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Abstract— Optimizing routes and resources in the board game 

Ticket to Ride involves the application of graph theory and 

combinatorics. The game board is modeled as a graph, where cities 

represent nodes and routes correspond to edges, with attributes 

such as length and color capturing the gameplay mechanics. 

Combinatorics is used to evaluate probabilities of acquiring 

specific cards, enabling strategic decision-making under resource 

constraints. Python-based implementations simulate optimal 

strategies for completing destination tickets while balancing 

efficiency and feasibility. Analysis through study cases 

demonstrates the effectiveness of graph-based modeling and 

probabilistic evaluation in optimizing route planning, resource 

management, and decision-making under uncertainty, offering 

insights into strategic optimization in gaming and real-world 

applications. 

 

Keywords—Graph, Optimization, Resource Management, 

Ticket to Ride.  

 

 

I.   INTRODUCTION 

Ticket to Ride is a strategic board game where players 

compete to build the longest and most railway across the map. 

The game is played on a map featuring cities connected by 

railway paths and players collect and use train cards to claim 

these routes corresponding to the cards’ color. The main goal of 

the game is to score the highest points out of all players. Points 

can be gained by claiming railway routes between cities, 

completing destination tickets, and bonus from longest 

continuous path. However, points also can be lost when players 

cannot complete the destination tickets. The game concludes 

when a player’s train pieces are all used and the player with the 

highest points wins. 

 
Fig 1.1 Ticket to Ride board map 

Source: https://static.wikia.nocookie.net/ticket-to-

ride/images/e/e9/TTR.jpg/revision/latest?cb=20160918212901 

 

The mechanic of Ticket to Ride consists of drawing train 

cards, drawing destination tickets, claiming routes between 

cities and completing destination tickets. Players have to make 

decisions about which cities to connect, which destination 

tickets to prioritize, and when to draw train cards or new 

destination tickets. This decision-making process reflects real-

world resource allocation and route optimization problems. 

Players must carefully balance their resources such as train cards 

to maximize their points while also blocking or competing with 

other players. 

This paper explores the optimization of routes and resources 

in the game Ticket to Ride, applying concepts from graph and 

combinatorics theory to analyze and improve the strategic 

elements of the game. The cities and railways can be represented 

as graph, with cities as nodes and railways as edges, making 

graph theory is the ideal framework to model the game. The 

optimization of routes focuses on efficiently connecting cities 

while minimizing resources use. On the other hand, 

combinatorics helps players evaluate many possible 

combinations of routes and the chances of getting the resources 

that players need, assisting in the decision-making process for 

optimal gameplay. This paper aims to demonstrate how these 

mathematical concepts can enhance the understanding of 

strategy and resource management in Ticket to Ride. 
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II.  THEORETICAL BASIS 

A. Graph 

Graph is a data structure consisting of nodes (vertices) and 

edges that connect the nodes. Graphs are used to represent 

discrete objects and the relationship between them. Graph is 

formally defined as 𝐺 = (𝑉, 𝐸), where G is graph, V is set of 

vertices that are not empty, and E is set of edges. 

Graphs can be distinguished into two types based on the 

presence of loops or multiple edges: 

1. Simple Graph: A graph that does not have multiple edges 

or loops. 

2. Non-simple Graph: A graph that has multiple edges or 

loops. It can be further divided into: 

a. Multigraph: A graph containing multiple edges. 

b. Pseudograph: A graph containing loops. 

 

 
Fig 2.1 G1 is a simple graph, G2 is a multigraph, G3 is a 

pseudograph 

Source: [1] 

 

Furthermore, based on their orientation, graphs can also be 

classified into two types: 

1. Undirected Graph: A graph that does not have 

directional orientation. 

2. Directed Graph: A graph where each edge connecting 

nodes has direction. 

 
Fig 2.2 G1 is an undirected graph, G2 is a directed graph 

Source: [1] 

 

Some terminologies in graph theory: 

1. Adjacency: Two nodes in a graph are said to be adjacent 

if they are connected by at least one edge. 

2. Incidency: An edge in a graph is said to be incident to 

nodes a and b if it connects them. 

3. Degree: The degree of a node is the number of edges 

incident to that node. 

4. Path: A path is a sequence of nodes and edges that 

connects the starting node to the destination node. 

5. Cycle: A cycle is a path that starts and ends at the same 

node. 

6. Connected: Two nodes are said to be connected if there 

is a path connecting them. 

7. Weighted Graph: A weighted graph is a graph that has 

specific values or weights on each edge connecting the 

nodes. 

 
Fig 2.3 Weighted graph example 

Source: [1] 

 

B. Combinatorics 

Combinatorics is a branch of mathematics that focuses on the 

study of counting, arrangement, and combination of objects. It 

provides foundational principles and techniques necessary for 

solving problems related to discrete structures. Combinatorics is 

essential in various fields, including computer science, statistics, 

and optimization, as it helps analyze the possible configurations 

of a set of items. The primary focus of combinatorics is to 

determine how many ways a certain arrangement or selection 

can be made, often without the need to enumerate all possible 

outcomes explicitly. 

A permutation refers to an arrangement of objects in a specific 

order. This concept is crucial in combinatorics, as it allows us to 

count the number of ways to arrange a set of distinct items. The 

total number of permutations of n distinct objects is given by n!, 

which is the product of all positive integers up to n. For example, 

if we have three distinct objects, say A, B, and C, the 

permutations can be listed as follows: ABC, ACB, BAC, BCA, 

CAB, and CBA. Thus, the number of permutations of these three 

objects is 3! = 6. 

When determining the number of ways to arrange r elements 

selected from a total of n distinct elements, the formula for 

permutations of r from n, denoted as P(n,r), is used. The formula 

is given by: 

𝑃(𝑛, 𝑟) =  
𝑛!

(𝑛 − 𝑟)!
 

This formula calculates the number of ways to choose r elements 

from n and arrange them in order. For instance, if there are 5 

distinct books and the goal is to find how many ways 3 of them 

can be arranged on a shelf, the calculation would be as follows: 

𝑃(5,3) =  
5!

(5 − 3)!
=

5!

2!
= 60. 

In contrast, a combination refers to a selection of items from 

a larger set where the order of selection does not matter. This is 

in contrast to permutations, where the arrangement is 

significant. The number of ways to choose r elements from a set 

of n elements is denoted as C(n,r) or (
𝑛
𝑟

), and is calculated using 

the following formula: 

𝐶(𝑛, 𝑟) =  
𝑛!

𝑟! (𝑛 − 𝑟)!
 

This formula accounts for the fact that the order of selection is 

irrelevant by dividing the total permutations by the number of 



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

ways to arrange the selected items. For example, if the task is to 

select 2 fruits from a basket of 5 different fruits, the number of 

combinations can be calculated as: 

𝐶(5,2) =  
5!

2! (5 − 2)!
=

5!

2! 3!
= 10. 

 

C. Hypergeometric Probability Distribution 

The hypergeometric probability distribution is a discrete 

probability distribution that describes the likelihood of drawing 

a specific number of successes in a sequence of draws from a 

finite population without replacement. This distribution is 

particularly useful in scenarios where the population can be 

divided into two distinct categories, such as success and failure, 

and where the draws are made without replacement, meaning 

that the composition of the population changes with each draw. 

The probability mass function (PMF) of the hypergeometric 

distribution is given by: 

𝑃(𝑋 = 𝑘) =
(

𝐾
𝑘

) (
𝑁 − 𝐾
𝑛 − 𝑘

)

(
𝑁
𝑛

)
 

In this formula, P(X=k) represents the probability of obtaining 

exactly k successes, while N is the total number of items in the 

population, K is the total number of successes in the population, 

n is the number of draws, and k is the number of observed 

successes. 

 

 

III.   IMPLEMENTATION 

A. Limitations 

The proposed implementation for optimizing routes and 

resources in the Ticket to Ride board game effectively models 

the game mechanic and provides insightful information. 

However, it operates under certain limitations. First and 

foremost, the optimization framework assumes a single player 

environment, disregarding another player’s actions and 

strategies. In a multiplayer game, opponents can claim critical 

routes and/or block routes which result in altering the 

availability of optimal routes. The model does not account for 

this dynamic element which is important to the real-world 

gameplay experience. 

Additionally, the implementation assumes that players will 

always have the option to draw the exact cards they require over 

several turns. While the hypergeometric probability distribution 

provides a statistical estimation of card-drawing probabilities, it 

simplifies the complex interplay of chance and strategic card 

selection in the actual game. Furthermore, the framework does 

not consider the potential benefits of diversifying route options 

or prioritizing flexible gray routes to mitigate the risks of 

unforeseen interruptions. 

Lastly, the system assumes the availability of sufficient trains 

to complete all planned routes without considering strategic 

decisions regarding resource allocation. Players may often need 

to adapt their plans to optimize points with limited trains. 

Similarly, the optimization ignores scenarios where completing 

smaller, high-impact routes may provide a more favorable 

outcome than pursuing lengthy destination tickets with 

uncertain probabilities of success. 

 

B. Graph Modeling from Ticket to Ride 

The implementation begins with modeling the Ticket to Ride 

board game as a graph structure using NetworkX, a Python 

library for complex network analysis. In the code, each city is 

represented as a node in the graph, while the train routes 

between cities are represented as edges. The graph is 

implemented as a MultiGraph to accommodate parallel routes 

between the same cities, which is a common feature in the game. 

The basic structure is initialized in the TicketToRide class: 

 

 
Fig 3.1 TicketToRide class initialization 

 

The graph construction is handled through the create_graph 

method, which iterates through the predefined routes and adds 

them to the NetworkX graph structure. Each edge in the graph 

contains important attributes such as the route length and color 

requirements. For parallel routes, a unique key is assigned to 

distinguish between multiple edges connecting the same pair of 

cities: 

 
Fig 3.2 create_graph function 

 

C. Game Modelling in Python 

The game implementation models several key components of 

Ticket to Ride using Python's data structures and object-oriented 

programming principles. At the core of the implementation is 

the TicketToRide class, which encapsulates all game mechanics 

and state management. The game state is primarily modeled 

through dataclasses and dictionaries that represent the essential 

game elements: 
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Fig 3.3 Route and destination ticket data structures 

 

The train cards, which represent the game's primary resource, 

are modeled using a dictionary that tracks the quantity of each 

color card remaining in the deck. This implementation accounts 

for all card colors available in the game, including the wild cards 

that can substitute for any color: 

 
Fig 3.4 Train cards initialization 

 

The game board's routes are initialized through the 

initialize_board method, which establishes all possible 

connections between cities. Each route is defined with its length 

and color requirements, including special cases for gray routes 

(which can be claimed using any single-color set) and parallel 

routes (where two separate connections exist between the same 

cities). The route data is stored in a bidirectional format, 

allowing for efficient lookup from either city: 

 

 
Fig 3.5 add_route method 

 

Destination tickets, which define the scoring objectives for 

players, are modeled as a collection of city pairs with associated 

point values. These tickets are stored with their respective point 

values and can be used to evaluate different route completion 

strategies. The implementation maintains this information in a 

structured format that facilitates route planning and scoring 

calculations: 

 
Fig 3.6 initialize_destination_tickets  method 

 

The model incorporates game rules and constraints through 

various methods and attributes. For instance, the 

trains_per_player attribute enforces the game's limitation on the 

number of train pieces each player can use, while the route color 

requirements ensure that players must collect appropriate sets of 

cards to claim routes. This comprehensive modeling approach 

provides a foundation for implementing optimization strategies 

while maintaining the game's core mechanics and rules. 

 

D. Implementation of Optimization Calculation 

The optimization implementation focuses on maximizing 

point gains while managing the limited resources available to 

players. The core optimization logic is implemented in the 

optimize_ticket_completion method, which employs a greedy 

approach to select and complete destination tickets. The method 

first calculates a ticket efficiency metric (points per train car 

required) to prioritize tickets that offer the best point-to-resource 

ratio: 

 

 
Fig 3.7 calculate_ticket_efficiency function 
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The optimization process considers several key constraints. 

First, the total number of train cars used cannot exceed the 

player's limit (45 trains). Second, the algorithm must account for 

the shared routes between different destination tickets to 

maximize efficiency. The implementation handles these 

constraints by maintaining a running total of used train cars and 

tracking which routes have been claimed: 

 

 
Fig 3.8 Snap code of the optimization process 

 

Resource management is further enhanced by the 

calculate_route_probability method, which uses hypergeometric 

probability distribution to estimate the likelihood of collecting 

required train cards for specific routes. This method considers 

both the current hand composition and the remaining cards in 

the deck: 

 

 
Fig 3.9 calculate_route_probability function 

 

One notable limitation of the current implementation is that it 

does not consider opponent actions, which could potentially 

block critical routes in the actual game. Additionally, the 

optimization assumes perfect information about the destination 

tickets, whereas in a real game, players must make decisions 

with incomplete information about future ticket draws. The 

greedy approach used in route selection, while computationally 

efficient, may not always find the globally optimal solution, 

particularly in complex scenarios where multiple interdependent 

routes exist. 

The implementation includes visualization capabilities 

through matplotlib, allowing for visual verification of the 

optimized routes. This is particularly useful for debugging and 

understanding the spatial relationships between selected routes. 

These visualizations help validate the optimization results and 

provide insights into the geographical distribution of selected 

routes, though they are not used in the actual optimization 

calculations. 

 

 

IV.   EXPERIMENTS 

Optimizing strategies in Ticket to Ride requires a blend of 

mathematical precision and strategic foresight. By modeling the 

game’s mechanics using graph theory, probability, and resource 

optimization techniques, it becomes possible to evaluate and 

implement efficient gameplay strategies. Through carefully 

constructed study cases, various aspects of route planning, 

resource allocation, and probabilistic decision-making are 

analyzed. Each case highlights unique challenges and insights, 

offering a detailed perspective on how theoretical models 

translate into practical outcomes.  

1. Case 1: Single High-Value Destination Ticket 

This case examines the completion of a single high-value 

destination ticket, such as "Seattle to New York" (22 

points). The model identifies the shortest path to 

minimize train usage. The selected path spans a 

geographically extensive route, requiring 19 trains to 

complete. The results indicate that the optimization 

model effectively handles straightforward objectives, 

ensuring efficient resource allocation and high ticket 

completion rates. This scenario demonstrates the model's 

ability to simplify complex decision-making while 

achieving optimal results. 

 

 
Fig 5.1 Sample hand case 1 

 

 
Fig 5.2 Case 1 results 

 

 
Fig 5.3 Visualization of optimal routes from Seattle to 

New York 

 

2. Case 2: Completing Tickets with Overlapping Routes 

In this scenario, the model is tasked with optimizing the 

completion of two tickets: "Seattle to New York" (22 

points) and "Denver to Pittsburgh" (11 points). These 

tickets share overlapping segments, such as the route 

between "Chicago and Pittsburgh." The optimization 

prioritizes overlapping routes to conserve resources, 
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reducing redundancy and improving overall efficiency. 

The final plan completes both tickets using 29 trains, 

achieving a combined score of 33 points with an 

efficiency of 1.14 points per train. This case highlights 

the model’s ability to manage multiple objectives, 

emphasizing the value of detecting and leveraging route 

overlaps in complex scenarios. 

 

 
Fig 5.4 Case 2 results 

 
Fig 5.3 Visualization of optimal routes from Seattle to 

New York 

 

3. Case 3: Probability Challenges in Gray Routes 

This case focuses on evaluating the feasibility of 

completing a gray route, such as "Seattle to Calgary" (4 

train), with a limited card hand. Gray routes allow 

flexibility in card colors but often present probabilistic 

challenges. For longer gray routes, the success 

probability diminishes, making strategic card draws or 

wild card reserves essential. The analysis highlights the 

importance of probabilistic modeling in decision-

making, demonstrating how the model helps assess risks 

and prioritize routes based on success likelihood. 

 

 
Fig 5.4 Case 3 hands configuration 

 

 
Fig 5.5 Case 3 results 

 

4. Case 4: Resource-Constrained Multi-Ticket 

Optimization 

In this case, the model attempts to complete three 

tickets—"Vancouver to Montreal" (20 points), "Chicago 

to New Orleans" (7 points), and "Duluth to El Paso" (10 

points)—under a resource constraint of 45 trains. The 

optimization prioritizes tickets based on their points-to-

length ratio, ensuring that high-efficiency tickets are 

completed first. The final plan uses 37 trains to complete 

all three tickets, leaving 8 trains available for future 

connections. The optimized routes avoid unnecessary 

detours, maximizing the total score to 37 points with an 

efficiency of 1 point per train. This case illustrates the 

model’s effectiveness in balancing multiple objectives 

within strict resource constraints. 

 

 
Fig 5.6 Case 4 results 

 

 
Fig 5.7 Visualization of optimal routes for case 4 

 

5. Case 5: Low Probability Routes Analysis 

This scenario assesses the feasibility of completing a 

low-probability ticket, such as "Phoenix to Denver" (5 

points), which requires five white cards. Due to the low 

likelihood of acquiring the required cards, the model 

deprioritizes this ticket in favor of higher-probability 

routes. This analysis demonstrates the importance of 
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integrating probabilistic modeling into decision-making, 

enabling the player to avoid risky strategies and focus on 

achievable objectives. 

 
Fig 5.8 Case 5 hands configuration 

 

 
Fig 5.9 Case 5 results 

6. Case 6: Geographical Distribution and Complexity 

This case evaluates the completion of geographically 

dispersed tickets, such as "Boston to Miami" (12 points) 

and "Los Angeles to Chicago" (16 points). The 

optimization balances resource allocation across regions, 

identifying critical nodes like Chicago as hubs for 

multiple connections. Visualization reveals efficient 

routing strategies that minimize detours while ensuring 

connectivity between distant regions. The final plan uses 

27 trains to complete both tickets, achieving a score of 28 

points with an efficiency of 1.04 points per train. This 

case highlights the value of geographical visualization in 

managing complex route networks and optimizing cross-

regional ticket completion. 

 
Fig 5.10 Case 6 results 

 

 
Fig 5.11 Visualization of optimal routes for case 6 

 

 

V.   CONCLUSION 

The study successfully demonstrates how graph theory and 

combinatorics can be applied to optimize strategic decision-

making in the board game Ticket to Ride. By modeling the game 

as a graph, the framework provides a clear representation of the 

board, enabling efficient computation of shortest paths and 

resource allocation. Combinatorics, particularly the use of 

hypergeometric probability distributions, enhances the 

evaluation of route feasibility under various constraints, helping 

players make informed decisions about ticket prioritization and 

resource usage. 

Through diverse study cases, the model proves its versatility 

in handling single and multi-ticket scenarios, addressing both 

deterministic and probabilistic challenges. Key strengths 

include its ability to detect overlapping routes, prioritize high-

efficiency tickets, and assess risk in low-probability routes. 

However, the model's assumptions, such as the absence of 

opponent interference and perfect information about resources, 

limit its applicability in real-world multiplayer scenarios. 

Future extensions could incorporate adversarial dynamics, 

real-time decision-making, and machine learning to adapt 

strategies dynamically. Despite its limitations, the framework 

offers valuable insights into resource optimization and strategic 

planning, with potential applications in other domains requiring 

efficient allocation of limited resources. 

 

VI.   APPENDIX 

Project source code: https://github.com/kin-ark/optimizing-

ticket-to-ride 
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