_single, to determine the results of each pull. It also

simultaneously updates the flags (four_star_obtained,

five_star_obtained, and event_memory_obtained) based on the

tier and type of the obtained memory.

In the draw function, there are codes to ensure a few gacha

requirements. The first one is for guarantee four-star in 10 pulls.

If the player performs 10 pulls and no four-star memory was

obtained, the function will iterates through the results to replace

the first three-star memory with a randomly selected four-star

memory. The second requirement is for a guarantee five-star

memory in event banner. If the event pity count exceeds the

threshold (in this case 70) and no five-star memory was

obtained, it will reset the event_pity_count and replaces the first

three-star memory in the results with a five-star memory. Of

course there is also a checking for the previous five-star pull.

The last requirement that is check is for a guarantee five-star in

normal banner. The logic for this is similar to the event banner.

It check whether the player obtain a five-star when the pity count

equal to the pity threshold and then proceeding to switch a three-

star with a five-star if the player hasn’t obtain a five-star

memory.

So, the key features of draw function is a four-star guarantee

that ensure every 10 pulls include at least one four-star memory,

a event-specific guarantee that check if the previous five-star

was non-event, the next five-star is guaranteed to be an event-

specific memory, and lastly a five-star pity that guarantees a

five-star memory after reaching the pity threshold, with separate

logic for event and normal banners.

Fig. 3.2 draw Function (Source: Author).

The second function is draw_single. draw_single integrates

advanced gacha mechanics for generating random results with

varying probabilities. It handles the selection of a memory based

on tier probabilities, soft pity, and hard pity mechanics. It also

incorporates rules for event-exclusive banners, guarantees a

high-tier memory at specific thresholds, and dynamically adjusts

probabilities to simulate a realistic gacha system.

Fig. 3.3 Soft Pity Logic (Source: Author).

First, there are pity calculations. It determines the pity

counters based on the banner type. Second, there is soft pity

logic. It applies soft pity if the event banner’s pity count

surpasses the soft pity threshold. It then calculates an

incremental probability based on pity count.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig. 3.4 Random Selection Logic (Source: Author).

 After applying soft pity for the event banner, the function then

goes through a random selection logic. Rand_num generates a

random number between 0 and 100. It then iterates through

tier_probabilities to determine the probability of selecting each

tier. The probability for "Five-star" memories during the event

banner is adjusted using effective_five_star_probability. At the

end, it will select the first tier where rand_num is less than the

cumulative probability.

Fig. 3.5 Selecting Memory (Source: Author).

The code then retrieves all memories within the chosen tier and

uses PRNG to randomly select one memory.

The pity counters and hard pity logic comes at the end of the

function. The pity counters will increase the pity count and

guarantee_pity_count. guarantee_pity_count is used to track

every five-star that the player pulls in event banner. It also

updates previous_non_event flag.

For hard pity logic, it is used to guarantee a five-star memory

if the pity threshold is reached. For the event banner, it ensures

an event memory on every second pity and then reset it.

Otherwise, it includes both regular five-star and event memories

in the random selection. It then returns the selected memory as

the output of the draw_single function.

Lastly, there is Ren’Py label. The label pull in Ren’Py

implements the logic for handling a gacha pull in the game

where the player spends diamonds to obtain in-game

“memories.” The pull can return various types of results based

on probabilities with special handling for five-star and event

memories. This label interacts with the gacha system to

determine the results of the pull. The label pull orchestrates the

entire process of executing a gacha pull, from checking

affordability and determining the results to displaying visuals

and updating the player’s inventory. It provides special handling

for five-star and event memories, ensuring a satisfying visual

and auditory experience for the player.

Fig. 3.6 Ren’Py Code (Source: Author).

C. Other functions

Fig. 3.7 Complementary Function (Source: Author).

The provided image shows three functions that help the

implementation of gacha system. The first function can_afford

purposes if to check whether the player has enough coins (in this

case Diamonds) to perform a specified number of pulls. The

pulls parameter is the number of pulls the player wants to

perform. It multiplies the number of pulls by the cost per pull

and compares the result with the player's available coins. It is set

that every one pull cost 150 coins (the value of cost_per_pull).

The function then returns a boolean value (True or False).

Return True if the player can afford the pulls.

The second function, deduct_coins is for deducting the

appropriate amount of coins from the player's balance after

performing a certain number of pulls. The parameter for this

function is the same as the previous function. The logic for this

function is multiplying the number of pulls with the cost per pull

and subtracts the result from the player’s current coin balance.

This function does not return anything as it simply updates the

coins variable.

The third function is get_memory_tier. This function is for

determining the tier of a given memory. The parameter,

memory_name, is the name of the memory for which the tier is

being determined. This function iterates through the dictionary

memory_by_tier, where keys are tiers and values are list of

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

memory names belonging to those tiers. If the memory_name is

found in the list of memories for a tier, the function returns the

corresponding tier. If the memory_name is in the event_memory

list, it is considered a “Five-star” event memory. If the memory

is not found in any category, the function returns “Unknown”.

D. Memories and Tiers

As mentioned before, there is a dictionary of memories where

the keys are tiers, and the values are a list of memories. This

dictionary is an initialize data for normal banner. For the event

banner, the memories are initialized with a list of memories

because for this paper, the only tier for the event memory is a

five-star memory. There is also a dictionary for probability.

Here are the images for a clear picture.

Fig. 3.8 Initialized Probability (Source: Author).

Fig. 3.9 Initialized Memories 1 (Source: Author).

Fig. 3.10 Initialized Memories 2 (Source: Author).

IV. RESULTS

These are the results of the gacha system implementation

developed using Ren’Py. The outcomes demonstrate how the

implemented system simulates the mechanics of real-world

gacha games, including the functionality of hard pity and soft

pity systems. Screenshots and test outputs are provided to

illustrate the effectiveness of the Pseudorandom Number

Generator (PRNG) in producing randomized pulls and ensuring

fairness. Additionally, it highlights the user interface and

interactions withing the system, showcasing how the core gacha

experience was recreated, albeit with limitations compared to

commercial gacha games. These results validate the

functionality of the implementation and its ability to simulate a

compelling gacha-like environment.

A. Screenshots and Demonstration

These are the results for the interface using Ren’Py.

 Fig. 4.1 Choices (Source: Author).

Fig. 4.2 Pull Result (Source: Author).

Fig. 4.3 Pity Count for Normal Banner (Source: Author).

Fig. 4.4 Gacha Results Recap (Source: Author).

B. Distribution Table

100 pulls were simulated to assess the efficacy of the gacha

mechanism that was put into place. The findings were examined

to ascertain how results were allocated among various tiers and

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

to track how the pity system behaved. The method of

distribution of results is summed up in the table below:
Tab. 4.1 Distribution Table

Tier Percentage

(%)

Number of

Pulls

Expected

Probability (%)

Five-star 2 2 1 (normal) or 1 (event)

Four-star 18 18 6

Three-star 80 80 92

The following is a summary of the gacha simulation's

outcomes for 100 pulls on the event banner: Five-star memories

accounted for 2% (2 pulls), Four-star memories made up 18%

(18 pulls), and Three-star memories dominated with 80% (80

pulls). The results presented show minor differences from the

event banner's base probabilities because of the PRNG's

randomness. The slightly higher Five-star percentage (2%

compared to the combined base of 2%) and the higher

percentage of Four-star memories (18% compared to the base

6%) point to the impact of the soft pity system, which gradually

increases the odds of receiving higher-tier memories following

a string of failed attempts. There is also an influence for the four-

star in draw function where every 10 pulls guarantee a four-star

memory. Despite these variations, the overall distribution

reflects the expected behavior of the implemented gacha system,

confirming its alignment with typical gacha game mechanics.

Furthermore, the simulation data was represented through a

bar graph that illustrated the frequency of each tier. The graph

highlights the dominance of Three-star memories, consistent

with the defined probabilities, and the increased occurrence of

Four-star memories compared to the base probability, likely due

to natural random variation. While the frequency of Five-star

memories slightly exceeds the base probability, it aligns with

expectations given the limited sample size and the influence of

the soft pity system. These results validate the functionality of

the implemented gacha system, demonstrating its ability to

replicate key mechanics of a real-world gacha experience with

fairness and accuracy.

Fig. 4.5 Bar Graph (Source: Author).

V. CONCLUSION

This study has explored the integration of gacha systems in

"Love and Deepspace," focusing on the significance of number

theory in determining their functionality. By utilizing

mathematical concepts such as modular arithmetic and

probabilities, the implementation illustrates how these ideas

support fair and engaging game mechanics. The integration of

gacha mechanics in otome games like "Love and Deepspace"

reveals how statistical randomness can enhance narrative-driven

gameplay, creating immersive player experiences. Features such

as soft and hard pity systems emphasize the importance of

balancing randomness with predictability to sustain player trust

and enjoyment. This paper ultimately highlights the critical role

of mathematics in the design and refinement of gacha systems,

encouraging further exploration into their ethical, social, and

economic implications as these mechanics continue to evolve

within the global gaming industry.

VI. APPENDIX

The GitHub repository for source code can be accessed at

https://github.com/BerthaSoliany/makalah-matdis. There is also

a video explanation and demonstration that can be accessed at

https://youtu.be/OJpbWR1kIGs.

VII. ACKNOWLEDGMENT

The author would like to express gratitude to God for

providing strength and clarity, to the game development

community for their shared knowledge, and to Mr. Rila Mandala

for his guidance in Linear Algebra and Geometry. The author is

also grateful to InFold Pte. Ltd., the developers of Love and

DeepSpace, for creating a groundbreaking game that inspired

this study. Lastly, the author extends gratitude to the family for

the support and encouragement throughout this study.

REFERENCES

[1] R. Munir, Teori Bilangan. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/Teori%20Bila

ngan.pdf. [Accessed: Jan. 7, 2025]

[2] N. S. R. Wahyuni, Teori Bilangan. [Online]. Available:

https://eprints.hamzanwadi.ac.id/5712/1/18.%20Buku_Teori%20Bilanga

n.pdf. [Accessed: Jan. 7, 2025].

[3] GameRefinery, “The complete guide to mobile game gachas in 2022,”

[Online]. Available: https://www.gamerefinery.com/the-complete-guide-

to-mobile-game-gachas-in-2022/. [Accessed: Jan. 7, 2025].

[4] M. Grguric, “Gacha system in mobile games,” [Online]. Available:

https://www.blog.udonis.co/mobile-marketing/mobile-games/gacha-

system. [Accessed: Jan. 7, 2025].

[5] Otome Kitten, “Infold Games x Otomate: Interview on the next-gen otome

game Love and Deepspace,” [Online]. Available:

https://otomekitten.com/2024/01/21/infold-games-x-otomate-interview-

on-the-next-gen-otome-game-love-and-deepspace/. [Accessed: Jan. 7,

2025].

[6] LDPlayer, “Love and Deepspace game review: Gacha rates, battle guide,

otome dating sim,” [Online]. Available:

https://www.ldplayer.net/blog/love-and-deepspace-game-review-gacha-

rates-battle-guide-otome-datingsim.html. [Accessed: Jan. 7, 2025].

[7] Love and Deepspace Wiki, “Love and Deepspace Wiki,” [Online].

Available:

https://loveanddeepspace.fandom.com/wiki/Love_and_Deepspace_Wiki.

[Accessed: Jan. 7, 2025].

https://github.com/BerthaSoliany/makalah-matdis
https://youtu.be/OJpbWR1kIGs
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/Teori%20Bilangan.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi/Teori%20Bilangan.pdf
https://eprints.hamzanwadi.ac.id/5712/1/18.%20Buku_Teori%20Bilangan.pdf
https://eprints.hamzanwadi.ac.id/5712/1/18.%20Buku_Teori%20Bilangan.pdf
https://www.gamerefinery.com/the-complete-guide-to-mobile-game-gachas-in-2022/
https://www.gamerefinery.com/the-complete-guide-to-mobile-game-gachas-in-2022/
https://www.blog.udonis.co/mobile-marketing/mobile-games/gacha-system
https://www.blog.udonis.co/mobile-marketing/mobile-games/gacha-system
https://otomekitten.com/2024/01/21/infold-games-x-otomate-interview-on-the-next-gen-otome-game-love-and-deepspace/
https://otomekitten.com/2024/01/21/infold-games-x-otomate-interview-on-the-next-gen-otome-game-love-and-deepspace/
https://www.ldplayer.net/blog/love-and-deepspace-game-review-gacha-rates-battle-guide-otome-datingsim.html
https://www.ldplayer.net/blog/love-and-deepspace-game-review-gacha-rates-battle-guide-otome-datingsim.html
https://loveanddeepspace.fandom.com/wiki/Love_and_Deepspace_Wiki

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 7 Januari 2025

Bertha Soliany Frandi

