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Abstract— This paper presents a graph-theoretic approach for 

developing a similarity-based player recommendation system in 

EA Sports FC Career Mode. The system addresses the challenge 

faced by managers of smaller clubs who need to identify effective, 

budget-friendly players that match their tactical requirements. By 

representing players as vertices and their attribute similarities as 

weighted edges, a complete weighted graph is constructed using 

Euclidean distance calculations. The implementation incorporates 

K-Means clustering to group players with similar characteristics, 

enhancing recommendation efficiency and relevance. A bipartite 

graph structure is utilized to analyze player positional suitability 

across various tactical roles. The system is implemented using 

Python with libraries including pandas, scikit-learn, and scipy, 

demonstrating effective identification of "hidden gems" - players 

with similar tactical profiles to expensive alternatives but at more 

affordable prices. Results show that the graph-based approach 

successfully models complex player relationships and provides 

actionable recommendations for strategic transfer decisions in 

Career Mode. 
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EA Sports FC is a leading football simulation game offering 
a realistic and intricate experience, particularly in its Career 
Mode. Here, players assume the role of a club manager, 
overseeing finances, team strategy, and crucial player 
recruitment. The game features an extensive database of players, 
each with numerous attributes (e.g., Pace, Shooting, Passing), 
unique Play Styles (special abilities often optimized from real-
world data), and specific Player Roles (tactical responsibilities 
within a formation). This depth, combined with an interactive 
transfer system , makes manually identifying and comparing 
players a complex and time-consuming task, especially with the 
expanded player database that now includes women's squads[1]. 

 

Fig. 1. Cover of EA Sports FC 25. (source: https://www.playstation.com/en-

id/games/ea-sports-fc/) 

A significant portion of EA Sports FC’s users enjoy the 
challenge of leading smaller, less successful teams to glory. This 
"road to glory" often means operating with limited transfer 
budgets, making it difficult to acquire top-tier players with high 
overall ratings or established reputations. Consequently, 
managers frequently struggle to find effective players who fit 
their tactical vision without breaking the bank. 

This scenario highlights the critical need for an intelligent 
player recommendation system. Such a system is designed to 
help managers discover "hidden gems"—players who possess 
similar key characteristics and tactical suitability to expensive, 
highly-rated players, but are available at a more affordable price 
point. By analyzing detailed player attributes, Play Styles, and 
Player Roles, the system can identify individuals whose 
combined abilities make them highly effective for specific 
tactical roles, even if their overall rating isn't elite. This 
empowers managers of smaller clubs to make shrewd, budget-
conscious transfers that align with their long-term vision.    

To achieve this, I propose a graph-theoretical approach. In 
this system, players, their attributes, Play Styles, and tactical 
roles are represented as nodes (vertices). The relationships and 
interactions between them become edges (links), weighted to 
reflect their strength or similarity. Graph theory provides a 
powerful framework to model these complex interdependencies, 
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analyze patterns, and ultimately recommend players who best fit 
a manager's tactical needs and budget constraints, fostering 
stronger, more competitive squads. This paper details how graph 
theory principles can be applied to build such a sophisticated 
player recommendation system for EA Sports FC Career Mode, 
enabling more informed and strategic transfer decisions. 

I. THEORETICAL FOUNDATION 

A. Graph 

A graph G is formally defined as a pair G=(V,E), where V 

is a non-empty set of vertices (also referred to as nodes or 

points), and E is a set of edges (also known as links or lines) 

that connect pairs of vertices. The set V={v1,v2,…,vn} must not 

be empty, meaning that a graph must contain at least one vertex. 

In contrast, the set E={e1,e2,…,em} can be empty, indicating 

that a graph can exist without any connections between its 

vertices. Based on the presence of loops or multiple edges, 

graphs are generally classified into two main types: 

1. Simple Graph: A graph that contains neither loops 

(edges connecting a vertex to itself) nor multiple edges 

(two or more edges connecting the same pair of 

vertices) is called a simple graph. 

2. Non-Simple Graph (Unsimple Graph): A graph that 

contains multiple edges or loops is termed a non-

simple graph. Non-simple graphs can be further 

categorized: 

o Multigraph: A graph that contains multiple 

edges between the same pair of vertices. 

o Pseudograph: A graph that contains loops 

(edges connecting a vertex to itself). 

 

Fig. 2. Simple Graph (G1), Multigraph (G2), Pseudograph (G3). (source: 

RinaldiMunir/Matdis) 

Based on the orientation of edges, graphs are distinguished as: 

1. Undirected Graph: A graph where the edges do not 

have an orientation or direction. The relationship 

between two connected vertices is symmetrical. 

2. Directed Graph (Digraph): A graph where each edge 

has a specified orientation or direction. The 

relationship between two connected vertices is 

asymmetrical. A directed graph can also be a Directed 

Multigraph if it allows multiple directed edges 

between the same ordered pair of vertices. 

 

Fig. 3. Undirected Graph (G1), Directed Graph (G2). (source: 

RinaldiMunir/Matdis) 

Several Special Graphs 

1. Complete Graph: A complete graph is a simple graph 

in which every vertex has an edge to all other vertices. 

A complete graph with n vertices is denoted by Kn. 

The number of edges in a complete graph with n 

vertices is n(n – 1)/2. 

2. Cycle Graph:  A cycle graph is a simple graph in which 

every vertex has a degree of two. A cycle graph with 

n vertices is denoted by Cn. 

3. Regular Graph: A graph in which every vertex has the 

same degree is called a regular graph. If each vertex 

has a degree r, the graph is referred to as an r-regular 

graph. The number of edges in a regular graph is nr/2. 

4. Bipartite Graph: A graph G whose set of vertices can 

be divided into two subsets V1 and V2, such that each 

edge in G connects a vertex in V1 to a vertex in V2, is 

called a bipartite graph and is denoted as G(V1, V2). 

5. Weighted Graph: A weighted graph is a graph in 

which each edge is assigned a value (weight)[2]. 

 

Fig. 4. Bipartite Graph. (source: RinaldiMunir/Matdis) 

 

Fig. 5. Weighted and Unweighted Graph. (source: RinaldiMunir/Matdis) 

In the context of this player recommendation system, a graph 
is a mathematical structure comprising a non-empty set of 
vertices (or nodes) and a set of edges (or links) that connect pairs 
of these vertices. Vertices in our model represent various entities 
such as players, their attributes, play styles, position, skills etc. 
Edges define the relationships between these entities; for 
instance, an edge might link a player to an attribute they possess 
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or connect two players based on their attribute similarity. These 
edges can be undirected, signifying a symmetrical relationship 
(e.g., mutual similarity between two players), or directed, 
indicating an asymmetrical relationship (e.g., a player's assigned 
primary position). Crucially, edges can be weighted, meaning 
they carry a numerical value that quantifies the strength, cost, or 
importance of the relationship. In our system, this weight can 
represent the degree of attribute similarity (where a lower weight 
implies higher similarity) or a player's "Role Familiarity" with a 
specific position. Other important terms include adjacent 
vertices (directly connected by an edge), the degree of a vertex 
(the number of edges connected to it, indicating its connectivity), 
and a path (a sequence of connected vertices and edges, essential 
for understanding indirect relationships or "distances" between 
players in the graph). 

B. Graph Representation of Player Data 

 

Fig. 6. Example Graph Representation of Player Data 

The foundation of this recommendation system involves 
transforming the extensive EA Sports FC 25 player data into a 
graph structure. Specifically, each unique player within the 
game's database is modeled as a distinct vertex (V) in the graph. 
Accompanying each player vertex are their comprehensive 
numerical attributes, which form the core data points for 
similarity assessment. An edge connects two player vertices (u 
and v) and quantitatively represents the similarity between their 
respective attribute sets. A critical aspect of these edges is their 
weight (w(u, v)), which serves to quantify this similarity. To 
calculate these weights, standard statistical metrics such as 
Euclidean distance or cosine similarity are employed. For 
example, if Euclidean distance is selected, the weight between 
two players u and v, each described by n attributes, is computed 
using the formula:  

𝑤(𝑢, 𝑣) =  √∑ (𝑢𝑖 − 𝑣𝑖)2𝑛
𝑖=1 ,                  (2.1) 

where ui and vi denote the values of the i-th attribute for players 
u and v, respectively. A crucial interpretation is that a lower edge 
weight signifies a higher degree of attribute similarity, meaning 
players connected by smaller weights are more alike in their 
profiles. This entire process ideally culminates in the creation of 
a weighted complete graph, where theoretically, every player 
vertex is connected to every other player vertex. The weight of 
each edge in this complete graph directly corresponds to the 
calculated attribute distance, ensuring that all potential similarity 
relationships across the player database are comprehensively 
modeled. 

C. K-Means Clustering 

K-Means is a prototype-based, simple partitional clustering 
algorithm that attempts to find K non-overlapping clusters. 
These clusters are represented by their centroids (a cluster 
centroid is typically the mean of the points in that cluster). The 
clustering process of K-means is as follows. First, K initial 
centroids are selected, where K is specified by the user and 
indicates the desired number of clusters. Every point in the data 
is then assigned to the closest centroid, and each collection of 
points assigned to a centroid forms a cluster. The centroid of 
each cluster is then updated based on the points assigned to that 
cluster. This process is repeated until no point changes clusters. 

It is beneficial to delve into the mathematics behind K-
means. Suppose D = {x1,..., xn} is the data set to be clustered. 
K-means can be expressed by an objective function that depends 
on the proximities of the data points to the cluster centroids as 
follows: 

∑ ∑ 𝜋𝑥𝑑𝑖𝑠𝑡(𝑥, 𝑚𝑘),𝑥∈𝐶𝑘
𝐾
𝑘=1                    (2.2) 

where x is the weight of x, nk is the number of data objects 
assigned to cluster Ck, K is the number of clusters set by the 
user, and the function "dist" computes the distance between 
object x and centroid mk, 1 <= k <= K. While the selection of 
the distance function is optional, the squared Euclidean distance, 
i.e. || x - m ||2, has been most widely used in both research and 
practice. The iteration process introduced in the previous 
paragraph is indeed a gradient-descent alternating optimization 
method that helps to solve Eq. (2.2), although often converges 
to a local minimum or a saddle point[3]. 

In the context of our system, K-Means is applied to the 
player data, which is represented by the distances derived from 
the weighted adjacency matrix. The algorithm operates by 
iteratively assigning each player vertex to one of K pre-defined 
clusters, where K is the number of desired clusters. This 
assignment is based on minimizing the distance between the 
player's attribute vector and the centroid (mean attribute vector) 
of the cluster. After all players are assigned, the centroids of the 
clusters are recalculated based on the new assignments. This 
iterative process continues until the cluster assignments no 
longer change significantly, or a specified maximum number of 
iterations is reached. The primary output of this algorithm is a 
set of distinct, homogeneous clusters, effectively grouping 
players with highly similar statistical profiles. For example, 
players might be grouped into categories like 'Fast Wingers,' 
'Creative Midfielders,' or 'Ball-Playing Defenders,' based on 
their intrinsic characteristics. By first categorizing players into 
these clusters, the recommendation system can efficiently 
narrow down the search space for similar players, thereby 
enhancing the relevance and speed of the subsequent 
recommendation process. 

D. Bipartite Graph for Position Analysis 

The concept of a bipartite graph offers a specialized and 

powerful tool within our system for analyzing player suitability 

across various in-game positions. A bipartite graph is a type of 

graph whose vertices can be divided into two disjoint and 

independent sets, U and V, such that every edge connects a 

vertex in U to one in V, and no edges exist within U or within 
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V. In our specific application, one set of vertices (V1) would 

exclusively represent the players, while the second, distinct set 

(V2) would represent the various playable positions available 

in EA Sports FC 25 (e.g., Striker (ST), Central Attacking 

Midfielder (CAM), Central Midfielder (CM), Center Back 

(CB), Right Back (RB), Left Wing (LW), Right Wing (RW)). 

An edge connecting a player from V1 to a position from V2 

would signify that the player can effectively perform in that 

particular role. This structural representation allows for a clear, 

intuitive visualization and systematic analysis of player 

positional versatility. It goes beyond simple attribute matching 

by explicitly modeling which roles a player is capable of 

fulfilling, which is critical for tactical decision-making in 

Career Mode. For instance, this approach can help managers 

identify players who are proficient in multiple roles, thereby 

adding valuable versatility and strategic depth to their squad, 

especially when operating with limited budgets 

Consider the following table illustrating a small example of 

player positional suitability: 

TABLE I.  EXAMPLE PLAYER POSITIONAL SUITABILITY 

Player Name 

Primary 

Position 

Other Suitable 

Positions 

Kylian Mbappé ST LW, RW 

Kevin De Bruyne CAM CM 

Virgil van Dijk CB  

Trent Alexander-

Arnold RB CM 

Jude Bellingham CM CAM, CDM 

 

E. Adjacency Matrix 

Another method is to represent a graph using an adjacency 

matrix, typically denoted as A. To create this matrix, start by 

assigning a number to each vertex, so the set of vertices 

becomes V={v1,v2,…,vn} for a graph with n vertices. The 

adjacency matrix A is then an n × n matrix, where each entry is 

determined based on the following rule: 

𝐴𝑖𝑗 =  {
1, 𝑖𝑓 (𝑣𝑖 , 𝑣𝑗 ) ∈  𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                      (2.3) 

The Adjacency Matrix (A) is the fundamental data structure 
chosen for efficiently storing and accessing the intricate 
similarity relationships between players in our weighted graph. 
For a graph encompassing N players, an N×N matrix A is 
constructed. Each element Aij within this matrix directly holds 
the weight of the edge connecting player i and player j. This 
weight, as established in Section B, quantifies their attribute 
similarity (using Euclidean distance). Conventionally, if a player 
is being compared to themselves, Aii would be 0. If no direct 
relationship or a very high dissimilarity exists (though less 
common in a complete similarity graph), the corresponding Aij 
might be represented as infinity or a very large number. This 
matrix serves as an instantaneous lookup table, allowing for 

rapid retrieval of the similarity value between any given pair of 
players. Its structure makes it particularly efficient for analyzing 
connections across a potentially dense network of player 
profiles, as it provides direct access to every pairwise 
relationship, which is crucial for algorithms like shortest path 
and clustering[4]. 

Here's an example of an Adjacency Matrix representing the 
similarity relationships between a small set of hypothetical 
players. Let's consider three players: Player 1, Player 2, and 
Player 3. The values in this matrix represent the Euclidean 
distance between their normalized attributes, where a lower 
value signifies higher similarity. Using hypothetical Euclidean 
distance values for these three players: 

• Player 1 to Player 2: 1.5 

• Player 1 to Player 3: 2.8 

• Player 2 to Player 3: 0.9 (meaning Player 2 and 
Player 3 are quite similar) 

The 3×3 Adjacency Matrix would be: 

0.0 1.5 2.8
1.5 0.0 0.9
2.8 0.9 0.0

 

This 3x3 matrix represents three players, with 3 rows and 3 
columns corresponding to each player. The main diagonal 
elements (A₁₁, A₂₂, A₃₃) are all 0.0, indicating that a player's 
distance to themselves is zero. The off-diagonal elements 
represent pairwise dissimilarities: A₁₂ = 1.5 shows the Euclidean 
distance between Player 1 and Player 2, A₁₃ = 2.8 is the distance 
between Player 1 and Player 3, and A₂₃ = 0.9 reflects the distance 
between Player 2 and Player 3. The matrix is symmetric, 
meaning Aᵢⱼ = Aji for example, the distance from Player 1 to 
Player 2 (A₁₂) is the same as from Player 2 to Player 1 (A₂₁). This 
compact structure efficiently captures all pairwise similarities 
(distances) between players in the graph, providing a clear 
representation of their relationships. 

 

Fig. 7. 3x3 Adjacency Matrix Graph. 

II. IMPLEMENTATION 

The proposed graph-theoretic player recommendation 
system for EA Sports FC 25 is implemented in Python, 
leveraging key libraries such as pandas for data manipulation, 
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scikit-learn for data preprocessing and clustering, and 
scipy.spatial.distance for similarity calculations. The 
implementation is encapsulated within a Player Recommender 
class, designed for modularity and ease of use. 

A. Data Modelling as a Graph 

 

 

Fig. 8. Python code for data modelling as a graph. 

The initial phase of implementation involves translating the 
conceptual graph structure into practical data representations 
within the Python environment. Player data, typically sourced 
from a CSV file, is loaded into a pandas.DataFrame. Each row 
in this Data Frame inherently represents a vertex in our graph, 
corresponding to an individual player. Relevant numerical 
attributes, such as Pace, Shooting, Passing, Dribbling, 
Defending, and Physicality, along with numerous granular 

attributes (e.g., Acceleration, Vision, Composure), are extracted 
to form the multi-dimensional feature vectors for each player. 
To ensure fair comparisons and prevent attributes with larger 
numerical ranges from dominating similarity calculations, these 
raw attribute values undergo a crucial normalization step using 
sklearn.preprocessing.StandardScaler. This process transforms 
the data to have a mean of zero and unit variance, aligning all 
attributes to a comparable scale. The player names and player 
indices (a mapping from player name to their Data Frame index) 
are also stored to facilitate efficient lookups and human-readable 
outputs. This preprocessed and scaled attribute matrix 
(self.scaled_attributes) effectively becomes the foundation upon 
which the graph's vertices and their inherent properties are 
defined, ready for the computation of relationships. 

B. Similarity Measurement 

 

Fig. 9. Python code for calculating similarity. 

With the player attributes normalized, the next critical step 

is to quantify the relationships between all pairs of players, 

which form the edges of our weighted graph. The Euclidean 

distance is chosen as the primary similarity metric. The 

scipy.spatial.distance.pdist function is employed to efficiently 

compute the pairwise Euclidean distances between all rows 

(players) in the self.scaled_attributes matrix. This function 

returns a condensed distance matrix, which is then converted 

into a full, symmetric distance matrix using 

scipy.spatial.distance.squareform. This self.distance_matrix 

explicitly represents the weighted adjacency matrix of our 

graph. Each entry Aij in this matrix stores the Euclidean distance 

between player i and player j. A lower distance value indicates 

a higher degree of similarity between the players, directly 

reflecting the weight of the conceptual edge connecting them. 

This pre-computation of all pairwise similarities is a 

foundational step, allowing for rapid retrieval of similarity 

information when generating recommendations. 

C. Clustering Players 

 

Fig. 10. Python code for clustering players. 

To enhance the efficiency and relevance of 
recommendations, particularly in a large player database, 
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players are grouped into homogeneous clusters based on their 
attributes. The K-Means Clustering algorithm, from 
sklearn.cluster, is applied to the self.scaled_attributes matrix. 
The n_clusters parameter, configured during the Player 
Recommender initialization (e.g., n_clusters=15), dictates the 
number of distinct player groups the algorithm will form. The 
random state parameter ensures reproducibility of the clustering 
results across different runs. The n_init=10 parameter is also 
specified to run the K-Means algorithm multiple times with 
different centroid seeds and choose the best result, mitigating the 
risk of converging to suboptimal local minima. After fitting the 
K-Means model, each player in the original Data Frame is 
assigned a Cluster label. This clustering step serves to segment 
the player base into categories like 'attacking midfielders', 
'defensive midfielders', 'central defenders', and 'wingers', 
making the subsequent recommendation process more focused. 
When a recommendation is sought for a particular player, the 
system can first identify their cluster, then search for similar 
players primarily within that cluster, significantly reducing the 
search space and increasing the likelihood of finding tactically 
relevant alternatives. 

D. Recommendation System 

 

Fig. 11. Python code for recommendation main function 

The core functionality of providing player 

recommendations is encapsulated in the get_recommendations 

method. When a manager requests recommendations for a 

player_name, the system first attempts to locate this player in 

the dataset. A robust fuzzy matching mechanism using 

difflib.get_close_matches is incorporated to handle minor 

spelling variations or incomplete inputs, suggesting the closest 

match if the exact name isn't found. Once the target player's 

index (player_idx) and their assigned Cluster are identified, the 

system proceeds to retrieve the pre-calculated distances from 

the self.distance_matrix. Specifically, 

self.distance_matrix[player_idx] yields a one-dimensional 

array containing the Euclidean distances from the target player 

to every other player in the dataset. This array effectively 

represents the "shortest paths" (direct distances) from the target 

player to all other nodes in the complete, weighted graph. 

A pandas Data Frame is then constructed to consolidate 

player names, their distances to the target player, and their 

respective cluster assignments. The recommendation logic then 

applies two crucial filters: it includes only players belonging to 

the same cluster as the target player and explicitly excludes the 

target player themselves from the results to avoid self-

recommendation. Finally, the filtered recommendations are 

sorted in ascending order by their Distance (lower distance 

indicates higher similarity), and the top k players are returned. 

The output Data Frame typically includes essential information 

such as 'Name', 'Distance', 'OVR', and 'Position', providing a 

concise and actionable list of highly similar and tactically 

relevant alternatives for the manager to consider, directly 

leveraging the graph's structure to identify "hidden gems" and 

budget-friendly options that fit a specific tactical need. 

E. Example Output of the Recommendation System 
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Fig. 12. Output of the Recommendation System 

The following image displays a sample output from the 

implemented Player Recommendation System, showcasing 

recommendations for "Kevin De Bruyne”. This output 

highlights the system's ability to identify similar players based 

on attribute-based Euclidean distances and K-Means clustering, 

presenting them with their name, calculated distance, Overall 

Rating (OVR), and Position. 

 

III. CONCLUSION 

A. Key Findings 

This research demonstrates that a weighted graph 

effectively models player similarity in EA Sports FC 25. By 

representing players as vertices and attribute distances as edge 

weights, intricate relationships can be captured. Furthermore, 

the application of clustering algorithms, such as K-Means, 

successfully groups players based on their statistical attributes, 

often correlating well with their primary positions and playing 

styles (e.g., grouping all "Fast Wingers" together) . 

B. Limitation 

Despite its effectiveness, this system has certain limitations: 

• Static Attributes Assumption: The current model 
assumes that player attributes are static. It does not 
account for the dynamic changes in player form, 
development, or real-world performance that might 
influence their perceived similarity or value. 

• Computational Complexity: For a complete graph with 
thousands of vertices (players), the computation of the 
full adjacency matrix and the shortest path for every 
pair can become computationally intensive . 

C. Future Work 

Several avenues exist for future enhancement of this 

system: 

• Dynamic Graphs: Integrating dynamic graph theory 

concepts to model changes in player attributes over 

time, incorporating form fluctuations or player 

development curves . 

• Graph Coloring for Scheduling: Exploring the 

application of graph coloring theory to optimize match 

scheduling or tournament brackets, minimizing 

conflicts based on team or player availability. 
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