
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Optimization of University Timetabling Using

Constraint Satisfaction Problem

Farrel Athalla Putra - 135231181

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1farrelxag@gmail.com, 13523118@std.stei.itb.ac.id

Abstract—University timetabling is a complex problem

involving multiple constraints such as lecturer availability, student

preferences, and classroom capacities. This paper presents an

approach to solving the university scheduling problem using

Constraint Satisfaction Problem (CSP) techniques. Each class is

modeled as a variable, with domains representing available time

slots and rooms, while constraints ensure no conflicts between

lecturer schedules, overlapping student enrollments, and room

capacities. The CSP is solved using backtracking with constraint

propagation to ensure efficient and feasible solutions. Results

demonstrate the approach's capability to generate conflict-free

timetables while optimizing resource utilization. This method

showcases the potential of CSP for scalable and flexible scheduling

in academic institutions.

Keywords—class scheduling, Constraint Satisfaction Problem,

optimization, timetabling.

I. INTRODUCTION

Efficient scheduling is a cornerstone of effective academic

management, particularly in universities where multiple

constraints must be balanced. The scheduling process must

accommodate lecturers, students, and classrooms without

creating conflicts, such as overlapping schedules or exceeding

room capacities. A well-designed timetable ensures that

academic activities run smoothly, maximizing the utilization of

resources while minimizing disruptions. Conversely, a poorly

planned schedule can lead to inefficiencies, reduced

productivity, and dissatisfaction among stakeholders.

To tackle the complexity of university timetabling,

computational methods have emerged as essential tools. One

prominent approach is the use of Constraint Satisfaction

Problems (CSP), a framework that defines the problem in terms

of variables, domains, and constraints. In the context of

scheduling, variables represent classes, domains correspond to

available time slots and rooms, and constraints ensure that

conflicts are avoided. This structured methodology facilitates

the generation of feasible and conflict-free timetables.

At the heart of CSP lies graph theory, a fundamental branch

of discrete mathematics that serves as the backbone of the

scheduling process. Graphs represent the relationships between

variables, where nodes signify classes and edges signify

conflicts, such as shared lecturers or students. By leveraging

graph-theoretic principles, CSP can detect and resolve conflicts

efficiently. For instance, graph coloring techniques assign time

slots (colors) to nodes while ensuring that no adjacent nodes

share the same color. This approach guarantees that conflicting

classes are scheduled at different times, making it a powerful

solution for complex scheduling challenges.

Fig 1.1 Constraint Satisfaction Problem Graph

(Taken from Abhijeet Nayak’s Medium)

II. THEORETICAL BASIS

A. Graph

Graphs are generally used to represent discrete objects and the

relationships between those objects. A graph 𝐺 is defined as 𝐺 =
(𝑉, 𝐸), where 𝑉 is a non-empty set of vertices (or nodes),

defined as 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝐸 is a set of edges that

connects pairs of vertices, defined as 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}. The set

𝑉 must not be empty, meaning a graph cannot exist without

vertices, but the set 𝐸 can be empty, meaning a graph is allowed

to have no edges.

Fig 2.1 Example of Graph

(Taken from GeeksforGeeks)

Based on the presence or absence of loops or multiple edges

mailto:1farrelxag@gmail.com
mailto:13523118@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

in a graph, graphs are classified into two types:

a. Simple Graph

A simple graph is a graph that does not contain multiple

edges (parallel edges) or loops (edges that connect a

vertex to itself).

b. Non-Simple Graph

A non-simple graph contains either:

1. Multi-Graph

A graph with multiple edges (parallel edges)

between the same pair of vertices.

2. Pseudo-Graph

A graph containing at least one loop, where an edge

starts and ends at the same vertex.

Fig 2.2. a) Simple Graph b) Multi-Graph c) Pseudo-Graph

(Taken from Rinaldi Munir Webpage)

In 𝐺2, the edges 𝑒3 = (1,3) and 𝑒4 = (1,3) are called multiple

edges (or parallel edges) because both edges connect the same

pair of vertices, namely vertex 1 and vertex 3. In 𝐺3, the edge

𝑒8 = (3,3) is called a loop because it starts and ends at the same

vertex, namely vertex 3.

 Graph can also be classified based on whether the edges have

a direction:

a. Undirected Graph

A graph where the edges have no direction, meaning

the relationship between connected vertices is

bidirectional.

Fig 2.3 Undirected Graph

(Taken from Rinaldi Munir Webpage)

b. Directed Graph (Digraph)

A graph where each edge has a direction, indicating a

one-way relationship between the vertices it connects.

Fig 2.4 Directed Graph

(Taken from Rinaldi Munir Webpage)

 Graphs have various terminologies that describe their

structural properties:

a. Adjacency

Fig 2.5 Graph with Adjacent Vertices

(Taken from Rinaldi Munir Webpage)

Adjacency refers to two vertices being directly

connected by an edge. For instance, in graph 𝐺1, vertex

1 is adjacent to vertices 2 and 3, but not to vertex 4.

b. Incidency

Fig 2.6 Graph with Incidents

(Taken from Rinaldi Munir Webpage)

Incidency describes the relationship between an edge

and the vertices it connects. For example, in 𝐺1, edge

(2,3) is incident to vertices 2 and 3, while edge (1,2)

is not incident to vertex 4.

c. Isolated Vertex

Fig 2.7 Graph with Isolated Vertex

(Taken from Rinaldi Munir Webpage)

A vertex with no edges is called isolated vertex, as seen

in graph 𝐺3, where vertex 5 is isolated.

d. Null Graph (Empty Graph)

Fig 2.8 Null Graph

(Taken from Rinaldi Munir Webpage)

A graph with no edges at all is called a null graph or

empty graph.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

e. Degree

Fig 2.9 Degree in Graph

(Taken from Rinaldi Munir Webpage)

The degree of a vertex is defined as the number of

edges incident to it, denoted by 𝑑(𝑣). For example, in

graph 𝐺2, vertex 1 has a degree of 𝑑(1) = 3, as it is

connected to multiple edges, and vertex 3 has a degree

of 𝑑(3) = 4, due to the presence of both multiple edges

and a loop.

Fig 2.10 Degree in Directed Graph

(Taken from Rinaldi Munir Webpage)

In the directed graph, the degree of a vertex is further

divided into in-degree and out-degree. In graph 𝐺4,

𝑑𝑖𝑛(1) = 2; 𝑑𝑜𝑢𝑡(1) = 2, 𝑑𝑖𝑛(2) = 2; 𝑑𝑜𝑢𝑡(2) = 3,
𝑑𝑖𝑛(3) = 2; 𝑑𝑜𝑢𝑡(3) = 1, 𝑑𝑖𝑛(4) = 1; 𝑑𝑜𝑢𝑡(4) = 2.

f. Path

A path of length 𝑛 from the initial vertex 𝑣0 to the

destination vertex 𝑣𝑛 in a graph 𝐺 is a sequence of

alternating vertices and edges in the form

𝑣0, 𝑒1, 𝑣1, 𝑒2, 𝑣2 … , 𝑣𝑛−1, 𝑒𝑛, 𝑣𝑛, such that 𝑒1 =
(𝑣0, 𝑣1), 𝑒2 = (𝑣1, 𝑣2),…, 𝑒𝑛 = (𝑣𝑛−1, 𝑣𝑛) are edges
of the graph 𝐺.

 Special types of graphs play an important role in graph theory,

with each type exhibiting unique characteristics:

a. Complete Graph

A complete graph is a simple graph in which every

vertex is connected to every other vertex. A complete

graph with 𝑛 vertices is denoted by 𝐾𝑛.

Fig 2.11 Example of a Complete Graph

(Taken from Rinaldi Munir Webpage)

b. Cycle Graph

A cycle graph is a simple graph in which every vertex

has a degree of two. A cycle graph with 𝑛 vertices is

denoted by 𝐶𝑛.

Fig 2.12 Example of a Cycle Graph

(Taken from Rinaldi Munir Webpage)

c. Bipartite Graph

A bipartite graph is a graph 𝐺 in which its set of

vertices can be divided into two disjoint subsets 𝑉1 and

𝑉2, such that every edge in 𝐺 connects a vertex in 𝑉1 to

a vertex in 𝑉2. This type of graph is denoted as

𝐺(𝑉1, 𝑉2).

Fig 2.13 Example of a Bipartite Graph

(Taken from Rinaldi Munir Webpage)

B. Graph Coloring

Graph coloring is the assignment of labels, commonly

referred to as "colors," to elements of a graph, subject to certain

constraints. The most typical form is vertex coloring, where

colors are assigned to vertices such that no two adjacent vertices

have the same color. Formally, for a graph 𝐺 = (𝑉, 𝐸), a

coloring is a function 𝑓: 𝑉 → 𝐶, where 𝐶 is the set of colors, such

that for every edge (𝑢, 𝑣) ∈ 𝐸, 𝑓(𝑢) ≠ 𝑓(𝑣).

The chromatic number of a graph, denoted by 𝜒(𝐺), is the is

the smallest number of colors needed to color the graph while

satisfying the coloring constraints. For example:

a. A complete graph 𝐾𝑛 has 𝜒(𝐾𝑛) = 𝑛, as every vertex is

adjacent to all other vertices.

b. A cycle graph 𝐶𝑛 has 𝜒(𝐶𝑛) = 2 if 𝑛 is even and 𝜒(𝐶𝑛) =
3 if 𝑛 is odd.

c. A bipartite graph 𝐾𝑚,𝑛 has 𝜒(𝐺) = 2, where one color is

assigned to the vertices in set 𝑉1 and another color is

assigned to the vertices in set 𝑉2.

Fig 2.14 Example of Graph Coloring

(Taken from Wikipedia)

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

III. APPROACH AND METHODOLOGY

The scheduling system developed in this paper utilizes

Constraint Satisfaction Problems (CSP) to create conflict-free

university timetables. The primary objective is to assign time

slots and classrooms to courses while satisfying constraints

related to lecturers, students, classroom capacities, and course

durations. CSP models this problem by defining courses as

variables 𝑋𝑐, with their domains 𝐷(𝑋𝑐) consisting of all

feasible combinations of time slots and classrooms:

𝐷(𝑋𝑐) = {(𝑡1, 𝑅1), (𝑡2, 𝑅2), … , (𝑡𝑚, 𝑅𝑘)}.

Constraints are represented mathematically to ensure valid

assignments. For example, the classroom capacity constraint

ensures that the assigned classroom can accommodate the

number of students enrolled in the course:

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑅) ≥ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠(𝐶).

Non-overlapping schedules are enforced to ensure no lecturer

or student is assigned to multiple courses at the same time:

𝑡𝑖 ≠ 𝑡𝑗

∀𝑖, 𝑗 ∈ 𝐶𝑜𝑢𝑟𝑠𝑒𝑠 𝑖𝑓 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟(𝑖) = 𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟(𝑗)
𝑜𝑟 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠(𝑖) ∩ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠(𝑗) ≠ ∅.

Additionally, classrooms must be available for only one

course during a time slot:

𝑅𝑜𝑜𝑚(𝑡, 𝐶) ≠ 𝑅𝑜𝑜𝑚(𝑡, 𝐶′) ∀𝐶, 𝐶′ 𝑖𝑓 𝑡𝑐 = 𝑡𝑐′

and the course duration must be satisfied:

𝑡𝑒𝑛𝑑(𝐶) − 𝑡𝑠𝑡𝑎𝑟𝑡(𝐶) = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝐶).

 The CSP solution begins with the construction of a

constraint graph, where nodes represent courses and edges

represent conflicts such as shared lecturers or overlapping

students. If graph coloring is applied, the chromatic number

𝜒(𝐺) determines the minimum number of time slots required

𝜒(𝐺) ≤ 𝑛, where 𝑛 is the number of available time slots.

Domain reduction techniques refine possible assignments,

such as removing time slots where classroom capacities are

insufficient. Constraint propagation, such as Arc Consistency

(AC-3), ensures that for each value 𝑥 in a domain 𝐷(𝑋), there

exists a value 𝑦 in a connected variable’s domain 𝐷(𝑌) that

satisfies their constraint:

∀𝑥 ∈ 𝐷(𝑋), ∃𝑦 ∈ 𝐷(𝑌) such that (𝑥, 𝑦) satisfies 𝐶(𝑋, 𝑌).

A backtracking search algorithm is then used to assign time

slots and classrooms, enhanced by heuristics such as

Minimum Remaining Values (MRV), which prioritizes

variables with the fewest valid options, and the Degree

Heuristic, which prioritizes variables with the most

constraints. Optimization is incorporated to minimize or

maximize key objectives, such as minimizing the number of

time slots used:

𝑚𝑖𝑛 ∑ 𝛿(𝑡) = {
1 𝑖𝑓 𝑡 𝑖𝑠 𝑢𝑠𝑒𝑑,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝑡∈𝑇𝑖𝑖𝑚𝑒 𝑆𝑙𝑜𝑡𝑠

or maximizing classroom utilization:

𝑚𝑎𝑥 ∑
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠(𝐶)

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑅𝑜𝑜𝑚(𝐶))
𝐶∈𝐶𝑜𝑢𝑟𝑠𝑒𝑠

.

Once all variables are assigned, the system verifies the

schedule to ensure no constraints are violated.

IV. CONSTRAINT SATISFACTION PROBLEM

 To test the program, we need to create a sample dataset of

schedules and classrooms. In this case, I am using a schedule

and classroom data from Informatics Engineering students in

their 3rd semester at ITB for 2024, divided into two groups.

Group M1 consists of students with odd NIMs, while group M2

includes those with even NIMs. The program will be tested

using this dataset to evaluate its performance and explore

potential alternatives to the current schedule. The sample

schedule and group data can be modified if it follows the

structure of the ‘ClassRoom’ and ‘Course’ class objects, as well

as the specified time interval format.

Fig 4.1 Sample Data of Schedule

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

 To align the required course durations with the available

time slots, the format is converted from single time slots to

multiple time intervals, ensuring that the total duration matches

the requirements of all courses.

Fig 4.2 Create Intervals of Time

 Next, create variables for each course and for combined

courses. Combined courses refer to instances where the same

course with the same lecturer can be conducted simultaneously

in a classroom that accommodates the total capacity of the

students. This step is essential for evaluating multiple possible

combinations effectively.

Fig 4.3 Create Variables

 Creating a university schedule involves considering

numerous constraints that vary depending on the institution. In

this case, we implement universal constraints as practiced at

ITB. Each course must be assigned a schedule to ensure students

can attend the courses they have selected. No room can host two

different courses simultaneously, as this would disrupt the focus

of the students. Similarly, each student group cannot be

scheduled for two or more different courses at the same time to

prevent overlapping, which would make it impossible for

students to attend both. Lecturers must also avoid overlapping

teaching schedules to ensure they can conduct all assigned

classes effectively. Additionally, courses have specific credit

requirements that determine their duration. For instance, a 4-

credit course requires 4 hours of class time, often divided into

two 2-hour sessions, which cannot occur on the same day.

Lastly, classrooms must meet the capacity requirements of the

students to ensure an optimal teaching and learning experience.

Fig 4.4 Implementation of Overlapping Course Constraint

Fig 4.5 Implementation of Overlapping Room Constraint

Fig 4.6 Implementation of Overlapping Group Constraint

Fig 4.7 Implementation of Overlapping Lecturer Constraint

Fig 4.8 Implementation of Course Constraint

Fig 4.9 Implementation of Room Capacity Constraint

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Fig 4.10 Implementation of CSP Model

Fig 4.11 Schedule Graph before CSP

Fig 4.12 Colored Schedule Graph After CSP

Fig 4.13 Result of Schedule

 From Fig. 4.11, it is evident that prior to applying CSP, the

schedules for the same group overlapped, as indicated by the

adjacency of the graph. In Fig 4.12, after implementing CSP, the

graph transforms into a Null Graph with no edges, and the

colored graph uses only a single color. This indicates that there

are no overlapping schedules, ensuring that all courses can be

conducted without conflict.

 Figure 4.13 illustrates the final schedule, where no

overlapping courses are present, and all constraints are

successfully satisfied. The results also showcase various

scheduling possibilities for the 3rd-semester Informatics

Engineering students at ITB for 2024, providing alternative

options for future consideration. Since the program operates

using a randomized approach for each execution, it generates a

unique schedule every time, offering multiple scheduling

alternatives.

Fig 4.14 Alternative Result of Schedule

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

V. CONCLUSION

The optimization of university timetabling using Constraint

Satisfaction Problems (CSP) presents a structured and effective

approach to addressing the complex scheduling needs of higher

education institutions. By leveraging CSP, the process ensures

that multiple constraints—such as room capacity, lecturer

availability, course durations, and student group

compatibility—are satisfied.

While advanced optimization techniques such as machine

learning or metaheuristic algorithms could enhance scalability

and adaptability, CSP remains a robust and reliable choice for

solving structured scheduling problems. This approach has

significant potential applications not only for academic

institutions but also for other domains requiring efficient

resource and time management, such as healthcare, event

planning, and workforce scheduling.

VI. APPENDIX

The source code used to implement the optimization of

university timetabling using CSP:

https://github.com/farrelathalla/Optimization-of-University-

Timetabling-Using-CSP.git

VII. ACKNOWLEDGMENT

The author wishes to express gratitude, first and foremost, to

Allah SWT for the guidance provided throughout the learning

process and the writing of this paper. Appreciation is also

extended to the lecturers of ITB Discrete Mathematics IF1220,

Mr. Rinaldi Munir and Mr. Rila Mandala, for imparting their

knowledge and guiding the students during the course.

Additionally, the author is deeply thankful to family and friends

for their unwavering support throughout the semester.

REFERENCES

[1] B. Naderi, "Modeling and Scheduling University Course Timetabling

Problems," International Journal of Research in Industrial, vol. 5, no. 1-
4, pp. 1-15, 2016.

[2] T. E. Sakka, "University Course Timetable using Constraint Satisfaction

and Optimization," International Journal of Computing Academik
Research (IJCAR), vol. 4, no. 3, pp. 83-95, 2015.

[3] E. Ozcan, E. K. Burke and B. McCollum, "Proceedings of the 10th

International Conference on the Practice and Theory of Automated
Timetabling," in patatconference.org, York, United Kingdom, 2014.

[4] Munir, Rinaldi.”http://informatika.stei.itb.ac.id/~rinaldi.munir/”

[5] https://medium.com/@abhijeetknayak/constraint-satisfaction-problems-
map-coloring-38c60882be36

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 26 Desember 2024

Farrel Athalla Putra - 13523118

https://github.com/farrelathalla/Optimization-of-University-Timetabling-Using-CSP.git
https://github.com/farrelathalla/Optimization-of-University-Timetabling-Using-CSP.git
http://informatika.stei.itb.ac.id/~rinaldi.munir/
https://medium.com/@abhijeetknayak/constraint-satisfaction-problems-map-coloring-38c60882be36
https://medium.com/@abhijeetknayak/constraint-satisfaction-problems-map-coloring-38c60882be36
https://medium.com/@abhijeetknayak/constraint-satisfaction-problems-map-coloring-38c60882be36

