
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Optimizing Chemical Storage Utilizing the Welch-

Powell Algorithm

Naomi Risaka Sitorus – 135231221

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523122@std.stei.itb.ac.id, naomi.risaka@gmail.com

Abstract—Nowadays, chemicals are used in many fields of

human activity. Each chemical has its own properties that has to

be considered when storing them to avoid unwanted incidents, such

as chemical explosions. Factors to consider when storing chemicals

include their incompatibilities and storage temperature. Allocating

storage for chemicals can be challenging, especially when dealing

with a large number of chemicals and limited available space. This

study focuses on the application of the Welch-Powell graph

coloring algorithm for optimizing chemical storage. The chemicals

and their relationships are represented as a graph, with chemicals

as vertices and incompatibilities as edges. The developed program

processes the graph in adjacency matrix form, where adjacency

indicates incompatibility between chemicals. The program

allocates different storage units, represented colors in graph

coloring theory, ensuring only chemicals that are compatible and

have the same storage temperature are placed in the same unit.

This study provides valuable insights into optimizing chemical

storage by applying the Welch-Powell algorithm, contributing to a

safer and more efficient chemical storage practices that can be

applied in similar allocation systems.

Keywords—Chemical Storage Optimization, Graph Theory,

Graph Coloring, Welch-Powell Algorithm.

I. INTRODUCTION

In today’s world, chemicals are widely used across many

fields, from industrial production to academic research. Each

chemical has its own unique properties, with some being stable,

whereas others are potentially hazardous when stored

improperly or within close range to incompatible substances.

Accidents like chemical explosions highlights the importance of

safe chemical storage practices. Proper chemical storage is not

only important for safety reasons, but also substance integrity

and space efficiency, ensuring that the available space is used

effectively while complying with the regulatory standards.

Many factors are to be taken into consideration when storing

chemicals, including incompatibilities, temperature

requirements, and other specific handling conditions.

Organizing chemicals systematically can be especially

challenging when the number of chemicals involved are high,

yet the storage space is limited. This issue is particularly

significant in environments such as warehouses and

laboratories, where safety and efficiency are essential.

This paper delves deeper on the application of the Welch-

Powell algorithm, a technique used for graph coloring, in

optimizing chemical storage. By representing chemicals and

their incompatibilities as a graph, the algorithm can assign

chemicals to their appropriate storage containers while

considering their specific requirements. The insights from this

study can be used to improve chemical storage strategies,

enhancing safety and space efficiency. The methods discussed

in this paper can also be applied in other fields that requires

proper storage management of hazardous materials.

II. THEORETICAL BASIS

A. Graph

A graph is a mathematical structure used to represent discrete

elements and the relationships between them. It is composed of

vertices or nodes, typically denoted as circles, and edges, which

are the lines connecting the vertices.

Fig. 2.1 Definition of A Graph. (Source: [1])

For a structure to be considered a graph, there must be at least

one vertex in it. An empty graph or a null graph is defined as a

graph without any edges, where the vertices are isolated from

each other as in not connected and having no edges between

them.

Fig. 2.2 An Empty Graph. (Source: [2])

In a graph, a loop is an edge that connects a vertex to itself.

Additionally, two vertices can be connected by more than one

edge, these edges are referred to as multiple edges or parallel

edges. Based on the presence of loops or multiple edges, graphs

can be classified into two main categories: simple graphs and

unsimple graphs.

1. Simple graphs

A simple graph is a graph that does not contain loops

or multiple edges between the same pair of vertices.

Fig. 2.3 Simple Graphs. (Source: [1])

mailto:113523122@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

2. Unsimple graphs

An unsimple graph is a graph that contains either loops

or multiple edges. This type of graph is further divided

into two types: multi-graph, a graph containing multiple

edges, and pseudo-graph, a graph containing at least one

loop.

Fig. 2.4 Unsimple Graphs. (Source: [1])

Graphs can also be categorized into two types based on the

direction of the edges. An undirected graph is a graph whose

edges do not have any direction. On the other hand, a directed

graph is a graph whose edges have a specific direction in

connecting the vertices.

Fig. 2.5 Undirected Graphs. (Source: [1])

Fig. 2.6 Directed Graphs. (Source: [1])

In graph theory, several terminologies are commonly used to

describe the relationships and properties of graphs.

1. Adjacency

Two vertices are considered adjacent if there is at least

one edge connecting them directly.

2. Incidence

An edge is said to be incident to an edge if the edge is

connected to the said vertex.

3. Degree

The degree of a vertex refers to the number of edges

that are incident to it. In other words, it indicates the

number of direct connections a vertex has.

4. Connectivity

A graph is a connected graph if all its vertices are

connected to one another, either directly or indirectly,

meaning there is no isolated vertices.

An adjacency matrix is a way to represent a graph based on

the adjacency relationship between vertices. The size of the

matrix is determined by the number of vertices in the graph. In

an undirected graph, the matrix element is set to zero if the

corresponding vertices are not connected to one another. If two

vertices are connected, the matrix element reflects the number

of edges connecting them. For a loop, the matrix element for it

is counted as two.

Fig. 2.7 Adjacency Matrix of A Graph. (Source: [3])

B. Graph Coloring

Graph coloring is the process of assigning colors to the

vertices of a graph such that no two adjacent vertices share the

same color. The number of colors used in the coloring, referred

to as the chromatic number, has to be at a minimum. The

chromatic number of graph G is denoted as χ(G).

Fig. 2.8 Graph Coloring. (Source: [4])

Certain special types of graphs have predetermined chromatic

numbers due to their unique characteristics.

1. Empty graphs

The chromatic number of an empty graph is one, as

none of the vertices are adjacent due to the absence of

edges.

2. Complete graphs

A complete graph is a simple graph where each vertex

is connected to every other vertices. The chromatic

number of a complete graph with n vertices is n, since all

the vertices are adjacent to one another.

3. Circle graphs

A circle graph is a simple graph where each vertex has

a degree of two. The chromatic number of a circle graph

is three if it has an odd number of vertices, and two if the

number of vertices is even.

4. Bipartite graphs

A bipartite graph is a graph with vertices that can be

split into two subsets V1 and V2, so each edge of the graph

connects a vertex in V1 to a vertex in V2. The chromatic

number of a bipartite graph is two, with one color

assigned to the vertices in V1 and the other to those in V2.

C. Welch-Powell Algorithm

The Welch-Powell algorithm is used to determine the

chromatic number for graphs that do not fall into the categories

described previously. The graph coloring process using the

algorithm begins by sorting all the vertices in descending order

based on their degrees. The first color is assigned to the first

vertex and to the remaining vertices that are not adjacent to the

already assigned ones. The process is repeated until all vertices

are assigned a color, ensuring no two adjacent vertices have the

same color. The chromatic number is determined by the amount

of colors used in the process.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

D. Chemical Storage

A chemical is a substance that has a defined composition. It

can either occur naturally or be created through man-made

processes. Chemicals can be found in three state of matter: solid,

liquid, and gas. It can also can be categorized as pure substances

or mixtures.

Each chemical has its own unique properties, which are the

characteristics of a substance that can be observed or measured

during or after undergoing a chemical reaction. Chemicals are

often classified based on their properties, such as flammability,

oxidizing potential, corrosivity, reactivity, and toxicity.

Flammable chemicals are substances that easily ignites

through friction, absorption of moisture, or heat, and has the

potential to cause explosions. Examples include gasoline,

alcohol, acetone, toluene, and acetic acid. Oxidizers are

chemicals that promote combustion by yielding combustible

materials or supporting the ignition of other materials, such as

oxygen and halogens like fluorine and chlorine.

Corrosive chemicals are substances capable of causing

destruction or irreversible damage to other materials, including

living tissues. They can be acidic, with a pH below 7, or basic,

with a pH above 7. Examples include sulfuric acid, sodium

hydroxide, and calcium carbonate. Reactive chemicals are

substances prone to violent chemical reactions when in contact

with incompatible materials. Certain reactive chemicals are also

reactive with themselves or water, such as sodium metal. Toxic

chemicals are substances harmful to humans through ingestion,

inhalation, or physical contact. Examples include mercury,

cyanide, and lead [5].

In general, all chemicals must be stored in a safe location,

away from direct sunlight, and sources of heat. Proper chemical

storage is essential not only for safety, but also substance

integrity and stability. Each chemical must also be stored in

consideration of its properties.

Flammable substances and oxidizers must always be stored

separately to prevent accidental ignition or combustion.

Flammables must be kept in fire-resistant cabinets with proper

ventilation and away from direct heat sources. Oxidizers, which

can intensify combustion, should also be stored in a well-

ventilated area. Corrosive chemicals require resistant storage

containers to prevent leakage or corrosion. Acids and bases

should be stored apart, as accidental mixing could result in

dangerous reactions. Corrosives should also be placed on

secondary containment to contain spills.

Reactive substances need to be stored away from

incompatible substances. They may require to be stored under

inert conditions to maintain stability, such as in a sealed airtight

container or under mineral oil. Toxic chemicals require tightly

sealed and resistant containers for storage. Such containers must

be placed in a controlled area with proper ventilations. Toxic

chemicals must also be stored below eye level [6], [7].

Fig. 2.9 Chemical Incompatibility Chart (Source: [7])

Moreover, specific storage conditions such as temperature

and humidity, should be considered based on the chemical’s

requirements. Containers used for storage must to be in good

condition, securely holding the chemicals without any leaks.

Proper labeling with information regarding the chemical and its

hazards is crucial. Those containers are stored in storage

facilities requiring regular checks and maintenance. Room

temperature substances are usually kept on shelves in cabinets,

whereas chemicals needing lower temperatures are placed in

specialized refrigerators or freezers.

III. METHODOLOGY

The implementation of the source code for this paper utilizes

the Python programming language due to the features it offers.

In specific, Python provides a built-in matrix data type for graph

representation. It also provides sets for handling chemical

information.

The chemicals and their relationships are illustrated as a

graph, with vertices representing chemicals and edges

representing incompatibilities. Each chemical is assigned to an

index, starting from 1, based on the order of name input, which

must be unique.

The following source code allows for the input of chemical

names:
def input_chemical_info():

the number of chemicals input

while True:

 try:

 chemical_amt = int(input("Enter the number of

 chemicals: "))

 if chemical_amt <= 0:

 print("The number of chemicals must be

 positive.")

 continue

 break

 except ValueError:

 print("The number of chemicals must be an

 integer.")

chemicals = {}

chemical_names = []

chemical name input and validation

for i in range(chemical_amt):

 while True:

 name = input(f"Enter the name of chemical {i+1}:

 ").strip()

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

 if not name:

 print("Chemical name cannot be empty. Please

 try again.")

 elif name in chemical_names:

 print(f"The'{name}' has already been added.

 Please enter a different chemical.")

 else:

 chemical_names.append(name)

 break

...

The chemical information considered for chemical storage

allocation using the Welch-Powell graph coloring algorithm

include incompatibility relationships and storage temperature.

Incompatibilities are based on user input, using the predefined

chemical indices. Two storage temperatures are available: cold

and room. Cold storage is intended for chemicals requiring

refrigeration or freezing, whereas room storage is for those

suitable in cabinets or shelves. Validation is done on both

incompatibility indices and storage temperature input.

The following source code allows for the input of chemical

information:
def validate_chemical_indices(chemical_indices,

chemical_amt):

no incompatible chemicals

if not chemical_indices:

 return True

for idx in chemical_indices:

index out of range

if not (1 <= idx <= chemical_amt):

 return False

return (len(chemical_indices) == len(set(

 chemical_indices)))

def validate_temperature(temp):

return (temp in ["cold", "room"])

def input_chemical_info():

...

for i in range(chemical_amt):

 print(f"\nChemical {i+1} ({chemical_names[i]})")

 # chemical incompatibility input and validation

 while True:

 incompatible_str = input(f"Enter the indices of

 incompatible chemicals: ")

 if incompatible_str:

 try:

 incompatible_chemicals = list(map(int,

 incompatible_str.split(',')))

 if not validate_chemical_indices

 (incompatible_chemicals, chemical_amt):

 print(f"Invalid chemical indices. Please

 try again.")

 continue

 break

 except ValueError:

 print("Indicies must be separated by commas.

 Please try again.")

 else:

 incompatible_chemicals = []

 break

 # chemical storage temperature input and

 validation

 while True:

 storage_temperature = input("Enter the required

 storage temperature (cold/room): ").lower()

 if validate_temperature(storage_temperature):

 break

 else:

 print("Invalid temperature. Please try

 again.")

 chemicals[i] = {

 "name": chemical_names[i],

 "incompatible_with": incompatible_chemicals,

 "temperature": storage_temperature

 }

return chemicals, chemical_names

The graph is represented by an adjacency matrix for

processing. Based on the incompatibility indices from the input,

the matrix element is set to zero if the corresponding chemicals

are compatible, as it indicates that they are not adjacent. When

there is incompatibility, the matrix element is set to one. Storage

temperature is not considered in this case.

The following source code creates the adjacency matrix for

the chemicals:
def create_adjacency_matrix(chemicals):

num_chemicals = len(chemicals)

mat = [[0] * num_chemicals for _ in

 range(num_chemicals)]

for i in range(num_chemicals):

 for j in chemicals[i]["incompatible_with"]:

 mat[i][j-1] = 1 # incompatible

 mat [j-1][i] = 1 # incompatible

return mat

The first step in the Welch-Powell algorithm is to sort

vertices, in this case chemicals, by their degree in descending

order before performing the traversal coloring process. As the

graph is represented using an adjacency matrix, the degree of a

vertex is the sum of all the elements in its row.

This following source code sorts the chemicals by their

degree:
def sort_chemicals_degree(adj_mat):

degrees = [sum(row) for row in adj_mat]

sorted_chemicals = sorted(range(len(adj_mat)),

 key=lambda x: degrees[x],

 reverse=True)

return sorted_chemicals

Graph coloring, used to allocate storage, is done in an iterative

process. It goes through the all the vertices and checks whether

the vertex is adjacent with ones assign to the current color. In

addition to incompatibility, the storage temperature is evaluated

when assigning the color, representing a storage unit. Chemicals

with different storage temperature from the initial chemical

cannot be assigned to the same storage unit. The process

continues until all chemicals are assigned to a storage unit. The

assignment is stored in an array.

This following source code checks a chemical and assigns

chemicals to storage units:
def check_chemical(adj_mat, chemical, chemicals,

chemical_storage, curr_unit):

for i in range(len(adj_mat)):

 # checks adjacency

 if (adj_mat[chemical][i] == 1) and

 (chemical_storage[i] == curr_unit):

 return False

 # checks temperature

 if (chemicals[chemical]["temperature"] !=

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

 chemicals[i]["temperature"]) and

 (chemical_storage[i] == curr_unit):

 return False

return True

def assign_storage(adj_mat, chemicals,

chemical_storage, chemical_amt):

sorted_chemicals = sort_chemicals_degree(adj_mat)

for chemical in sorted_chemicals:

 for curr_unit in range(chemical_amt):

 if check_chemical(adj_mat, chemical, chemicals,

 chemical_storage, curr_unit):

 chemical_storage[chemical] = curr_unit

 break

return chemical_storage

The assignment array is processed to group chemicals into

storage units. It is initially split based on storage temperatures,

then further split based on incompatibility. Chemicals that are

compatible and share the same storage temperature are kept in

the same storage unit. All storage units are stored in an array.

The following code groups the chemicals based on their

requirements:
def group_chemicals(adj_mat, chemicals,

chemical_names, chemical_storage):

result = [[] for _ in range(max(chemical_storage)

 + 1)]

storage_temp = ['' for _ in range(len(result))]

split based on temperatures

for i in range(len(adj_mat)):

 idx = chemical_storage[i]

 result[idx].append(chemical_names[i])

 if storage_temp[idx] == '':

 storage_temp[idx] = chemicals[i]["temperature"]

 else:

 if storage_temp[idx] !=

 chemicals[i]["temperature"]:

 result.append([chemical_names[i]])

 storage_temp.append(chemicals[i]

 ["temperature"])

 result[idx].remove(chemical_names[i])

split based on incompatiblity

final_result = []

final_storage_temp = []

for i in range(len(result)):

 if result[i]:

 temp = storage_temp[i]

 found = False

 for j in range(len(final_result)):

 if final_storage_temp[j] == temp:

 can_merge = True

 for chem in result[i]:

 for existing_chem in final_result[j]:

 idx1 = chemical_names.index(chem)

 idx2 = chemical_names.index(existing_chem)

 if adj_mat[idx1][idx2] == 1:

 can_merge = False

 break

 if not can_merge:

 break

 if can_merge:

 final_result[j].extend(result[i])

 found = True

 break

 if not found:

 final_result.append(result[i])

 final_storage_temp.append(temp)

return final_result, final_storage_temp

The following source code shows the overall flow of the

program:
def main():

print("-------------- Chemical Storage Allocator

 --------------")

chemicals, chemical_names = input_chemical_info()

adjacency matrix for the graph

adj_mat = create_adjacency_matrix(chemicals)

chemical_amt = len(chemicals)

stores the storage number for each chemical

chemical_storage = [0 for i in range

 (chemical_amt)]

chemical_storage = assign_storage(adj_mat,

 chemicals, chemical_storage, chemical_amt)

print("\nChemical storage allocation:")

result, storage_temp = group_chemicals(adj_mat,

 chemicals, chemical_names, chemical_storage)

print(f"The number of storage units needed is

 {len(result)}.")

for i, color_list in enumerate(result):

 print(f"Storage unit {i+1} ({storage_temp[i]})

 contains: {', '.join(color_list)}")

print("\nAllocation completed.")

IV. RESULTS AND ANALYSIS

Testing is conducted on the source code in order to evaluate

its functionality and generate results. These results are then

further analyzed to provide insights on the application of the

Welch-Powell graph coloring algorithm in utilizing chemical

storage. The test case is comprised of 15 chemicals, each defined

by their properties and storage temperature. The chemicals used

in this test case are as follows:

1. Acetone (flammable)

Incompatible with: hydrogen peroxide, sulfuric acid,

nitric acid, and potassium permanganate

Storage temperature: cold

2. Ethanol (flammable)

Incompatible with: hydrogen peroxide, sulfuric acid,

nitric acid, and potassium permanganate

Storage temperature: cold

3. Methanol (flammable)

Incompatible with: hydrogen peroxide, sulfuric acid,

nitric acid, and potassium permanganate

Storage temperature: cold

4. Toluene (flammable)

Incompatible with: hydrogen peroxide, sulfuric acid,

nitric acid, and potassium permanganate

Storage temperature: cold

5. Hydrogen peroxide (reactive)

Incompatible with: flammable chemicals, corrosive

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

chemicals, and oxidizers

Storage temperature: cold

6. Sulfuric acid (corrosive)

Incompatible with: flammable alcohols (acetone,

ethanol, and methanol) and toluene

Storage temperature: cold

7. Nitric acid (corrosive)

Incompatible with: flammable alcohols (acetone,

ethanol, and methanol) and toluene

Storage temperature: cold

8. Sodium hydroxide (corrosive)

Incompatible with: corrosive acids (sulfuric acid and

nitric acid)

Storage temperature: room

9. Calcium carbonate (corrosive)

Incompatible with: corrosive acids (sulfuric acid and

nitric acid)

Storage temperature: room

10. Sodium chloride (corrosive)

Incompatible with: corrosive acids (sulfuric acid and

nitric acid)

Storage temperature: room

11. Chlorine (toxic)

Incompatible with: flammable chemicals, corrosive

chemicals, reactive chemicals, and oxidizers

Storage temperature: room

12. Hydrogen chloride (toxic)

Incompatible with: flammable chemicals, corrosive

chemicals, reactive chemicals, and oxidizers

Storage temperature: room

13. Ammonia (toxic)

Incompatible with: flammable chemicals, corrosive

chemicals, reactive chemicals, and oxidizers

Storage temperature: room

14. Potassium permanganate (oxidizer)

Incompatible with: toxic chemicals, flammable

chemicals, corrosive chemicals, reactive chemicals, and

oxidizers

Storage temperature: room

15. Acetic acid (flammable)

Incompatible with: flammable alcohols (acetone,

ethanol, and methanol), toluene, corrosive chemicals,

reactive chemicals, and oxidizers

Storage temperature: room

Information regarding the chemicals is input into the

program, as shown below:

Fig. 4.1 Chemical Names Input (Source: Author)

Fig. 4.2 Chemical Storage Requirements Input Part 1 (Source: Author)

Fig. 4.3 Chemical Storage Requirements Input Part 2 (Source: Author)

Based on the chemical incompatibilities, an adjacency matrix

—which is not displayed in the actual program—is formed to

represent the graph, as seen below:

Fig. 4.4 Chemical Incompabilities Represented as An Adjacency Matrix

(Source: Author)

 The chemicals are then allocated to storage units based on

their incompatibilities, represented in the adjacency matrix, and

storage temperature, using the Welch-Powell graph coloring

algorithm.

The following figures illustrate the stages of manual graph

coloring to allocate chemical storage using the algorithm.

Chemicals are denoted as C<index>, for example, chemical 1 as

C1. In this representation, an edge is drawn between two

chemicals if they are incompatible with one another chemical.

The number of storage units required to store the chemicals is

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

seven, which is the chromatic number derived from the manual

process of graph coloring.

Fig. 4.5 Manual Chemical Storage Allocation Initial State (Source: Author)

Fig. 4.6 Manual Chemical Storage Allocation Stage 1 (Source: Author)

Fig. 4.7 Manual Chemical Storage Allocation Stage 2 (Source: Author)

Fig. 4.8 Manual Chemical Storage Allocation Stage 3 (Source: Author)

Fig. 4.9 Manual Chemical Storage Allocation Stage 4 (Source: Author)

Fig. 4.10 Manual Chemical Storage Allocation Stage 5 (Source: Author)

Fig. 4.11 Manual Chemical Storage Allocation Stage 6 (Source: Author)

Fig. 4.12 Manual Chemical Storage Allocation Stage 7 (Source: Author)

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig. 4.13 Manual Chemical Storage Allocation Final State (Source: Author)

The storage allocation result produced by the program is as

follows:

Fig. 4.14 Automated Chemical Storage Allocation (Source: Author)

The chemical groupings within each unit between the manual

process and program are consistent, confirming the correctness

of the program's implementation. The numbering of storage

units may differ due to the chemical grouping algorithm, which

processes the chemicals in two steps. Chemicals are initially

grouped based on their storage temperatures, then they are

further organized based on their incompatibilities.

V. CONCLUSION

This study successfully optimizes chemical storage using the

Welch-Powell graph coloring algorithm. The developed

program assigns chemicals into storage units, taking into

account both their incompatibilities and storage temperature.

The program has been proved to be highly efficient when

handling a large number of chemicals.

Further development of the program could allow it to manage

additional chemical requirements, such as humidity control.

More specific needs, like temperature ranges for storage, can

could also be introduced to the program. A feature for

automating the assignment of incompatibilities would be a great

addition to the program, eliminating the need for users to

manually input each chemical’s index.

In conclusion, the application of the Welch-Powell algorithm

for optimizing chemical storage provides valuable insights. By

automating the chemical allocation process, it reduces the

likelihood of errors that occur in manual processing. The

automation of chemical storage allocation also makes the

process more time-efficient. This leads to a more reliable and

optimized chemical storage system. The knowledge gained from

this study contributes to advancements in safe chemical storage

practices and can be applied to similar allocation systems.

VI. APPENDIX

The source code for this paper, titled Optimizing Chemical

Storage Utilizing the Welch-Powell Algorithm, is available at:

https://github.com/naomirisaka/Makalah-Matdis

VII. ACKNOWLEDGMENT

First and foremost, the author expresses deep gratitude to God

Almighty for His guidance and strength in completing this

study. The author also wishes to extend sincere appreciation to

Ir. Rila Mandala, M.Sc., Ph.D., and Dr. Ir. Rinaldi Munir, M.T.,

for their invaluable knowledge and guidance as the author’s

lecturers in Discrete Mathematics. Their insights were

instrumental in the development of this work. Heartfelt thanks

are also due to the author’s family and friends for their

unwavering support and encouragement throughout this study.

REFERENCES

[1] R. Munir, “Graf Bagian 1”, IF1220 Matematika Diskrit, 2024. [Online].
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf. [Accessed: Dec. 26, 2024].

[2] J. Harris, J. L. Hirst, and M. Mossinghoff, Combinatorics and Graph
Theory (CGT), University of Notre Dame. [Online]. Available:

https://www3.nd.edu/~dgalvin1/40210/40210_F12/CGT_early.pdf. [Accessed:

Dec. 27, 2024].
[3] R. Munir, “Graf Bagian 2”, IF1220 Matematika Diskrit, 2024. [Online].

Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/21-Graf-Bagian2-2024.pdf. [Accessed: Dec. 27, 2024].
[4] R. Munir, “Graf Bagian 3”, IF1220 Matematika Diskrit, 2024. [Online].

Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/22-Graf-Bagian3-2024.pdf. [Accessed: Dec. 27, 2024].
[5] Moreno Valley Fire Department, Chemical Classification Guidelines,

Moreno Valley Government, 2023. [Online]. Available:

https://moval.gov/departments/fire/pdf/dev-
guides/ChemicalClassificationGuidelines.pdf. [Accessed: Dec. 28, 2024].

[6] Smithsonian Institution, “Chapter 19 Chemical Handling and Storage”,

Smithsonian Institution. [Online]. Available:
https://www.si.edu/sites/default/files/unit/oshem/ch_19_chemical_handling.pdf

. [Accessed: Dec. 28, 2024].
[7] EPFL, “Chemical Storage”, EPFL. [Online]. Available:

https://www.epfl.ch/campus/security-safety/en/lab-safety/hazards/chemical-

hazards/chemicals-storage/. [Accessed: Dec. 28, 2024].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 5 Januari 2025

Naomi Risaka Sitorus – 13523122

https://github.com/naomirisaka/Makalah-Matdis
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://www3.nd.edu/~dgalvin1/40210/40210_F12/CGT_early.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://moval.gov/departments/fire/pdf/dev-guides/ChemicalClassificationGuidelines.pdf
https://moval.gov/departments/fire/pdf/dev-guides/ChemicalClassificationGuidelines.pdf
https://www.si.edu/sites/default/files/unit/oshem/ch_19_chemical_handling.pdf
https://www.si.edu/sites/default/files/unit/oshem/ch_19_chemical_handling.pdf
https://www.epfl.ch/campus/security-safety/en/lab-safety/hazards/chemical-hazards/chemicals-storage/
https://www.epfl.ch/campus/security-safety/en/lab-safety/hazards/chemical-hazards/chemicals-storage/

