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Abstract—University timetabling is a complex problem 

involving multiple constraints such as lecturer availability, student 

preferences, and classroom capacities. This paper presents an 

approach to solving the university scheduling problem using 

Constraint Satisfaction Problem (CSP) techniques. Each class is 

modeled as a variable, with domains representing available time 

slots and rooms, while constraints ensure no conflicts between 

lecturer schedules, overlapping student enrollments, and room 

capacities. The CSP is solved using backtracking with constraint 

propagation to ensure efficient and feasible solutions. Results 

demonstrate the approach's capability to generate conflict-free 

timetables while optimizing resource utilization. This method 

showcases the potential of CSP for scalable and flexible scheduling 

in academic institutions. 
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I.   INTRODUCTION 

Efficient scheduling is a cornerstone of effective academic 

management, particularly in universities where multiple 

constraints must be balanced. The scheduling process must 

accommodate lecturers, students, and classrooms without 

creating conflicts, such as overlapping schedules or exceeding 

room capacities. A well-designed timetable ensures that 

academic activities run smoothly, maximizing the utilization of 

resources while minimizing disruptions. Conversely, a poorly 

planned schedule can lead to inefficiencies, reduced 

productivity, and dissatisfaction among stakeholders. 

To tackle the complexity of university timetabling, 

computational methods have emerged as essential tools. One 

prominent approach is the use of Constraint Satisfaction 

Problems (CSP), a framework that defines the problem in terms 

of variables, domains, and constraints. In the context of 

scheduling, variables represent classes, domains correspond to 

available time slots and rooms, and constraints ensure that 

conflicts are avoided. This structured methodology facilitates 

the generation of feasible and conflict-free timetables. 

At the heart of CSP lies graph theory, a fundamental branch 

of discrete mathematics that serves as the backbone of the 

scheduling process. Graphs represent the relationships between 

variables, where nodes signify classes and edges signify 

conflicts, such as shared lecturers or students. By leveraging 

graph-theoretic principles, CSP can detect and resolve conflicts 

efficiently. For instance, graph coloring techniques assign time 

slots (colors) to nodes while ensuring that no adjacent nodes 

share the same color. This approach guarantees that conflicting 

classes are scheduled at different times, making it a powerful 

solution for complex scheduling challenges.  

 

 
Fig 1.1 Constraint Satisfaction Problem Graph 

(Taken from Abhijeet Nayak’s Medium) 

 

II.  THEORETICAL BASIS 

A. Graph 

Graphs are generally used to represent discrete objects and the 

relationships between those objects. A graph 𝐺 is defined as 𝐺 =
(𝑉, 𝐸), where 𝑉 is a non-empty set of vertices (or nodes), 

defined as 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝐸 is a set of edges that 

connects pairs of vertices, defined as 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}. The set 

𝑉 must not be empty, meaning a graph cannot exist without 

vertices, but the set 𝐸 can be empty, meaning a graph is allowed 

to have no edges.  

 
Fig 2.1 Example of Graph 

(Taken from GeeksforGeeks) 

 

Based on the presence or absence of loops or multiple edges 
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in a graph, graphs are classified into two types: 

a. Simple Graph 

A simple graph is a graph that does not contain multiple 

edges (parallel edges) or loops (edges that connect a 

vertex to itself). 

b. Non-Simple Graph 

A non-simple graph contains either: 

1. Multi-Graph 

A graph with multiple edges (parallel edges) 

between the same pair of vertices. 

2. Pseudo-Graph 

A graph containing at least one loop, where an edge 

starts and ends at the same vertex. 

 

 
Fig 2.2. a) Simple Graph b) Multi-Graph c) Pseudo-Graph 

(Taken from Rinaldi Munir Webpage) 

 

In 𝐺2, the edges 𝑒3 = (1,3) and  𝑒4 = (1,3) are called multiple 

edges (or parallel edges) because both edges connect the same 

pair of vertices, namely vertex 1 and vertex 3. In 𝐺3, the edge 

𝑒8 = (3,3) is called a loop because it starts and ends at the same 

vertex, namely vertex 3. 

    Graph can also be classified based on whether the edges have 

a direction: 

a. Undirected Graph 

A graph where the edges have no direction, meaning 

the relationship between connected vertices is 

bidirectional. 

 
Fig 2.3 Undirected Graph 

(Taken from Rinaldi Munir Webpage) 

 

b. Directed Graph (Digraph) 

A graph where each edge has a direction, indicating a 

one-way relationship between the vertices it connects. 

 
Fig 2.4 Directed Graph 

(Taken from Rinaldi Munir Webpage) 

 

    Graphs have various terminologies that describe their 

structural properties: 

a. Adjacency 

 
Fig 2.5 Graph with Adjacent Vertices 

(Taken from Rinaldi Munir Webpage) 

 

Adjacency refers to two vertices being directly 

connected by an edge. For instance, in graph 𝐺1, vertex 

1 is adjacent to vertices 2 and 3, but not to vertex 4. 

  

b. Incidency 

 
Fig 2.6 Graph with Incidents 

(Taken from Rinaldi Munir Webpage) 

 

Incidency describes the relationship between an edge 

and the vertices it connects. For example, in 𝐺1, edge 

(2,3) is incident to vertices 2 and 3, while edge (1,2) 

is not incident to vertex 4. 

 

c. Isolated Vertex 

 
Fig 2.7 Graph with Isolated Vertex 

(Taken from Rinaldi Munir Webpage) 

 

A vertex with no edges is called isolated vertex, as seen 

in graph 𝐺3, where vertex 5 is isolated. 

 

d. Null Graph (Empty Graph) 

 
Fig 2.8 Null Graph 

(Taken from Rinaldi Munir Webpage) 

 

A graph with no edges at all is called a null graph or 

empty graph. 
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e. Degree 

 
Fig 2.9 Degree in Graph 

(Taken from Rinaldi Munir Webpage) 

 

The degree of a vertex is defined as the number of 

edges incident to it, denoted by 𝑑(𝑣). For example, in 

graph 𝐺2, vertex 1 has a degree of 𝑑(1) = 3, as it is 

connected to multiple edges, and vertex 3 has a degree 

of 𝑑(3) = 4, due to the presence of both multiple edges 

and a loop. 

 

 
Fig 2.10 Degree in Directed Graph 

(Taken from Rinaldi Munir Webpage) 

 

In the directed graph, the degree of a vertex is further 

divided into in-degree and out-degree. In graph 𝐺4, 

𝑑𝑖𝑛(1) = 2; 𝑑𝑜𝑢𝑡(1) = 2, 𝑑𝑖𝑛(2) = 2; 𝑑𝑜𝑢𝑡(2) = 3, 
𝑑𝑖𝑛(3) = 2; 𝑑𝑜𝑢𝑡(3) = 1, 𝑑𝑖𝑛(4) = 1; 𝑑𝑜𝑢𝑡(4) = 2. 
 

f. Path 

A path of length 𝑛 from the initial vertex 𝑣0 to the 

destination vertex 𝑣𝑛 in a graph 𝐺 is a sequence of 

alternating vertices and edges in the form 

𝑣0, 𝑒1, 𝑣1, 𝑒2, 𝑣2 … , 𝑣𝑛−1, 𝑒𝑛, 𝑣𝑛, such that 𝑒1 =
(𝑣0, 𝑣1), 𝑒2 = (𝑣1, 𝑣2),…, 𝑒𝑛 = (𝑣𝑛−1, 𝑣𝑛) are edges 
of the graph 𝐺. 

     

    Special types of graphs play an important role in graph theory, 

with each type exhibiting unique characteristics: 

a. Complete Graph 

A complete graph is a simple graph in which every 

vertex is connected to every other vertex. A complete 

graph with 𝑛 vertices is denoted by 𝐾𝑛. 

 
Fig 2.11 Example of a Complete Graph 

(Taken from Rinaldi Munir Webpage) 

 

b. Cycle Graph 

A cycle graph is a simple graph in which every vertex 

has a degree of two. A cycle graph with 𝑛 vertices is 

denoted by 𝐶𝑛. 

 
Fig 2.12 Example of a Cycle Graph 

(Taken from Rinaldi Munir Webpage) 

 

c. Bipartite Graph 

A bipartite graph is a graph 𝐺 in which its set of 

vertices can be divided into two disjoint subsets 𝑉1 and 

𝑉2, such that every edge in 𝐺 connects a vertex in 𝑉1 to 

a vertex in 𝑉2. This type of graph is denoted as 

𝐺(𝑉1, 𝑉2). 

 
Fig 2.13 Example of a Bipartite Graph 

(Taken from Rinaldi Munir Webpage) 

 

B. Graph Coloring 

Graph coloring is the assignment of labels, commonly 

referred to as "colors," to elements of a graph, subject to certain 

constraints. The most typical form is vertex coloring, where 

colors are assigned to vertices such that no two adjacent vertices 

have the same color. Formally, for a graph 𝐺 = (𝑉, 𝐸), a 

coloring is a function 𝑓: 𝑉 → 𝐶, where 𝐶 is the set of colors, such 

that for every edge (𝑢, 𝑣) ∈ 𝐸, 𝑓(𝑢) ≠ 𝑓(𝑣). 

The chromatic number of a graph, denoted by 𝜒(𝐺), is the is 

the smallest number of colors needed to color the graph while 

satisfying the coloring constraints. For example: 

a. A complete graph 𝐾𝑛 has 𝜒(𝐾𝑛) = 𝑛, as every vertex is 

adjacent to all other vertices. 

b. A cycle graph 𝐶𝑛 has 𝜒(𝐶𝑛) = 2 if 𝑛 is even and 𝜒(𝐶𝑛) =
3 if 𝑛 is odd. 

c. A bipartite graph 𝐾𝑚,𝑛 has 𝜒(𝐺) = 2, where one color is 

assigned to the vertices in set 𝑉1 and another color is 

assigned to the vertices in set 𝑉2. 

 

 
Fig 2.14 Example of Graph Coloring 

(Taken from Wikipedia) 
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III.  APPROACH AND METHODOLOGY 

The scheduling system developed in this paper utilizes 

Constraint Satisfaction Problems (CSP) to create conflict-free 

university timetables. The primary objective is to assign time 

slots and classrooms to courses while satisfying constraints 

related to lecturers, students, classroom capacities, and course 

durations. CSP models this problem by defining courses as 

variables 𝑋𝑐, with their domains 𝐷(𝑋𝑐) consisting of all 

feasible combinations of time slots and classrooms: 

 

𝐷(𝑋𝑐) = {(𝑡1, 𝑅1), (𝑡2, 𝑅2), … , (𝑡𝑚, 𝑅𝑘)}. 

 

Constraints are represented mathematically to ensure valid 

assignments. For example, the classroom capacity constraint 

ensures that the assigned classroom can accommodate the 

number of students enrolled in the course: 

 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑅) ≥ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠(𝐶). 

 

Non-overlapping schedules are enforced to ensure no lecturer 

or student is assigned to multiple courses at the same time: 

 

𝑡𝑖 ≠ 𝑡𝑗 

∀𝑖, 𝑗 ∈ 𝐶𝑜𝑢𝑟𝑠𝑒𝑠   𝑖𝑓 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟(𝑖) = 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟(𝑗)  
𝑜𝑟 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠(𝑖) ∩ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠(𝑗) ≠ ∅. 

 

Additionally, classrooms must be available for only one 

course during a time slot: 

 

𝑅𝑜𝑜𝑚(𝑡, 𝐶) ≠ 𝑅𝑜𝑜𝑚(𝑡, 𝐶′)      ∀𝐶, 𝐶′     𝑖𝑓 𝑡𝑐 = 𝑡𝑐′ 

 

and the course duration must be satisfied: 

 

𝑡𝑒𝑛𝑑(𝐶) − 𝑡𝑠𝑡𝑎𝑟𝑡(𝐶) = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐶). 

 

    The CSP solution begins with the construction of a 

constraint graph, where nodes represent courses and edges 

represent conflicts such as shared lecturers or overlapping 

students. If graph coloring is applied, the chromatic number 

𝜒(𝐺) determines the minimum number of time slots required 

𝜒(𝐺) ≤ 𝑛, where 𝑛 is the number of available time slots. 

Domain reduction techniques refine possible assignments, 

such as removing time slots where classroom capacities are 

insufficient. Constraint propagation, such as Arc Consistency 

(AC-3), ensures that for each value 𝑥 in a domain 𝐷(𝑋), there 

exists a value 𝑦 in a connected variable’s domain 𝐷(𝑌) that 

satisfies their constraint: 

 

∀𝑥 ∈ 𝐷(𝑋), ∃𝑦 ∈ 𝐷(𝑌) such that (𝑥, 𝑦) satisfies 𝐶(𝑋, 𝑌). 

 

A backtracking search algorithm is then used to assign time 

slots and classrooms, enhanced by heuristics such as 

Minimum Remaining Values (MRV), which prioritizes 

variables with the fewest valid options, and the Degree 

Heuristic, which prioritizes variables with the most 

constraints. Optimization is incorporated to minimize or 

maximize key objectives, such as minimizing the number of 

time slots used: 

 

𝑚𝑖𝑛 ∑ 𝛿(𝑡) = {
1    𝑖𝑓 𝑡 𝑖𝑠 𝑢𝑠𝑒𝑑,
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝑡∈𝑇𝑖𝑖𝑚𝑒 𝑆𝑙𝑜𝑡𝑠

 

 

or maximizing classroom utilization: 

 

𝑚𝑎𝑥 ∑
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠(𝐶)

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑅𝑜𝑜𝑚(𝐶))
𝐶∈𝐶𝑜𝑢𝑟𝑠𝑒𝑠

. 

 

Once all variables are assigned, the system verifies the 

schedule to ensure no constraints are violated. 

 

IV.  CONSTRAINT SATISFACTION PROBLEM 

    To test the program, we need to create a sample dataset of 

schedules and classrooms. In this case, I am using a schedule 

and classroom data from Informatics Engineering students in 

their 3rd semester at ITB for 2024, divided into two groups. 

Group M1 consists of students with odd NIMs, while group M2 

includes those with even NIMs. The program will be tested 

using this dataset to evaluate its performance and explore 

potential alternatives to the current schedule. The sample 

schedule and group data can be modified if it follows the 

structure of the ‘ClassRoom’ and ‘Course’ class objects, as well 

as the specified time interval format. 

 

 
Fig 4.1 Sample Data of Schedule 
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    To align the required course durations with the available 

time slots, the format is converted from single time slots to 

multiple time intervals, ensuring that the total duration matches 

the requirements of all courses. 

 

 
Fig 4.2 Create Intervals of Time 

 

    Next, create variables for each course and for combined 

courses. Combined courses refer to instances where the same 

course with the same lecturer can be conducted simultaneously 

in a classroom that accommodates the total capacity of the 

students. This step is essential for evaluating multiple possible 

combinations effectively. 

 

 
Fig 4.3 Create Variables 

 

    Creating a university schedule involves considering 

numerous constraints that vary depending on the institution. In 

this case, we implement universal constraints as practiced at 

ITB. Each course must be assigned a schedule to ensure students 

can attend the courses they have selected. No room can host two 

different courses simultaneously, as this would disrupt the focus 

of the students. Similarly, each student group cannot be 

scheduled for two or more different courses at the same time to 

prevent overlapping, which would make it impossible for 

students to attend both. Lecturers must also avoid overlapping 

teaching schedules to ensure they can conduct all assigned 

classes effectively. Additionally, courses have specific credit 

requirements that determine their duration. For instance, a 4-

credit course requires 4 hours of class time, often divided into 

two 2-hour sessions, which cannot occur on the same day. 

Lastly, classrooms must meet the capacity requirements of the 

students to ensure an optimal teaching and learning experience. 

 

 
Fig 4.4 Implementation of Overlapping Course Constraint 

 

 
Fig 4.5 Implementation of Overlapping Room Constraint 

 

 
Fig 4.6 Implementation of Overlapping Group Constraint 

 

 
Fig 4.7 Implementation of Overlapping Lecturer Constraint 

 

 
Fig 4.8 Implementation of Course Constraint 

 

 
Fig 4.9 Implementation of Room Capacity Constraint 
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Fig 4.10 Implementation of CSP Model 

 

 
Fig 4.11 Schedule Graph before CSP 

 

 
Fig 4.12 Colored Schedule Graph After CSP 

 

 
Fig 4.13 Result of Schedule 

 

    From Fig. 4.11, it is evident that prior to applying CSP, the 

schedules for the same group overlapped, as indicated by the 

adjacency of the graph. In Fig 4.12, after implementing CSP, the 

graph transforms into a Null Graph with no edges, and the 

colored graph uses only a single color. This indicates that there 

are no overlapping schedules, ensuring that all courses can be 

conducted without conflict. 

    Figure 4.13 illustrates the final schedule, where no 

overlapping courses are present, and all constraints are 

successfully satisfied. The results also showcase various 

scheduling possibilities for the 3rd-semester Informatics 

Engineering students at ITB for 2024, providing alternative 

options for future consideration. Since the program operates 

using a randomized approach for each execution, it generates a 

unique schedule every time, offering multiple scheduling 

alternatives. 

 

 
Fig 4.14 Alternative Result of Schedule 
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V.   CONCLUSION 

The optimization of university timetabling using Constraint 

Satisfaction Problems (CSP) presents a structured and effective 

approach to addressing the complex scheduling needs of higher 

education institutions. By leveraging CSP, the process ensures 

that multiple constraints—such as room capacity, lecturer 

availability, course durations, and student group 

compatibility—are satisfied. 

While advanced optimization techniques such as machine 

learning or metaheuristic algorithms could enhance scalability 

and adaptability, CSP remains a robust and reliable choice for 

solving structured scheduling problems. This approach has 

significant potential applications not only for academic 

institutions but also for other domains requiring efficient 

resource and time management, such as healthcare, event 

planning, and workforce scheduling. 

 

VI.   APPENDIX 

The source code used to implement the optimization of 

university timetabling using CSP: 

https://github.com/farrelathalla/Optimization-of-University-

Timetabling-Using-CSP.git 
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