
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Optimizing Routes and Resources in Board Game

Ticket to Ride: Application of Graph and

Combinatorics

Muhammad Kinan Arkansyaddad - 135231521

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1mkinanarkansyaddad@gmail.com, 13523152@std.stei.itb.ac.id

Abstract— Optimizing routes and resources in the board game

Ticket to Ride involves the application of graph theory and

combinatorics. The game board is modeled as a graph, where cities

represent nodes and routes correspond to edges, with attributes

such as length and color capturing the gameplay mechanics.

Combinatorics is used to evaluate probabilities of acquiring

specific cards, enabling strategic decision-making under resource

constraints. Python-based implementations simulate optimal

strategies for completing destination tickets while balancing

efficiency and feasibility. Analysis through study cases

demonstrates the effectiveness of graph-based modeling and

probabilistic evaluation in optimizing route planning, resource

management, and decision-making under uncertainty, offering

insights into strategic optimization in gaming and real-world

applications.

Keywords—Graph, Optimization, Resource Management,

Ticket to Ride.

I. INTRODUCTION

Ticket to Ride is a strategic board game where players

compete to build the longest and most railway across the map.

The game is played on a map featuring cities connected by

railway paths and players collect and use train cards to claim

these routes corresponding to the cards’ color. The main goal of

the game is to score the highest points out of all players. Points

can be gained by claiming railway routes between cities,

completing destination tickets, and bonus from longest

continuous path. However, points also can be lost when players

cannot complete the destination tickets. The game concludes

when a player’s train pieces are all used and the player with the

highest points wins.

Fig 1.1 Ticket to Ride board map

Source: https://static.wikia.nocookie.net/ticket-to-

ride/images/e/e9/TTR.jpg/revision/latest?cb=20160918212901

The mechanic of Ticket to Ride consists of drawing train

cards, drawing destination tickets, claiming routes between

cities and completing destination tickets. Players have to make

decisions about which cities to connect, which destination

tickets to prioritize, and when to draw train cards or new

destination tickets. This decision-making process reflects real-

world resource allocation and route optimization problems.

Players must carefully balance their resources such as train cards

to maximize their points while also blocking or competing with

other players.

This paper explores the optimization of routes and resources

in the game Ticket to Ride, applying concepts from graph and

combinatorics theory to analyze and improve the strategic

elements of the game. The cities and railways can be represented

as graph, with cities as nodes and railways as edges, making

graph theory is the ideal framework to model the game. The

optimization of routes focuses on efficiently connecting cities

while minimizing resources use. On the other hand,

combinatorics helps players evaluate many possible

combinations of routes and the chances of getting the resources

that players need, assisting in the decision-making process for

optimal gameplay. This paper aims to demonstrate how these

mathematical concepts can enhance the understanding of

strategy and resource management in Ticket to Ride.

mailto:1mkinanarkansyaddad@gmail.com
mailto:13523152@std.stei.itb.ac.id
https://static.wikia.nocookie.net/ticket-to-ride/images/e/e9/TTR.jpg/revision/latest?cb=20160918212901
https://static.wikia.nocookie.net/ticket-to-ride/images/e/e9/TTR.jpg/revision/latest?cb=20160918212901

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

II. THEORETICAL BASIS

A. Graph

Graph is a data structure consisting of nodes (vertices) and

edges that connect the nodes. Graphs are used to represent

discrete objects and the relationship between them. Graph is

formally defined as 𝐺 = (𝑉, 𝐸), where G is graph, V is set of

vertices that are not empty, and E is set of edges.

Graphs can be distinguished into two types based on the

presence of loops or multiple edges:

1. Simple Graph: A graph that does not have multiple edges

or loops.

2. Non-simple Graph: A graph that has multiple edges or

loops. It can be further divided into:

a. Multigraph: A graph containing multiple edges.

b. Pseudograph: A graph containing loops.

Fig 2.1 G1 is a simple graph, G2 is a multigraph, G3 is a

pseudograph

Source: [1]

Furthermore, based on their orientation, graphs can also be

classified into two types:

1. Undirected Graph: A graph that does not have

directional orientation.

2. Directed Graph: A graph where each edge connecting

nodes has direction.

Fig 2.2 G1 is an undirected graph, G2 is a directed graph

Source: [1]

Some terminologies in graph theory:

1. Adjacency: Two nodes in a graph are said to be adjacent

if they are connected by at least one edge.

2. Incidency: An edge in a graph is said to be incident to

nodes a and b if it connects them.

3. Degree: The degree of a node is the number of edges

incident to that node.

4. Path: A path is a sequence of nodes and edges that

connects the starting node to the destination node.

5. Cycle: A cycle is a path that starts and ends at the same

node.

6. Connected: Two nodes are said to be connected if there

is a path connecting them.

7. Weighted Graph: A weighted graph is a graph that has

specific values or weights on each edge connecting the

nodes.

Fig 2.3 Weighted graph example

Source: [1]

B. Combinatorics

Combinatorics is a branch of mathematics that focuses on the

study of counting, arrangement, and combination of objects. It

provides foundational principles and techniques necessary for

solving problems related to discrete structures. Combinatorics is

essential in various fields, including computer science, statistics,

and optimization, as it helps analyze the possible configurations

of a set of items. The primary focus of combinatorics is to

determine how many ways a certain arrangement or selection

can be made, often without the need to enumerate all possible

outcomes explicitly.

A permutation refers to an arrangement of objects in a specific

order. This concept is crucial in combinatorics, as it allows us to

count the number of ways to arrange a set of distinct items. The

total number of permutations of n distinct objects is given by n!,

which is the product of all positive integers up to n. For example,

if we have three distinct objects, say A, B, and C, the

permutations can be listed as follows: ABC, ACB, BAC, BCA,

CAB, and CBA. Thus, the number of permutations of these three

objects is 3! = 6.

When determining the number of ways to arrange r elements

selected from a total of n distinct elements, the formula for

permutations of r from n, denoted as P(n,r), is used. The formula

is given by:

𝑃(𝑛, 𝑟) =
𝑛!

(𝑛 − 𝑟)!

This formula calculates the number of ways to choose r elements

from n and arrange them in order. For instance, if there are 5

distinct books and the goal is to find how many ways 3 of them

can be arranged on a shelf, the calculation would be as follows:

𝑃(5,3) =
5!

(5 − 3)!
=

5!

2!
= 60.

In contrast, a combination refers to a selection of items from

a larger set where the order of selection does not matter. This is

in contrast to permutations, where the arrangement is

significant. The number of ways to choose r elements from a set

of n elements is denoted as C(n,r) or (
𝑛
𝑟

), and is calculated using

the following formula:

𝐶(𝑛, 𝑟) =
𝑛!

𝑟! (𝑛 − 𝑟)!

This formula accounts for the fact that the order of selection is

irrelevant by dividing the total permutations by the number of

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

ways to arrange the selected items. For example, if the task is to

select 2 fruits from a basket of 5 different fruits, the number of

combinations can be calculated as:

𝐶(5,2) =
5!

2! (5 − 2)!
=

5!

2! 3!
= 10.

C. Hypergeometric Probability Distribution

The hypergeometric probability distribution is a discrete

probability distribution that describes the likelihood of drawing

a specific number of successes in a sequence of draws from a

finite population without replacement. This distribution is

particularly useful in scenarios where the population can be

divided into two distinct categories, such as success and failure,

and where the draws are made without replacement, meaning

that the composition of the population changes with each draw.

The probability mass function (PMF) of the hypergeometric

distribution is given by:

𝑃(𝑋 = 𝑘) =
(

𝐾
𝑘

) (
𝑁 − 𝐾
𝑛 − 𝑘

)

(
𝑁
𝑛

)

In this formula, P(X=k) represents the probability of obtaining

exactly k successes, while N is the total number of items in the

population, K is the total number of successes in the population,

n is the number of draws, and k is the number of observed

successes.

III. IMPLEMENTATION

A. Limitations

The proposed implementation for optimizing routes and

resources in the Ticket to Ride board game effectively models

the game mechanic and provides insightful information.

However, it operates under certain limitations. First and

foremost, the optimization framework assumes a single player

environment, disregarding another player’s actions and

strategies. In a multiplayer game, opponents can claim critical

routes and/or block routes which result in altering the

availability of optimal routes. The model does not account for

this dynamic element which is important to the real-world

gameplay experience.

Additionally, the implementation assumes that players will

always have the option to draw the exact cards they require over

several turns. While the hypergeometric probability distribution

provides a statistical estimation of card-drawing probabilities, it

simplifies the complex interplay of chance and strategic card

selection in the actual game. Furthermore, the framework does

not consider the potential benefits of diversifying route options

or prioritizing flexible gray routes to mitigate the risks of

unforeseen interruptions.

Lastly, the system assumes the availability of sufficient trains

to complete all planned routes without considering strategic

decisions regarding resource allocation. Players may often need

to adapt their plans to optimize points with limited trains.

Similarly, the optimization ignores scenarios where completing

smaller, high-impact routes may provide a more favorable

outcome than pursuing lengthy destination tickets with

uncertain probabilities of success.

B. Graph Modeling from Ticket to Ride

The implementation begins with modeling the Ticket to Ride

board game as a graph structure using NetworkX, a Python

library for complex network analysis. In the code, each city is

represented as a node in the graph, while the train routes

between cities are represented as edges. The graph is

implemented as a MultiGraph to accommodate parallel routes

between the same cities, which is a common feature in the game.

The basic structure is initialized in the TicketToRide class:

Fig 3.1 TicketToRide class initialization

The graph construction is handled through the create_graph

method, which iterates through the predefined routes and adds

them to the NetworkX graph structure. Each edge in the graph

contains important attributes such as the route length and color

requirements. For parallel routes, a unique key is assigned to

distinguish between multiple edges connecting the same pair of

cities:

Fig 3.2 create_graph function

C. Game Modelling in Python

The game implementation models several key components of

Ticket to Ride using Python's data structures and object-oriented

programming principles. At the core of the implementation is

the TicketToRide class, which encapsulates all game mechanics

and state management. The game state is primarily modeled

through dataclasses and dictionaries that represent the essential

game elements:

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig 3.3 Route and destination ticket data structures

The train cards, which represent the game's primary resource,

are modeled using a dictionary that tracks the quantity of each

color card remaining in the deck. This implementation accounts

for all card colors available in the game, including the wild cards

that can substitute for any color:

Fig 3.4 Train cards initialization

The game board's routes are initialized through the

initialize_board method, which establishes all possible

connections between cities. Each route is defined with its length

and color requirements, including special cases for gray routes

(which can be claimed using any single-color set) and parallel

routes (where two separate connections exist between the same

cities). The route data is stored in a bidirectional format,

allowing for efficient lookup from either city:

Fig 3.5 add_route method

Destination tickets, which define the scoring objectives for

players, are modeled as a collection of city pairs with associated

point values. These tickets are stored with their respective point

values and can be used to evaluate different route completion

strategies. The implementation maintains this information in a

structured format that facilitates route planning and scoring

calculations:

Fig 3.6 initialize_destination_tickets method

The model incorporates game rules and constraints through

various methods and attributes. For instance, the

trains_per_player attribute enforces the game's limitation on the

number of train pieces each player can use, while the route color

requirements ensure that players must collect appropriate sets of

cards to claim routes. This comprehensive modeling approach

provides a foundation for implementing optimization strategies

while maintaining the game's core mechanics and rules.

D. Implementation of Optimization Calculation

The optimization implementation focuses on maximizing

point gains while managing the limited resources available to

players. The core optimization logic is implemented in the

optimize_ticket_completion method, which employs a greedy

approach to select and complete destination tickets. The method

first calculates a ticket efficiency metric (points per train car

required) to prioritize tickets that offer the best point-to-resource

ratio:

Fig 3.7 calculate_ticket_efficiency function

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

The optimization process considers several key constraints.

First, the total number of train cars used cannot exceed the

player's limit (45 trains). Second, the algorithm must account for

the shared routes between different destination tickets to

maximize efficiency. The implementation handles these

constraints by maintaining a running total of used train cars and

tracking which routes have been claimed:

Fig 3.8 Snap code of the optimization process

Resource management is further enhanced by the

calculate_route_probability method, which uses hypergeometric

probability distribution to estimate the likelihood of collecting

required train cards for specific routes. This method considers

both the current hand composition and the remaining cards in

the deck:

Fig 3.9 calculate_route_probability function

One notable limitation of the current implementation is that it

does not consider opponent actions, which could potentially

block critical routes in the actual game. Additionally, the

optimization assumes perfect information about the destination

tickets, whereas in a real game, players must make decisions

with incomplete information about future ticket draws. The

greedy approach used in route selection, while computationally

efficient, may not always find the globally optimal solution,

particularly in complex scenarios where multiple interdependent

routes exist.

The implementation includes visualization capabilities

through matplotlib, allowing for visual verification of the

optimized routes. This is particularly useful for debugging and

understanding the spatial relationships between selected routes.

These visualizations help validate the optimization results and

provide insights into the geographical distribution of selected

routes, though they are not used in the actual optimization

calculations.

IV. EXPERIMENTS

Optimizing strategies in Ticket to Ride requires a blend of

mathematical precision and strategic foresight. By modeling the

game’s mechanics using graph theory, probability, and resource

optimization techniques, it becomes possible to evaluate and

implement efficient gameplay strategies. Through carefully

constructed study cases, various aspects of route planning,

resource allocation, and probabilistic decision-making are

analyzed. Each case highlights unique challenges and insights,

offering a detailed perspective on how theoretical models

translate into practical outcomes.

1. Case 1: Single High-Value Destination Ticket

This case examines the completion of a single high-value

destination ticket, such as "Seattle to New York" (22

points). The model identifies the shortest path to

minimize train usage. The selected path spans a

geographically extensive route, requiring 19 trains to

complete. The results indicate that the optimization

model effectively handles straightforward objectives,

ensuring efficient resource allocation and high ticket

completion rates. This scenario demonstrates the model's

ability to simplify complex decision-making while

achieving optimal results.

Fig 5.1 Sample hand case 1

Fig 5.2 Case 1 results

Fig 5.3 Visualization of optimal routes from Seattle to

New York

2. Case 2: Completing Tickets with Overlapping Routes

In this scenario, the model is tasked with optimizing the

completion of two tickets: "Seattle to New York" (22

points) and "Denver to Pittsburgh" (11 points). These

tickets share overlapping segments, such as the route

between "Chicago and Pittsburgh." The optimization

prioritizes overlapping routes to conserve resources,

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

reducing redundancy and improving overall efficiency.

The final plan completes both tickets using 29 trains,

achieving a combined score of 33 points with an

efficiency of 1.14 points per train. This case highlights

the model’s ability to manage multiple objectives,

emphasizing the value of detecting and leveraging route

overlaps in complex scenarios.

Fig 5.4 Case 2 results

Fig 5.3 Visualization of optimal routes from Seattle to

New York

3. Case 3: Probability Challenges in Gray Routes

This case focuses on evaluating the feasibility of

completing a gray route, such as "Seattle to Calgary" (4

train), with a limited card hand. Gray routes allow

flexibility in card colors but often present probabilistic

challenges. For longer gray routes, the success

probability diminishes, making strategic card draws or

wild card reserves essential. The analysis highlights the

importance of probabilistic modeling in decision-

making, demonstrating how the model helps assess risks

and prioritize routes based on success likelihood.

Fig 5.4 Case 3 hands configuration

Fig 5.5 Case 3 results

4. Case 4: Resource-Constrained Multi-Ticket

Optimization

In this case, the model attempts to complete three

tickets—"Vancouver to Montreal" (20 points), "Chicago

to New Orleans" (7 points), and "Duluth to El Paso" (10

points)—under a resource constraint of 45 trains. The

optimization prioritizes tickets based on their points-to-

length ratio, ensuring that high-efficiency tickets are

completed first. The final plan uses 37 trains to complete

all three tickets, leaving 8 trains available for future

connections. The optimized routes avoid unnecessary

detours, maximizing the total score to 37 points with an

efficiency of 1 point per train. This case illustrates the

model’s effectiveness in balancing multiple objectives

within strict resource constraints.

Fig 5.6 Case 4 results

Fig 5.7 Visualization of optimal routes for case 4

5. Case 5: Low Probability Routes Analysis

This scenario assesses the feasibility of completing a

low-probability ticket, such as "Phoenix to Denver" (5

points), which requires five white cards. Due to the low

likelihood of acquiring the required cards, the model

deprioritizes this ticket in favor of higher-probability

routes. This analysis demonstrates the importance of

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

integrating probabilistic modeling into decision-making,

enabling the player to avoid risky strategies and focus on

achievable objectives.

Fig 5.8 Case 5 hands configuration

Fig 5.9 Case 5 results

6. Case 6: Geographical Distribution and Complexity

This case evaluates the completion of geographically

dispersed tickets, such as "Boston to Miami" (12 points)

and "Los Angeles to Chicago" (16 points). The

optimization balances resource allocation across regions,

identifying critical nodes like Chicago as hubs for

multiple connections. Visualization reveals efficient

routing strategies that minimize detours while ensuring

connectivity between distant regions. The final plan uses

27 trains to complete both tickets, achieving a score of 28

points with an efficiency of 1.04 points per train. This

case highlights the value of geographical visualization in

managing complex route networks and optimizing cross-

regional ticket completion.

Fig 5.10 Case 6 results

Fig 5.11 Visualization of optimal routes for case 6

V. CONCLUSION

The study successfully demonstrates how graph theory and

combinatorics can be applied to optimize strategic decision-

making in the board game Ticket to Ride. By modeling the game

as a graph, the framework provides a clear representation of the

board, enabling efficient computation of shortest paths and

resource allocation. Combinatorics, particularly the use of

hypergeometric probability distributions, enhances the

evaluation of route feasibility under various constraints, helping

players make informed decisions about ticket prioritization and

resource usage.

Through diverse study cases, the model proves its versatility

in handling single and multi-ticket scenarios, addressing both

deterministic and probabilistic challenges. Key strengths

include its ability to detect overlapping routes, prioritize high-

efficiency tickets, and assess risk in low-probability routes.

However, the model's assumptions, such as the absence of

opponent interference and perfect information about resources,

limit its applicability in real-world multiplayer scenarios.

Future extensions could incorporate adversarial dynamics,

real-time decision-making, and machine learning to adapt

strategies dynamically. Despite its limitations, the framework

offers valuable insights into resource optimization and strategic

planning, with potential applications in other domains requiring

efficient allocation of limited resources.

VI. APPENDIX

Project source code: https://github.com/kin-ark/optimizing-

ticket-to-ride

VII. ACKNOWLEDGMENT

The author expresses gratitude to all parties who have assisted

in the making of this paper, especially to:

1. Allah Swt.

2. Both parents, for providing moral and material support.

3. Friends who have encouraged and aided in the

completion of this paper.

4. Arrival Dwi Sentosa, S.Kom, M.T. as the lecturers for

the IF1220 Discrete Mathematics course, for his

invaluable guidance and support throughout the

semester.

5. Dr. Ir. Rinaldi Munir, MT., for providing learning

resources materials.

The author deeply appreciates all the assistance,

encouragement, and kindness received from these individuals

and groups, without which the completion of this paper would

not have been possible.

REFERENCES

[1] Munir, Rinaldi. 2024. “Graf (bagian 1)”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf (accessed on 8 January 2025).
[2] Munir, Rinaldi. 2024. “Kombinatorika (bagian 1)”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-

Kombinatorika-Bagian1-2024.pdf (accessed on 8 January 2025).

https://github.com/kin-ark/optimizing-ticket-to-ride
https://github.com/kin-ark/optimizing-ticket-to-ride
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-Kombinatorika-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-Kombinatorika-Bagian1-2024.pdf

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

[3] Pollard, D. (2010). Symmetry [Polya Urn]. Yale University.
https://www.stat.yale.edu/~pollard/Courses/600.spring2010/Handouts/Sy

mmetry%5BPolyaUrn%5D.pdf (accessed on 8 January 2025)

STATEMENT

I hereby declare that this paper I have written is my own

work, not an adaptation or translation of someone else's

paper, and not plagiarism.

Bandung, 5 January 2024

Muhammad Kinan Arkansyaddad

13523152

https://www.stat.yale.edu/~pollard/Courses/600.spring2010/Handouts/Symmetry%5BPolyaUrn%5D.pdf
https://www.stat.yale.edu/~pollard/Courses/600.spring2010/Handouts/Symmetry%5BPolyaUrn%5D.pdf

