
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Optimization of Tic-Tac-Toe Game Status Analysis

Using Boolean Algebra Approach

Muhammad Hazim Ramadhan Prajoda - 13523009

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

hazimmuhammad28@gmail.com, 13523009@std.stei.itb.ac.id

Abstract—Boolean algebra approach uses a representation of

game states in logical equations; in optimizing the tic-tac-toe game

status, it transforms the board into a bitboard that represents as

bits. This conversion allows it to be more efficient in performing

bitwise operations. It allows to minimize computational complexity

while ensuring accuracy.

Keywords—Boolean algebra, optimization, tic-tac-toe, game

status

I. INTRODUCTION

Tic-tac-toe, a widely known game, dates to ancient

civilizations. Its historical roots are far deeper than any lesson.

Frankly, the origins of the term “tic-tac-toe” have never been

fully determined. Some theories propose that it comes from the

sound of a pencil sketching on paper, while others suggest that

“tic-tac-toe” represents the trio of moves essential to win [1].

There are other names for tic-tac-toe, such as “noughts and

crosses” in different parts of the world, and even an evidence of

similar games dates to ancient Egypt, where it was known as

“Seega” in that era. The games used pebbles and stones as game

pieces, it can be said that the Ancient Egyptians can be credited

with the laying foundation for the origins of tic-tac-toe.

Tic-tac-toe presents interesting computational challenges in

game state analysis. The traditional approach to analyzing game

states involves checking rows, columns, and diagonals through

arithmetic operations. Although, this method may not be optimal

for all scenarios. With the advancement of computer science,

alternative approaches such as Boolean algebra have emerged as

potential optimization techniques for game state analysis.

This research focuses on optimizing the game state analysis

of tic-tac-toe using Boolean algebra principles. By transforming

the traditional board representation into a bitboard format, we

can leverage efficient bitwise operations for pattern matching

and winner detection. The research compares the performance

of traditional arithmetic-based methods with Boolean algebra

approaches across various game scenarios, from simple row

wins to complex diagonal patterns.

The value of this research goes beyond just improving tic-tac-

toe itself. It also can be made to applied to more complex game

analysis systems and pattern recognition problem.

II. THEORETICAL BASIS

A. Tic-Tac-Toe Game

The game of tic-tac-toe has a set of rules that must be

followed by every player. Before starting on those rules, we

must first understand how to set up the tic-tac-toe board. At its

heart, tic-tac-toe is made up of a 3x3 grid, as shown below:

Figure 2.1. The Board of Tic-tac-toe

As shown in Fig. 2.1., there are nine blank spots to be filled

by the two players alternately. Each player will use a unique

symbol, typically an X or an O.

The goal of this game is to get the three of your symbols in a

row which can be horizontal, vertical, or even diagonal.

(a) (b) (c)

Figure 2.2. Ways to Win in Tic-tac-toe: (a) Horizontal, (b) vertical,

(c) Diagonal

The opposing player must prevent the other player from

getting the winning row as shown in Fig. 2.2. The players can’t

override the spots that are already filled in the board.

B. Boolean Algebra

1. Definition

Boolean algebra is a branch of algebra that only have two

possible outcomes, 1 or 0. In another way of saying, the

variables can only have two options, true or false. Boolean

Algebra was found by George Boole where he saw that set and

propositional logic have similar properties.

The definition of Boolean algebra is as follows: Say that B is

a set that defined by 2 binary operators, (+) & (·), and single

unary operator (’). Say that 0 and 1 are different elements from

set B.

So, the tuple <B, +, ·, ’, 0, 1> are called Boolean algebra if

for every a, b, c B the following axiom holds:

mailto:hazimmuhammad28@gmail.com
mailto:13523009@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

1. Identity

(i) a + 0 = a

(ii) a · 1 = a

2. Commutative

(i) a + b = b + a

(ii) a b = b · a

3. Distributive

(i) a (b + c) = (a b) + (a c)

(ii) a + (b c) = (a + b) (a + c)

4. Complement

For every a B, there’s a unique element a’ B thus:

(i) a + a’ = 1

(ii) a a’ = 0

From the axioms above, it can be concluded that both set

algebra and propositional logic algebra are instances of Boolean

algebra or a subset of Boolean algebra as they fulfilled all

axioms mentioned. From that, we can analogously say that the

(+) operation in Boolean algebra is analogous to the ‘or’

operation in propositional algebra, while the (·) operation is the

‘and’ equivalent. The same instances also goes to the other

operator and elements such as (’), 0, and 1, that are equivalent

to (~), F, and T. It can be concluded that <B, , , ~, F, T> are

Boolean algebra.

2. Two Valued Boolean Algebra

Two valued Boolean algebra is defined on a set of two

elements, B = {0, 1} with the binary operator (+) & (·), and an

unary operator (’). The two valued Boolean algebra also fulfils

the 4 axioms above, the rules for binary and unary operators is

as follows:
Table 2.1. Binary and Unary Operator in Two Valued Boolean Algebra

(source from [3])

a b a · b a b a + b

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

a a’

0 1

1 1

3. Laws Of Boolean Algebra

In Boolean Algebra, a set of laws have been invented to help

reduce the number of logic gates needed to perform a particular

logic operation[5], The laws of Boolean algebra is as follows:

Table 2.2. The Laws of Boolean Algebra

1. Identity Laws:

(i) a + 0 = a

(ii) a · 1 = a

2. Idempotent Laws:

(i) a + a = a

(ii) a · a = a

3. Complement Laws:

(i) a + a’ = 1

(ii) a · a’ = 0

4. Dominance Laws:

(i) a · 0 = 0

(ii) a + 1 = 1

5. Involution Law:

(i) (a’)’ = a

6. Absorption Laws:

(ii) a + ab = a

(iii) a(a + b) = a

7. Commutative Laws:

(iv) a + b = b + a

(v) ab = ba

8. Associative Laws:

(i) a + (b + c) = (a + b)

+ c

(ii) a · a = a

9. Distributive Laws:

(i) a + (bc) = (a + b)(a

+ c)

(ii) a(b + c) = ab + bc

10. De Morgan Laws:

(i) (a + b)’ = a’b’

(ii) (ab)’ = a’ + b’

11. 0/1 Laws:

(i) 0’ = 1

(ii) 1’ = 0

-

4. Boolean Functions

Boolean functions are functions that involve variables (also

known as literals) that take on binary values (0 or 1, or

TRUE/FALSE). These functions are fundamental to digital

logic and computer design.

Here’s an example of Boolean functions:

𝑓(𝑥) = 𝑥

This function only has one literal, that is x, that means the

function depends on the single value of the variable x.

𝑓(𝑥) = 𝑥′𝑦𝑧

This function has three literals: x', y, and z. This function will

be only 1 (True) if x=0, y=1, and z=1 at the same time.

𝑓(𝑥, 𝑦) = 𝑥 + 𝑦′
This function has two literals: x and y'. This function will be

1 (True) if either x=1, or y=0.

5. Logic Gate

One of the way to represents Boolean functions is using logic

gate. Logic gates are electronic implementations of basic

Boolean functions. Each gate processes one or more binary

inputs to produce a single binary output based on its specific

Boolean operation.

There are there basic logic gates: AND gates, OR gates, and

NOT gates.

AND gates are the equivalent to the operator (·) in Boolean

algebra, OR gates are (+), and (’) for NOT gates.

(a) (b)

(c)

Figure 2.3. Basic Gates: (a) AND Gate, (b) OR Gate, and (c) NOT

Gate (source from [3])

While the other gates are derived from the basic gates, there

are universal gates: the NAND gate (a combination of AND

followed by NOT) and the NOR gate (a combination of OR

followed by NOT). There is also a special gate: the XOR gate (a

combination of AND, OR, and NOT).

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

(a) (b)

Figure 2.4. Universal Gates: (a) NAND Gate, (b) NOR Gate

(source from [3])

Figure 2.5. XOR Gate (source from [3])

C. Game State Analysis

Game state analysis in Tic-Tac-Toe involves evaluating the

current board configuration to determine if there's a winner or if

the game continues. This analysis is crucial for both gameplay

and artificial intelligence implementations.

The game of Tic-Tac-Toe has a relatively small state space

compared to other board games. With 9 cells and 3 possible

states for each cell (empty, X, O), the game presents a finite but

significant number of possible configurations. The first player

has 9 possible moves, followed by 8 possible moves for the

second player, and so on. This leads to:

Figure 2.6. State Space Tree of Tic-Tac-Toe

Traditional pattern recognition in Tic-Tac-Toe focuses on

checking 8 possible winning combinations: three horizontal

lines, three vertical lines, and two diagonal lines, as shown

previously in Figure 2.6. Each line requires checking three

positions to determine if a player has achieved victory. These

winning patterns can be represented both in traditional array

format and in binary format for Boolean operations.

Several key factors affect the performance of state analysis

implementations. These include the number of operations

required per check, memory access patterns, cache efficiency,

possibilities for early termination, and potential for

parallelization. The choice of implementation method can

significantly impact these factors, leading to varying levels of

performance in different scenarios. This theoretical foundation

helps explain why certain approaches may perform better than

others under specific circumstances, providing the basis for

optimizing game state analysis through methods such as

Boolean algebra.

III. IMPLEMENTATION

A. Traditional Method Implementation

The traditional method only utilizes two simple

implementations. An array-based approach for representing the

game board of tic-tac-toe and an arithmetic operations for

detecting the winner. The value 0 is used for representing empty

cell, while the values of 1 and -1 are used for representing the X

and O symbol respectively.

This implementation consists of checking three main patterns

found in tic-tac-toe game. Row checking, column checking, and

diagonal checking. Every checking will determine if the total

equals of row, column, or diagonal is equal to 3 (X wins) or -3

(O wins).

The row checking process examines each horizontal line by

summing the values. When all three cells in a row contain X

(value 1), their sum equals 3, indicating X wins. Conversely,

three O symbols (value -1) sum to -3, indicating O wins. The

column checking follows the same principle but examines

vertical alignments instead. For diagonal checking, the method

sums both the main diagonal (top-left to bottom-right) and anti-

diagonal (top-right to bottom-left), applying the same win

condition logic of checking for sums of 3 or -3.

For a clearer understanding, here’s the code for the traditional

method:

Figure 3.1. Traditional Method Implementation

B. Boolean Method Implementation

Different than the traditional method, the Boolean algebra

method transforms the game board into a bitboard representation

where cell’s state is represented as bits. It converts the traditional

board into two separate bitboards for X and O as in the following

implementation:

Figure 3.2. Converting Board Game into Bitboard

This makes it so that every cell on the board will be

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

represented as a bit. For example, a binary pattern of

111000000 represents three marks in the first row. This

conversion allows the program to use efficient bitwise

operations for pattern matching. Each player (X and O) gets

their own bitboard, which tracks their positions on the board

using 1s for occupied cells and 0s for unoccupied cells.

After converting the board game into bitboard in Fig. 3.2. It’ll

do a pattern matching using pre-defined bit patterns for win

conditions.

Figure 3.3. Pre-Defined Pattern for Boolean Algebra Method

The pre-defined patterns represent all possible winning

combinations in binary format. Row patterns use consecutive 1s

(111) in appropriate positions, column patterns use spaced 1s

(100100100), and diagonal patterns arrange 1s according to their

respective diagonal positions. This binary representation

enables efficient win detection through bitwise operations.

Using the pre-defined pattern in Fig 3.3. The program will

then utilize the AND operations to check for the winner as in the

following:

Figure 3.4. Checking Wins Condition with AND Operation in

Boolean Algebra Method

C. Testing Scenarios

1. Test Cases

In this test, there are 5 game scenarios that will be tested. Each

test differs from the other to ensure that the method comparison

between the traditional approach and Boolean algebra is

satisfied. These scenarios range from simple win conditions to

more complex board states.

All test case scenarios will be shown in the following:

(a) (b) (c)

(d) (e)

Figure 3.5. Test Case Scenario: (a) Row win patterns, (b) Column

win patterns, (c) Diagonal win patterns, (d) Draw game scenarios, (e)

Early game states.

For a more clearer understanding for every test case in Fig.

3.5. The first test case (a) demonstrates a row win pattern where

X completes a horizontal line, representing the most basic

winning condition. The second case (b) shows a column win

scenario with X achieving victory through vertical alignment. A

more complex diagonal win pattern is shown in case (c),

featuring strategically placed X and O moves. Case (d)

represents a full board draw situation where neither player

achieves victory, while case (e) simulates an early game state

with minimal moves made.

2. Performance Metrics

The performance metrics that are used in this test include

execution time (in seconds); it measures how long each method

takes to analyze the game state and determine a winner, memory

usage (in MB); it tracks the computational resources required by

each approach, standard deviation of measurements; this helps

understand the consistency of performance across multiple runs,

and percentage improvement calculation; it provides a clear

comparison between the two methods. All of this is to ensure

that the evaluation of the methods is done comprehensively.

3. Testing Parameters

Testing Parameters To ensure statistical validity, each test

case was run for 100,000 iterations to ensures that any minor

system fluctuations are averaged out, with 5 trials conducted per

case will establish consistency in the results. Various board

configurations were used to test different win patterns, ensuring

the robustness of the comparison. This testing method reduces

the influence of system fluctuations and ensures accurate

performance metrics.

IV. ANALYSIS

A. Testing Results

Result of the testing reveals consistent patterns across

multiple runs, with slight variations of ±3% in performance

metrics.

Here are the following results:

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Figure 4.1. Time Taken for Every Test Case

Figure 4.2. Speed Improvement and Memory Taken from Every

Test Case

From Fig. 4.1. and Fig 4.2. the overall performance for the

simple winning patterns such as row and column wins are

consistently won by the traditional method. The traditional

method completes row win checks in approximately 0.13

seconds, while the Boolean method requires about 0.32 seconds,

showing the traditional method is roughly 143-156% faster for

these simple patterns. Similar performance is observed in

column win scenarios, where the traditional method maintains

its significant speed advantage.

Though the Boolean algebra method shows its strengths when

dealing with more complex patterns. In diagonal win scenarios,

the Boolean approach demonstrates a 26-29% improvement in

execution time compared to the traditional method. This

advantage extends to full board analysis situations, where the

Boolean method performs 32-33% faster. Even in early game

states with scattered pieces, the Boolean approach maintains a

25-27% performance improvement over the traditional method.

B. Pattern-Specific Analysis

The two methods performance vary significantly based on the

complexity of the patterns being analyzed. Simple patterns like

rows and columns are faster with traditional method cause its

straightforward arithmetic operations and direct array access. Its

ability to perform summations without any need for data

conversion makes it particularly efficient for these basic

patterns.

On the other hand, the Boolean method had a more

advantages in handling complex patterns. Its bitwise operations

prove especially efficient when analyzing diagonal patterns and

full board states. The parallel processing capability of bit

operations becomes particularly beneficial when multiple

pattern checks are required, as seen in the full board analysis and

early game states where various winning possibilities need to be

evaluated simultaneously.

C. Memory Analysis

Memory usage analysis reveals interesting patterns across

different test scenarios. Particularly in simple pattern scenario

where Boolean method demonstrates efficient memory

utilization of 26.4-28.8 KB, while the traditional method

requires slightly more at 32-33.6 KB . This advantage in

memory efficiency complements the Boolean method's superior

performance in handling complex patterns.

As pattern complexity increases, memory usage shows an

interesting trend. The traditional method's memory consumption

increases progressively to 44.8 KB for full board analysis. The

Boolean method, despite its optimization for complex patterns,

maintains relatively stable memory usage between 20.8-43.2

KB across different scenarios. In early game states, both

methods show comparable memory efficiency (traditional: 37.6

KB, Boolean: 35.2 KB), indicating that initial overhead costs are

similar for both approaches.

These memory measurements demonstrate that while the

Boolean method may be slower for simple patterns, it generally

maintains better memory efficiency, particularly in complex

game states where its performance advantages are most

pronounced.

D. Additional Considerations

There are several factors that influence the performance

variations observed in this study. The impact at the system level

results in an execution time variation of about ±3% among

different processes, which demonstrates the robustness of both

methods across a wide range of system conditions. Yet the

relative performance patterns remain consistent for both

methods.

V. CONCLUSION

 In conclusion, the Boolean algebra method is much more

efficient for analyzing game status in tic-tac-toe. This method

shows significant optimization in more complex game states.

The Boolean algebra method is more useful when thorough

analysis is required.

Additionally, the Boolean approach demonstrates superior

memory efficiency, especially as pattern complexity increases.

While the traditional method's memory usage grows

progressively, the Boolean method maintains stable and

efficient memory consumption across various scenarios.

The Boolean algebra method offers a balanced combination

of speed and memory efficiency in complex states, highlighting

its potential for broader applications in game analysis and

computational problem-solving.

VI. ACKNOWLEDGMENT

First and foremost, praises and thanks to Allah SWT, The

Almighty God.

The author would like to express gratitude to God Almighty,

as it is by His grace and love that the author was able to complete

the discrete mathematics paper assignment on time.

The author also extends heartfelt thanks to his parents, who

have always supported him both physically and emotionally,

and provided unwavering motivation throughout his studies.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Furthermore, the author wishes to convey sincere

appreciation to the lecturers of the discrete mathematics course,

especially Mr. Dr. Ir. Rinaldi Munir, M.T., for his invaluable

guidance and teaching throughout one semester of the discrete

mathematics class.

Lastly, the author would like to thank his friends, who have

been true companions in his academic journey as a student of

Informatics Engineering, ITB 2023.

REFERENCES

[1] TicTacToeFree Team (2023) History and origins of tic-tac-toe,
TicTacToe. Available at: https://tictactoefree.com/tips/tic-tac-toe-history-

and-origins [Accessed: 05 January 2025].

[2] Tictactoefree (2024) Tic-Tac-Toe Rules. Learn How to Play the Game,
YouTube. Available at:

https://www.youtube.com/watch?v=1jee4qFYdP8&t=3s [Accessed: 05

January 2025].
[3] R. Munir, "Aljabar Boolean (Bagian 1)," Informatika.stei.itb.ac.id, 2024.

[Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/12-
Aljabar-Boolean-(2024)-bagian1.pdf [Accessed: Jan. 5, 2025].

[4] R. Munir, "Aljabar Boolean (Bagian 2), " Informatika.stei.itb.ac.id, 2024.

[Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/13-

Aljabar-Boolean-(2024)-bagian2.pdf [Accessed: Jan. 5, 2025].

[5] J. -F. Weng, S. -S. Tseng and T. -J. Lee, "Teaching Boolean Logic through
Game Rule Tuning," in IEEE Transactions on Learning Technologies, vol.

3, no. 4, pp. 319-328, Oct.-Dec. 2010, doi: 10.1109/TLT.2010.33.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 7 January 2025

Nama dan NIM

Muhammad Hazim Ramadhan Prajoda / 13523009

