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Abstract—Boolean algebra approach uses a representation of 

game states in logical equations; in optimizing the tic-tac-toe game 

status, it transforms the board into a bitboard that represents as 

bits. This conversion allows it to be more efficient in performing 

bitwise operations. It allows to minimize computational complexity 

while ensuring accuracy. 
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I.   INTRODUCTION 

Tic-tac-toe, a widely known game, dates to ancient 

civilizations. Its historical roots are far deeper than any lesson. 

Frankly, the origins of the term “tic-tac-toe” have never been 

fully determined. Some theories propose that it comes from the 

sound of a pencil sketching on paper, while others suggest that 

“tic-tac-toe” represents the trio of moves essential to win [1]. 

There are other names for tic-tac-toe, such as “noughts and 

crosses” in different parts of the world, and  even an evidence of 

similar games dates to ancient Egypt, where it was known as 

“Seega” in that era. The games used pebbles and stones as game 

pieces, it can be said that the Ancient Egyptians can be credited 

with the laying foundation for the origins of tic-tac-toe. 

Tic-tac-toe presents interesting computational challenges in 

game state analysis. The traditional approach to analyzing game 

states involves checking rows, columns, and diagonals through 

arithmetic operations. Although, this method may not be optimal 

for all scenarios. With the advancement of computer science, 

alternative approaches such as Boolean algebra have emerged as 

potential optimization techniques for game state analysis. 

This research focuses on optimizing the game state analysis 

of tic-tac-toe using Boolean algebra principles. By transforming 

the traditional board representation into a bitboard format, we 

can leverage efficient bitwise operations for pattern matching 

and winner detection. The research compares the performance 

of traditional arithmetic-based methods with Boolean algebra 

approaches across various game scenarios, from simple row 

wins to complex diagonal patterns. 

The value of this research goes beyond just improving tic-tac-

toe itself. It also can be made to applied to more complex game 

analysis systems and pattern recognition problem. 

 

II. THEORETICAL BASIS 

A. Tic-Tac-Toe Game  

The game of tic-tac-toe has a set of rules that must be 

followed by every player. Before starting on those rules, we 

must first understand how to set up the tic-tac-toe board. At its 

heart, tic-tac-toe is made up of a 3x3 grid, as shown below: 

 
Figure 2.1. The Board of Tic-tac-toe 

 

As shown in Fig. 2.1., there are nine blank spots to be filled 

by the two players alternately. Each player will use a unique 

symbol, typically an X or an O. 

The goal of this game is to get the three of your symbols in a 

row which can be horizontal, vertical, or even diagonal.  

                     
(a)                        (b)                        (c) 

Figure 2.2. Ways to Win in Tic-tac-toe: (a) Horizontal, (b) vertical, 

(c) Diagonal 

 

The opposing player must prevent the other player from 

getting the winning row as shown in Fig. 2.2. The players can’t 

override the spots that are already filled in the board.  

 

 

B. Boolean Algebra  

1. Definition 

Boolean algebra is a branch of algebra that only have two 

possible outcomes, 1 or 0. In another way of saying, the 

variables can only have two options, true or false. Boolean 

Algebra was found by George Boole where he saw that set and 

propositional logic have similar properties. 

The definition of Boolean algebra is as follows: Say that B is 

a set that defined by 2 binary operators, (+) & (·), and single 

unary operator (’). Say that 0 and 1 are different elements from 

set B.  

So, the tuple <B, +, ·, ’, 0, 1> are called Boolean algebra if 

for every a, b, c  B the following axiom holds: 
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1. Identity 

(i) a + 0 = a 

(ii) a · 1 = a 

2. Commutative 

(i)  a + b = b + a  

(ii)  a  b = b · a 

3. Distributive 

(i) a  (b + c) = (a  b) + (a  c)  

(ii) a + (b  c) = (a + b)  (a + c) 

4. Complement 

For every a  B, there’s a unique element a’  B thus: 

(i) a + a’  = 1  

(ii) a  a’ = 0 

 

From the axioms above, it can be concluded that both set 

algebra and propositional logic algebra are instances of Boolean 

algebra or a subset of Boolean algebra as they fulfilled all 

axioms mentioned.  From that, we can analogously say that the 

(+) operation in Boolean algebra is analogous to the ‘or’  

operation in propositional algebra, while the (·) operation is the 

‘and’ equivalent.  The same instances also goes to the other 

operator and elements such as (’), 0, and 1, that are equivalent 

to (~), F, and T. It can be concluded that <B, , , ~, F, T> are 

Boolean algebra. 

 

2. Two Valued Boolean Algebra 

Two valued Boolean algebra is defined on a set of two 

elements, B = {0, 1} with the binary operator (+) & (·), and an 

unary operator (’). The two valued Boolean algebra also fulfils 

the 4 axioms above, the rules for binary and unary operators is 

as follows: 
Table 2.1. Binary and Unary Operator in Two Valued Boolean Algebra 

(source from [3])  

a b a · b  a b a + b 

0 0 0  0 0 0 

0 1 0  0 1 1 

1 0 0  1 0 1 

1 1 1  1 1 1 

 

a a’ 

0 1 

1 1 

 

3. Laws Of Boolean Algebra 

In Boolean Algebra, a set of laws have been invented to help 

reduce the number of logic gates needed to perform a particular 

logic operation[5], The laws of Boolean algebra is as follows: 

 
Table 2.2. The Laws of Boolean Algebra 

1. Identity Laws:  

(i) a + 0 = a  

(ii) a · 1 = a 

2. Idempotent Laws: 

(i) a + a = a   

(ii) a · a = a 

3. Complement Laws: 

(i) a + a’ = 1  

(ii) a · a’ = 0 

 

4. Dominance Laws: 

(i) a · 0 = 0  

(ii) a + 1 = 1 

5. Involution Law: 

(i) (a’)’ = a 

6. Absorption Laws: 

(ii) a + ab = a 

(iii) a(a + b) = a 

7. Commutative Laws: 

(iv) a + b = b + a  

(v) ab = ba 

8. Associative Laws:  

(i) a + (b + c) = (a + b) 

+ c 

(ii) a · a = a 

9. Distributive Laws: 

(i) a + (bc) = (a + b)(a 

+ c) 

(ii) a(b + c) = ab + bc 

10. De Morgan Laws: 

(i) (a + b)’ = a’b’ 

(ii) (ab)’ = a’ + b’ 

11. 0/1 Laws: 

(i) 0’ = 1  

(ii) 1’ = 0 

- 

 

4. Boolean Functions 

Boolean functions are functions that involve variables (also 

known as literals) that take on binary values (0 or 1, or 

TRUE/FALSE). These functions are fundamental to digital 

logic and computer design. 

Here’s an example of Boolean functions: 

𝑓(𝑥) = 𝑥 

This function only has one literal, that is x, that means the 

function depends on the single value of the variable x. 

𝑓(𝑥) = 𝑥′𝑦𝑧 

This function has three literals: x', y, and z. This function will 

be only 1 (True) if x=0, y=1, and z=1 at the same time. 

𝑓(𝑥, 𝑦) = 𝑥 + 𝑦′ 
This function has two literals: x and y'. This function will be 

1 (True) if either x=1, or y=0. 

 

5. Logic Gate 

One of the way to represents Boolean functions is using logic 

gate. Logic gates are electronic implementations of basic 

Boolean functions. Each gate processes one or more binary 

inputs to produce a single binary output based on its specific 

Boolean operation. 

There are there basic logic gates: AND gates, OR gates, and 

NOT gates. 

AND gates are the equivalent to the operator (·) in Boolean 

algebra, OR gates are (+), and (’) for NOT gates. 

 

        
(a)                                   (b) 

 
(c) 

Figure 2.3. Basic Gates: (a) AND Gate, (b) OR Gate, and (c) NOT 

Gate  (source from [3]) 

 

While the other gates are derived from the basic gates, there 

are universal gates: the NAND gate (a combination of AND 

followed by NOT) and the NOR gate (a combination of OR 

followed by NOT). There is also a special gate: the XOR gate (a 

combination of AND, OR, and NOT). 
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(a)                                  (b) 

Figure 2.4. Universal Gates: (a) NAND Gate, (b) NOR Gate 

(source from [3]) 

 

 
Figure 2.5. XOR Gate (source from [3]) 

 

 

C. Game State Analysis 

Game state analysis in Tic-Tac-Toe involves evaluating the 

current board configuration to determine if there's a winner or if 

the game continues. This analysis is crucial for both gameplay 

and artificial intelligence implementations. 

The game of Tic-Tac-Toe has a relatively small state space 

compared to other board games. With 9 cells and 3 possible 

states for each cell (empty, X, O), the game presents a finite but 

significant number of possible configurations. The first player 

has 9 possible moves, followed by 8 possible moves for the 

second player, and so on. This leads to: 

 
Figure 2.6. State Space Tree of Tic-Tac-Toe 

 

Traditional pattern recognition in Tic-Tac-Toe focuses on 

checking 8 possible winning combinations: three horizontal 

lines, three vertical lines, and two diagonal lines, as shown 

previously in Figure 2.6. Each line requires checking three 

positions to determine if a player has achieved victory. These 

winning patterns can be represented both in traditional array 

format and in binary format for Boolean operations. 

Several key factors affect the performance of state analysis 

implementations. These include the number of operations 

required per check, memory access patterns, cache efficiency, 

possibilities for early termination, and potential for 

parallelization. The choice of implementation method can 

significantly impact these factors, leading to varying levels of 

performance in different scenarios. This theoretical foundation 

helps explain why certain approaches may perform better than 

others under specific circumstances, providing the basis for 

optimizing game state analysis through methods such as 

Boolean algebra. 

 

III. IMPLEMENTATION 

A. Traditional Method Implementation 

The traditional method only utilizes two simple 

implementations. An array-based  approach for representing the 

game board of tic-tac-toe and an arithmetic operations for 

detecting the winner. The value 0 is used for representing empty 

cell, while the values of 1 and -1 are used for representing the X 

and O symbol respectively. 

This implementation consists of checking three main patterns 

found in tic-tac-toe game. Row checking, column checking, and 

diagonal checking. Every checking will determine if the total 

equals of row, column, or diagonal  is equal to 3 (X wins) or -3 

(O wins). 

The row checking process examines each horizontal line by 

summing the values. When all three cells in a row contain X 

(value 1), their sum equals 3, indicating X wins. Conversely, 

three O symbols (value -1) sum to -3, indicating O wins. The 

column checking follows the same principle but examines 

vertical alignments instead. For diagonal checking, the method 

sums both the main diagonal (top-left to bottom-right) and anti-

diagonal (top-right to bottom-left), applying the same win 

condition logic of checking for sums of 3 or -3. 

For a clearer understanding, here’s the code for the traditional 

method: 

 
Figure 3.1. Traditional Method Implementation 

 

B. Boolean Method Implementation 

Different than the traditional method, the Boolean algebra 

method transforms the game board into a bitboard representation 

where cell’s state is represented as bits. It converts the traditional 

board into two separate bitboards for X and O as in the following 

implementation: 

 
Figure 3.2. Converting Board Game into Bitboard  

 

This makes it so that every cell on the board will be 
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represented as a bit. For example, a binary pattern of 

111000000 represents three marks in the first row. This 

conversion allows the program to use efficient bitwise 

operations for pattern matching. Each player (X and O) gets 

their own bitboard, which tracks their positions on the board 

using 1s for occupied cells and 0s for unoccupied cells. 

After converting the board game into bitboard in Fig. 3.2. It’ll 

do a pattern matching using pre-defined bit patterns for win 

conditions. 

 
Figure 3.3. Pre-Defined Pattern for Boolean Algebra Method 

 

The pre-defined patterns represent all possible winning 

combinations in binary format. Row patterns use consecutive 1s 

(111) in appropriate positions, column patterns use spaced 1s 

(100100100), and diagonal patterns arrange 1s according to their 

respective diagonal positions. This binary representation 

enables efficient win detection through bitwise operations. 

Using the pre-defined pattern in Fig 3.3. The program will 

then utilize the AND operations to check for the winner as in the 

following:  

 
Figure 3.4.  Checking Wins Condition with AND Operation in 

Boolean Algebra Method 

 

C. Testing Scenarios 

1. Test Cases 

In this test, there are 5 game scenarios that will be tested. Each 

test differs from the other to ensure that the method comparison 

between the traditional approach and Boolean algebra is 

satisfied. These scenarios range from simple win conditions to 

more complex board states. 

All test case scenarios will be shown in the following: 

                           
(a)                            (b)                         (c)  

             
(d)                            (e) 

Figure 3.5.  Test Case Scenario: (a) Row win patterns, (b) Column 

win patterns, (c) Diagonal win patterns, (d) Draw game scenarios, (e) 

Early game states. 

 

For a more clearer understanding for every test case in Fig. 

3.5. The first test case (a) demonstrates a row win pattern where 

X completes a horizontal line, representing the most basic 

winning condition. The second case (b) shows a column win 

scenario with X achieving victory through vertical alignment. A 

more complex diagonal win pattern is shown in case (c), 

featuring strategically placed X and O moves. Case (d) 

represents a full board draw situation where neither player 

achieves victory, while case (e) simulates an early game state 

with minimal moves made. 

 

2. Performance Metrics 

The performance metrics that are used in this test include 

execution time (in seconds); it measures how long each method 

takes to analyze the game state and determine a winner, memory 

usage (in MB); it tracks the computational resources required by 

each approach, standard deviation of measurements; this helps 

understand the consistency of performance across multiple runs, 

and percentage improvement calculation; it provides a clear 

comparison between the two methods. All of this is to ensure 

that the evaluation of the methods is done comprehensively. 

 

3. Testing Parameters 

Testing Parameters To ensure statistical validity, each test 

case was run for 100,000 iterations to ensures that any minor 

system fluctuations are averaged out, with 5 trials conducted per 

case will establish consistency in the results. Various board 

configurations were used to test different win patterns, ensuring 

the robustness of the comparison. This testing method reduces 

the influence of system fluctuations and ensures accurate 

performance metrics. 

 

 

IV. ANALYSIS 

A. Testing Results 

Result of the testing reveals consistent patterns across 

multiple runs, with slight variations of ±3% in performance 

metrics.   

Here are the following results: 



Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

 
Figure 4.1. Time Taken for Every Test Case 

 

 
Figure 4.2. Speed Improvement and Memory Taken from Every 

Test Case 

 

From Fig. 4.1. and Fig 4.2. the overall performance for the 

simple winning patterns such as row and column wins are 

consistently won by the traditional method. The traditional 

method completes row win checks in approximately 0.13 

seconds, while the Boolean method requires about 0.32 seconds, 

showing the traditional method is roughly 143-156% faster for 

these simple patterns. Similar performance is observed in 

column win scenarios, where the traditional method maintains 

its significant speed advantage. 

Though the Boolean algebra method shows its strengths when 

dealing with more complex patterns. In diagonal win scenarios, 

the Boolean approach demonstrates a 26-29% improvement in 

execution time compared to the traditional method. This 

advantage extends to full board analysis situations, where the 

Boolean method performs 32-33% faster. Even in early game 

states with scattered pieces, the Boolean approach maintains a 

25-27% performance improvement over the traditional method. 

 

B. Pattern-Specific Analysis 

The two methods performance vary significantly based on the 

complexity of the patterns being analyzed. Simple patterns like 

rows and columns are faster with traditional method cause its 

straightforward arithmetic operations and direct array access. Its 

ability to perform summations without any need for data 

conversion makes it particularly efficient for these basic 

patterns. 

On the other hand, the Boolean method had a more 

advantages in handling complex patterns. Its bitwise operations 

prove especially efficient when analyzing diagonal patterns and 

full board states. The parallel processing capability of bit 

operations becomes particularly beneficial when multiple 

pattern checks are required, as seen in the full board analysis and 

early game states where various winning possibilities need to be 

evaluated simultaneously. 

 

C. Memory Analysis 

Memory usage analysis reveals interesting patterns across 

different test scenarios. Particularly in simple pattern scenario 

where Boolean method demonstrates efficient memory 

utilization of 26.4-28.8 KB, while the traditional method 

requires slightly more at 32-33.6 KB . This advantage in 

memory efficiency complements the Boolean method's superior 

performance in handling complex patterns. 

As pattern complexity increases, memory usage shows an 

interesting trend. The traditional method's memory consumption 

increases progressively to 44.8 KB for full board analysis. The 

Boolean method, despite its optimization for complex patterns, 

maintains relatively stable memory usage between 20.8-43.2 

KB across different scenarios. In early game states, both 

methods show comparable memory efficiency (traditional: 37.6 

KB, Boolean: 35.2 KB), indicating that initial overhead costs are 

similar for both approaches. 

These memory measurements demonstrate that while the 

Boolean method may be slower for simple patterns, it generally 

maintains better memory efficiency, particularly in complex 

game states where its performance advantages are most 

pronounced. 

 

D. Additional Considerations 

There are several factors that influence the performance 

variations observed in this study. The impact at the system level 

results in an execution time variation of about ±3% among 

different processes, which demonstrates the robustness of both 

methods across a wide range of system conditions. Yet the 

relative performance patterns remain consistent for both 

methods.  

 

 

V.   CONCLUSION 

 In conclusion, the Boolean algebra method is much more 

efficient for analyzing game status in tic-tac-toe. This method 

shows significant optimization in more complex game states. 

The Boolean algebra method is more useful when thorough 

analysis is required. 

Additionally, the Boolean approach demonstrates superior 

memory efficiency, especially as pattern complexity increases. 

While the traditional method's memory usage grows 

progressively, the Boolean method maintains stable and 

efficient memory consumption across various scenarios. 

The Boolean algebra method offers a balanced combination 

of speed and memory efficiency in complex states, highlighting 

its potential for broader applications in game analysis and 

computational problem-solving. 
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