
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Mathematical Foundations of SHA-256 and Merkle

Trees: Exploring Number Theory, Tree Structures,

and Algorithmic Complexity in Blockchain
Aurelia Jennifer Gunawan – 135240891,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 1aurellia.jennifer@gmail.com , 213524089@std.stei.itb.ac.id

Abstract—This paper explores the role of number theory, tree

theory, and algorithmic complexity in building secure and efficient

blockchain systems through SHA-256 and Merkle trees. SHA-256

is analyzed using number-theoretic concepts such as modular

arithmetic and prime-based constants, while Merkle trees are

explored as binary structures enabling efficient proof-of-

membership and data integrity. The paper also contrasts the time

complexity of Merkle tree transaction verification with linear data

structures. The findings highlight the foundational role of discrete

mathematics in ensuring blockchain security, scalability, and

immutability.

Keywords— blockchain, SHA-256, Merkle tree, number theory,

tree structure, time complexity

I. INTRODUCTION

The development of blockchain technology marks a
significant advancement in decentralized and tamper-resistant
data systems. A blockchain is a distributed ledger composed of
sequential data blocks, each cryptographically linked to its
predecessor. This structure ensures immutability, as altering a
single block would invalidate all subsequent blocks and making
tampering computationally impractical without majority
control. Consensus mechanisms, such as Proof of Work or Proof
of Stake, ensure trust and coordination among participating
nodes.

Each block consists of a header, which contains metadata
such as a timestamp, cryptographic nonce, Merkle root, and
previous block hash, and a body comprising verified
transactions. The inclusion of the previous hash forms a secure,
hash-linked chain of blocks.

Blockchain’s integrity and efficiency rely heavily on two
core components, the SHA-256 hash function and the Merkle
tree. Although widely used in systems like Bitcoin, their
mathematical foundations are often underappreciated. SHA-256
draws from number theory, including modular arithmetic and
prime-based constant derivation, while Merkle trees are rooted
in tree theory, enabling efficient and verifiable proofs of data
inclusion through recursive binary hashing.

II. THEORETICAL BASIS

A. Foundations of Number Theory

Number theory is a branch of pure mathematics devoted to
the study of integers and the relationships between them. It deals
with fundamental concepts such as divisibility, prime numbers,
greatest common divisor, and modular arithmetic. Despite its
abstract origin, number theory is highly relevant in modern
computer science applications, including cryptography and
hashing.

1) Integers and Divisibility

Number theory begins with the study of integers and

the rules of divisibility. And integer a is said to divide

another integer b (denoted a | b) if there exists an integer c

such that b = ac. This fundamental notion leads to concepts

like prime numbers, common divisors, and congruences.

2) The Eucledian Algorithm and Greatest Common Divisor

(GCD)

The greatest common divisor (GCD) of two non-zero

integers a and b denoted gcd(a, b), is the largest integer that

divides both. The Euclidean Algorithm provides an efficient

method to compute the GCD using repeated division:

 𝑟0 = 𝑟1𝑞1 + 𝑟2 0 ≤ 𝑟2 < 𝑟1,
 𝑟1 = 𝑟2𝑞2 + 𝑟3 0 ≤ 𝑟3 < 𝑟2,

⋯

 𝑟𝑛−2 = 𝑟𝑛−1𝑞𝑛−1 + 𝑟𝑛 0 ≤ 𝑟𝑛 < 𝑟𝑛−1

 𝑟𝑛−1 = 𝑟𝑛𝑞𝑛 + 0

The last non-zero remainder is the GCD.

3) Linear Combinations

An important property of the GCD is its

representations as a linear combination of the two integers:

gcd(𝑎, 𝑏) = 𝑚𝑎 + 𝑛𝑏

For some integers m and n. This result, known as

Bezout’s Identity, is foundational in solving Diophantine

equations and computing modular inverses.

4) Prime Numbers and The Fundamental Theorem of

Arithmetic

mailto:aurellia.jennifer@gmail.com
mailto:13524089@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

A prime number is a positive integer greater than 1 that

has no divisors other than 1 and itself. The Fundamental

Theorem of Arithmetic states that every integer 𝑛 ≥ 2 can

be uniquely factored into prime numbers (up to order). This

property forms the backbone of number theory and

underlies many cryptographic systems.

5) Relatively Prime Numbers

 Two integers a and b are said to be relatively prime, if

gcd(a, b) = 1. When this condition holds, there always exist

integers m and n such that:

𝑚𝑎 + 𝑛𝑏 = 1

 This property is essential in modular arithmetic,

particularly in determining the existence of modular

inverses.

6) Modular Arithmetic

Modular arithmetic is a central topic in number theory

where numbers are considered “wrapped around” after

reaching a certain value called the modulus. For a positive

integer m, two integers a and b are congruent modulo m if:

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) ⟺ 𝑚|(𝑎 − 𝑏)

 Modular arithmetic is governed by a set of well-

defined rules that dictate how arithmetic operations such as

addition, multiplication, and exponentiation behave under a

given modulus.

Let m be a positive integer.

1. If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) and c is any integer, then:

a. 𝑎 + 𝑐 ≡ 𝑏 + 𝑐(𝑚𝑜𝑑 𝑚)

b. 𝑎𝑐 ≡ 𝑏𝑐(𝑚𝑜𝑑 𝑚)

c. 𝑎𝑝 ≡ 𝑏𝑝(𝑚𝑜𝑑 𝑚) for any non-negative integer p

This means both sides can be added, multiplied, or

raised to a power by the same constant.

2. If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) and 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑚) then:

a. 𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 𝑚)

b. 𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑚)

This means two congruent integers (modulo is the

same number) can be added or multiplied.

However, this set of rules does not include division

operations, because dividing both sides of a congruence by

an integer does not always preserve the congruence. That is,

congruence under modular arithmetic is not guaranteed to

hold after division.

7) Modular Inverses

Given integers a and m such that gcd(a, m) = 1, there

exists a unique modular inverse of a mod m, denoted a-1,

satisfying:

𝑎 ⋅ 𝑎−1 ≡ 1(𝑚𝑜𝑑 𝑚)

This inverse can be computed using the extended

Euclidean algorithm, and is crucial in solving linear

congruences and in cryptographic algorithms such as RSA.

8) Systems of Congruence and The Chinese Remainder

Theorem

A system of linear congruences involves finding an

integer x that satisfies multiple modular conditions. If the

moduli are pairwise coprime, the Chinese Remainder

Theorem (CRT) guarantees a unique solution modulo the

product in the moduli. Formally, for:

𝑥 ≡ 𝑎1(𝑚𝑜𝑑 𝑚1)

𝑥 ≡ 𝑎2(𝑚𝑜𝑑 𝑚2)

 …

𝑥 ≡ 𝑎𝑛(𝑚𝑜𝑑 𝑚𝑛)

with gcd(mi, mj) = 1 for all 𝑖 ≠ 𝑗, there exists a unique

solution modulo 𝑀 = 𝑚1𝑚2 … 𝑚𝑛.

9) Fermat’s Little Theorem

Let p be a prime and a and integer such that gcd(a, p)

= 1. Then:

𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝)

This result, known as Fermat’s Little Theorem, is

widely used in modular exponentiation and public key

cryptography

B. Tree Theory

A tree is rigorously defined as an undirected graph that

possesses two fundamental characteristics:

1. it must be connected, and

2. it must not contain any circuits or cycles.

This definition implies that in a tree, there is always a

unique simple path between any two vertices, and the

addition of any single edge between non-adjacent vertices

will invariably create exactly one circuit.

Fig. 2. Tree Illustration

Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/23-Pohon-Bag1-2024.pdf

For a finite, undirected graph G with n vertices and m

edges, the following seven properties are demonstrably

equivalent, meaning if any one of them is true, all others

are also true, thus characterizing G as a tree:

1. G is a tree.

2. Every pair of distinct vertices in G is connected by

exactly one simple path.

3. G is connected and contains exactly m = n – 1 edges.

4. G contains no circuits and possesses exactly m = n – 1

edges.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

5. G contains no circuits, and the addition of any new

edge to G (between any two non-adjacent vertices)

results in the formation of exactly one circuit.

6. G is connected and the removal of any single edge

disconnects the graph.

7. G is a connected graph in which every edge is a bridge.

a) Forest

A forest is a collection of one or more disjoint trees,

Alternatively, it can be conceptualized as an undirected

graph that is not necessarily connected but contains no

circuits. In a forest, each of its connected components is

a tree. This means that if a graph is acyclic but

disconnected, it is considered a forest where each

connected segment forms an individual tree.

b) Spanning Trees

For any given connected graph G, a spanning tree is

defined as a spanning subgraph of G that is also a tree. A

spanning subgraph is one that includes all the vertices of

the original graph G. A spanning tree is constructed by

selectively removing edges from the original graph G

such that all vertices remain connected, no cycles are

formed, and the total number of edges is minimized to n

- 1. Every connected graph is guaranteed to possess at

least one spanning tree.

In the context of disconnected graphs, if a graph has k

connected components, then it will have k corresponding

spanning trees, one for each component, these k spanning

trees collectively form a spanning forest.

c) Minimum Spanning Trees (MST)

When dealing with a connected and weighted graph, a

minimum spanning tree is a spanning tree whose sum of

edge weights is the smallest among all potential spanning

trees of that graph. The concept of an MST is paramount

in optimization problems where the goal is to connect all

nodes in a network with the lowest possible cumulative

“cost”.

There are two widely used algorithms to determine an

MST:

1. Prim’s Algorithm

This algorithm builds an MST by iteratively adding

the minimum-weight edge that connects a vertex in

the growing tree to a vertex outside it, avoiding

cycles, until all vertices are included.

2. Kruskal’s Algorithm

This algorithm forms an MST by sorting all edges by

weight in ascending order and iteratively adding

edges that do not create a cycle, until n-1 edges have

been selected.

It is important to note that while the total weight of an

MST of a given weighted graph is unique, the specific

set of edges that constitute the MST may not be unique.

This non-uniqueness can occur if there are multiple

edges with the same weight that could be chosen at a

particular step in the algorithm, leading to different valid

MST structures with the identical minimum total weight.

d) Rooted Trees

A rooted tree is a specialized form of tree where one

vertex is designated as the root. In a rooted tree, a natural

hierarchical structure emerges. The edges are

conventionally understood to be directed away from the

root, establishing parent-child relationships. Key

terminology associated with rooted trees includes:

1. Parent

The vertex directly above another vertex on the path

from the root.

2. Child

A vertex directly connected to and below a parent

vertex.

3. Ancestor

Any vertex on the path from the root to a given

vertex, excluding the vertex itself.

4. Descendant

Any vertex in the subtree rooted at a given vertex,

excluding the vertex itself.

5. Sibling

Vertices that share the same parent.

6. Leaf

A vertex with no children.

7. Internal Node

A vertex that has at least one child.

8. Level/Depth

The length of the path from the root to a given vertex.

The root is typically at level 0.

9. Height

The maximum level of any leaf in a tree, or the

length of the longest path from the root to a leaf.

C. Algorithmic Complexity

In an algorithm, efficiency is considered equally important

as correctness. An efficient algorithm aims to minimize the

computational resources required, specifically time and space,

relative to the input size n. The time complexity, T(n), is the

number of elementary steps or operations as a function of n,

while the space complexity, S(n), indicates the amount of

memory consumed during execution.

Algorithm performance is commonly expressed using

asymptotic notations, such as:

1. Big-O

The Big-O notation, 𝑂(𝑓(𝑛)), defines an upper bound

on the growth rate of an algorithm’s runtime by

focusing on its dominant term as 𝑛 → ∞. For instance,

an algorithm with 𝑇(𝑛) = 2𝑛2 + 6𝑛 + 1 is classified

as 𝑂(𝑛2), as the quadratic term dominates the overall

behavior for large inputs.

2. Big-Omega

The Big-Omega notation, Ω(𝑓(𝑛)), defines a lower

bound.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

3. Big-Theta

The Big-Theta notation, Θ(𝑓(𝑛)), provides a tight

bound when both upper and lower growth rates are

equivalent.

Common time complexity classes include:

1. Constant time complexity (𝑂(1))

2. Logarithmic time complexity (𝑂(log 𝑛))

3. Linear time complexity (𝑂(𝑛))_

4. Polynomial time complexity (i.e., 𝑂(𝑛2), 𝑂(𝑛5))

5. Exponential and factorial time complexity (i.e.,

𝑂(2𝑛), 𝑂(𝑛!))

These classifications facilitate comparison between

algorithms solving the same problem. For instance, selection

sort and buble sort operate in 𝑂(𝑛2), while quicksort runs in

𝑂(𝑛 log 𝑛) on average, offering better performance for large

input sizes.

III. THE SHA-256 HASH FUNCTION

A. Overview of SHA-256

SHA-256 (Secure Hash Algorithm 256) was developed by
the National Security Agent (NSA) and published by the
National Institute of Standards and Technology (NIST) in 2001.
It was introduced to replace SHA-1, which had become
increasingly susceptible to brute-force and collision attacks. As
a cryptographic hash function, SHA-256 produces a fixed-length
256-bit hash output regardless of the size of the input messages.

According to the NIST specification for SHA-256, SHA-256
processes data in fixed-size blocks. For each block, it creates a
message schedule of 64 words, 32 bits each, labeled W0, W1, …,
W63. The algorithm also uses eight 32-bit working variables,
labeled a, b, c, d, e, f, g, h, along with two temporary values, T1
and T2, to compute the compression function. The hash values
are updated in each round using logical and arithmetic
operations like bitwise shifts and modular addition. These values
are stored in eight 32-bit words, H0

(i) to H7
(i), which are updated

with each processed block. After all blocks are processed, the
final 256-bit hash, H(N), represents the unique fingerprint of the
input data.

B. SHA-256 Computation Process

1) SHA-256 Preprocessing

Before computation begins, the input message M

undergoes a preprocessing phase to ensure it meets the

specific formatting requirements.

a. Converting the Message into Binary

To start the hashing process, the message is first

transformed into its binary representation by encoding

each character using the American Standard Code for

Information Interchange (ASCII) standard.

As an example, consider the message “portsmouth”.

The table below presents the binary representation of

each character based on its ASCII encoding.

Character Binary

p 01110000

o 01101111

r 01110010

t 01110100

s 01110011

m 01101101

o 01101111

u 01110101

t 01110100

h 01101000
Tab. 3.1. Binary representation of each character in “portsmouth”

b. Padding the Message

The message is padded to ensure its length (in bits) is

congruent to 448 module 512. Padding begins with the

addition of a single ‘1’ bit, followed by a sequence of ‘0’

bits, whose length is determined by how many bits are

needed to reach the required alignment. Finally, a 64-bit

big-endian integer representing the original length of the

message is appended to the end of the padded message.

This guarantees that the total length of the message is a

multiple of 512 bits, and it allows the algorithm to

process the message in fixed-size blocks.

From previous example, each character is represented

using 8 bits, and these binary values are combined into

one continuous string. After that, a single '1' bit is

appended to the end of the string, as follows:

01110000011011110111001001110100011100110110110101

1011110111010101110100011010001

Next, we determine the length of the original message.

In this example, the message is 10 characters long, each

occupying 8 bits, giving a total length of 80 bits. This

length is then converted into binary.

80 = 0101000

After that, we append this binary length value to the

end of the message. Before doing so, we insert a series of

‘0’s between the message and the length, padding the

data until it reaches a total size of 512 bits.

01110000011011110111001001110100011100110110110101

10111101110101011101000110100010000000000000000000

00

00

00

00

00

00

00

00

000001010000

If the original message exceeds 512 bits, it is divided

into multiple 512-bit blocks, and the length value is

added only to the final block.

c. Parsing the Message

Once the message has been padded, it is divided into

N 512-bit blocks, labeled M(1), M(2), …, M(N). These

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

blocks serve as the input units for the main computation

process.

0. 01110000011011110111001001110100

1. 01110011011011010110111101110101

2. 01110100011010001000000000000000

.

.

.

15. 00000000000000000000000001010000

d. Setting Initial Hash Values

The algorithm initializes eight working hash values

H0
(0), H1

(0), …, H7
(0), each a 32-bit word. In SHA-256, the

initial hash values are derived from the square roots of

the first eight prime numbers. These values are fixed and

constant regardless of the input message. To compute

them, each prime number is square rooted, and the

fractional part (i.e., the value modulo 1) is extracted. This

fractional portion is then multiplied by 232, or

equivalently 168, and the result is rounded down to the

nearest whole number to produce the final initial

constant.

𝑖𝑛𝑡((√𝑝 𝑚𝑜𝑑 1) ∗ 232)

Next, we convert the results into hexadecimal form.

𝑎 = 𝐻0
(0)

= 6𝑎09𝑒667

𝑏 = 𝐻1
(0)

= 𝑏𝑏67𝑎𝑒85

𝑐 = 𝐻2
(0)

= 3𝑐6𝑒𝑓372

𝑑 = 𝐻3
(0)

= 𝑎54𝑓𝑓53𝑎

𝑒 = 𝐻4
(0)

= 510𝑒527𝑓

𝑓 = 𝐻5
(0)

= 9𝑏05688𝑐

𝑔 = 𝐻6
(0)

= 1𝑓83𝑑9𝑎𝑏

ℎ = 𝐻7
(0)

= 5𝑏𝑒0𝑐𝑑19

These initial values form the starting state of the

hashing procedure and are subsequently updated during

the processing of each message block.

2) SHA-256 Hash Computation Process

For each message block M(i), the algorithm follows

four major steps as specified in FIPS PUB 180-4.

a. Prepare the Message Schedule Wt

The message schedule consists of 64 32-bit words

Wt = {
𝑀𝑡

(𝑖)
, 0 ≤ 𝑡 ≤ 15

𝜎1(𝑊𝑡−2) + 𝑊𝑡−7 + 𝜎0(𝑊𝑡−15) + 𝑊𝑡−16, 16 ≤ 𝑡 ≤ 63

Here, 𝜎0 and 𝜎1 are bitwise functions defined as:

𝜎0(𝑥) = (𝑥 ≫ 7)⨁(𝑥 ≫ 18)⨁(𝑥 ≫ 3)

𝜎1(𝑥) = (𝑥 ≫ 17)⨁(𝑥 ≫ 19)⨁(𝑥 ≫ 10)

For example, this is the calculation of the 17th word,

W16, to illustrate the process. To calculate W16, we need

to obtain W0, 𝜎0(W1), W9, and 𝜎1(W14).
W0 = 01110000011011110111001001110100

W9 = 00000000000000000000000000000000

W1 = 01110011011011010110111101110101

𝜎0(𝑊𝑡−15) = 𝜎0(𝑊1) = (𝑊1 ≫ 7)⨁(𝑊1 ≫ 18)⨁(𝑊1 ≫ 3)
(𝑊1 ≫ 7) = 11101010111001101101101011011110
(𝑊1 ≫ 18) = 01011011110111010101110011011011
(𝑊1 ≫ 7)⨁(𝑊1 ≫ 18)= 10110001001110111000011000000101
(𝑊1 ≫ 3) = 00001110011011011010110111101110

𝜎0(𝑊1) = 10111111010101100010101111101011

W14 = 00000000000000000000000000000000

𝜎1(𝑊14) = (𝑊14 ≫ 17)⨁(𝑊14 ≫ 19)⨁(𝑊14 ≫ 10)
(𝑊14 ≫ 17) = 00000000000000000000000000000000
(𝑊14 ≫ 19) = 00000000000000000000000000000000
(𝑊14 ≫ 17)⨁(𝑊14 ≫ 19) =00000000000000000000000000000000
(𝑊14 ≫ 10) = 00000000000000000000000000000000

𝜎1(𝑊14) = 00000000000000000000000000000000

𝑊16 = 𝜎1(𝑊14) + 𝑊9 + 𝜎0(𝑊1) + 𝑊0
𝜎1(𝑊14) = 00000000000000000000000000000000

𝑊9 = 00000000000000000000000000000000

𝜎1(𝑊14) + 𝑊9 = 00000000000000000000000000000000

𝜎0(𝑊1) = 10111111010101100010101111101011

𝜎1(𝑊14) + 𝑊9 + 𝜎0(𝑊1) = 10111111010101100010101111101011

𝑊0 = 01110000011011110111001001110100

𝑊16 = 00101111110001011001111001011111

Hexadecimal = 2fc59e5f

b. Initialize Working Variables

Eight working variables a, b, c, d, e, f, g, h are

initialized with the hash value from the previous block.

𝑎 = 𝐻0
(𝑖−1)

𝑏 = 𝐻1
(𝑖−1)

𝑐 = 𝐻2
(𝑖−1)

𝑑 = 𝐻3
(𝑖−1)

𝑒 = 𝐻4
(𝑖−1)

𝑓 = 𝐻5
(𝑖−1)

𝑔 = 𝐻6
(𝑖−1)

ℎ = 𝐻7
(𝑖−1)

c. Main Compression loop (for t =0 to 63)

Each round computes two temporary values, T1 and T2.

𝑇1 = ℎ + ∑ (𝑒)
1

+ 𝐶ℎ(𝑒, 𝑓, 𝑔) + 𝐾𝑡 + 𝑊𝑡

𝑇2 = ∑ (𝑎)
0

+ 𝑀𝑎𝑗(𝑎, 𝑏, 𝑐)

Where the bitwise operations are as follows:

∑ (𝑥)
0

= (𝑥 ≫ 2) ⊕ (𝑥 ≫ 13) ⊕ (𝑥 ≫ 22)

∑ (𝑥)
1

= (𝑥 ≫ 6) ⊕ (𝑥 ≫ 11) ⊕ (𝑥 ≫ 25)

𝐶ℎ(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦) ⊕ (¬𝑥 ∧ 𝑧)

𝑀𝑎𝑗(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦) ⊕ (𝑥 ∧ 𝑧) ⊕ (𝑦 ∧ 𝑧)

𝐾𝑡 = 𝐴 𝑠𝑒𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

Then, the working variables are updated.

ℎ = 𝑔
𝑔 = 𝑓
𝑓 = 𝑒
𝑒 = 𝑑 + 𝑇1
𝑑 = 𝑐

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

𝑐 = 𝑏
𝑏 = 𝑎
𝑎 = 𝑇1 + 𝑇2

All additions are performed modulo 232.

For example, this is the computation for the first

iteration (t =0), to illustrate the process. Firstly, we will

find T1, the calculation is as follows:
e = 510e527f = 01010001000011100101001001111111

f = 9b05688c = 10011011000001010110100010001100

g = 1f83d9ab = 00011111100000111101100110101011

h = 5be0cd19 = 01011011111000001100110100011001

∑ (𝑒)
1

= (𝑒 ≫ 6) ⊕ (𝑒 ≫ 11) ⊕ (𝑒 ≫ 25)

(𝑒 ≫ 6) = 11111101010001000011100101001001
(𝑒 ≫ 11) = 01001111111010100010000111001010
(𝑒 ≫ 6)⨁(𝑒 ≫ 11) = 10110010101011100001100010000011
(𝑒 ≫ 25) = 10000111001010010011111110101000
∑ (𝑒)1 = 00110101100001110010011100101011

𝐶ℎ(𝑒, 𝑓, 𝑔) = (𝑒 ∧ 𝑓) ⊕ (¬𝑒 ∧ 𝑔)

(𝑒 ∧ 𝑓) = 00010001000001000100000000001100
(¬𝑒 ∧ 𝑔) = 00001110100000011000100110000000

𝐶ℎ(𝑒, 𝑓, 𝑔) = 00011111100001011100100110001100

𝑇1 = ℎ + ∑ (𝑒)
1

+ 𝐶ℎ(𝑒, 𝑓, 𝑔) + 𝐾𝑡 + 𝑊𝑡

h = 01011011111000001100110100011001
∑ (𝑒)1 = 00110101100001110010011100101011

𝐶ℎ(𝑒, 𝑓, 𝑔) = 00011111100001011100100110001100

𝐾0 = 01000010100010100010111110011000

𝑊0 = 01110000011011110111001001110100

𝑇1 = 01100011111001110101111111011100

Secondly, we will find T2, the calculation is as follows:
a = 6a09e667 = 01101010000010011110011001100111

b = bb67ae85 = 10111011011001111010111010000101

c = 3c6ef372 = 00111100011011101111001101110010

∑ (𝑎)
0

= (𝑎 ≫ 2) ⊕ (𝑎 ≫ 13) ⊕ (𝑎 ≫ 22)

(𝑎 ≫ 2) = 11011010100000100111100110011001

(𝑎 ≫ 13) = 00110011001110110101000001001111

(𝑎 ≫ 2) ⊕ (𝑎 ≫ 13) = 11101001101110010010100111010110

(𝑎 ≫ 22) = 00100111100110011001110110101000

∑ (𝑎)0 = 11001110001000001011010001111110

𝑀𝑎𝑗(𝑎, 𝑏, 𝑐) = (𝑎 ∧ 𝑏) ⊕ (𝑎 ∧ 𝑐) ⊕ (𝑏 ∧ 𝑧𝑐)

(𝑎 ∧ 𝑏) = 00101010000000011010011000000101

(𝑎 ∧ 𝑐) = 00101000000010001110001001100010
(𝑎 ∧ 𝑏) ⊕ (𝑎 ∧ 𝑐) = 00000010000010010100010001100111
(𝑏 ∧ 𝑐) = 00111000011001101010001000000000

𝑀𝑎𝑗(𝑎, 𝑏, 𝑐) = 00111010011011111110011001100111

𝑇2 = ∑ (𝑎)
0

+ 𝑀𝑎𝑗(𝑎, 𝑏, 𝑐)

∑ (𝑎)0 = 11001110001000001011010001111110

𝑀𝑎𝑗(𝑎, 𝑏, 𝑐) = 00111010011011111110011001100111

𝑇2 = 00001000100100001001101011100101

Next, we can calculate a and e with the previously

obtained T1 and T2.
a = T1+T2

= 01101100011101111111101011000001

= 6c77fac1

d = a54ff53a

= 10100101010011111111010100111010

e = d + T1

 = 00001001001101110101010100010110

Finally, we now have the final values for the first iteration

(t = 0)
a 6c77fac1

b 6a09e667

c bb67ae85

d 3c6ef372

e 09375516

f 510e527f

g 9b05688c

h 1f83d9ab
Tab. 3.2. Final hash values after the 1st iteration

This process will be performed for 63 more iterations,

using the values from the previous iteration, which are

being updated every round. At the 64th iteration, we will

have the final values as below.
a d2c53dd2

b a56ddf12

c cec9ec4d

d 013bf08b

e 03b8f3ad

f fb054bf4

g 73bad7c0

h b197c87e
Tab. 3.3. Final values after the 64th iteration

d. Compute Intermediate Hash Values

After completing all 64 rounds, update the

intermediate hash values.

𝐻𝑗
(𝑖)

= 𝐻𝑗
(𝑖−1)

+ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 0 ≤ 𝑗 ≤ 7

 Using the final values from the previous example, we can

obtain the intermediate hash values and its hexadecimal

form.

For instance, this is the calculation for H0
(i), to illustrate the

process.

𝐻0
(𝑖)

= 𝐻0
(𝑖−1)

+ 𝐻0
(0)

𝐻0
(𝑖−1)

 = a

𝐻0
(𝑖)

 = 11010010110001010011110111010010 +

01101010000010011110011001100111

= 00111100110011110010010000111001

Lastly, this is the complete conversion of the

intermediate hash values into hexadecimal form.

𝐻𝑗
(𝑖)

 Binary Hexadecimal

𝐻0
(𝑖)

 00111100110011110010010000111001 3ccf2439

𝐻1
(𝑖)

 01100000110101011000110110010111 60d58d97

𝐻2
(𝑖)

 00001011001110001101111110111111 0b38dfbf

𝐻3
(𝑖)

 10100110100010111110010111000101 a68be5c5

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

𝐻4
(𝑖)

 01010100110001110100011000101100 54c7462c

𝐻5
(𝑖)

 10010110000010101011010010000000 960ab480

𝐻6
(𝑖)

 10010011001111101011000101101011 933eb16b

𝐻7
(𝑖)

 00001101011110001001010110010111 0d789597

Tab. 3.4. Conversion of every intermediate hash values into

hexadecimal

After all N message blocks are processed, the final 256-

bit hash is the concatenation of

𝐻(𝑀) = 𝐻0
(𝑁)

||𝐻1
(𝑁)

||𝐻2
(𝑁)

||𝐻3
(𝑁)

||𝐻4
(𝑁)

||𝐻5
(𝑁)

||𝐻6
(𝑁)

||𝐻7
(𝑁)

Finally, the final 256-bit hash for the message

“portsmouth” is

3ccf243960d58d970b38dfbfa68be5c554c7462c960ab4809

33eb16b0d789597.

C. Characteristics of SHA-256

1) Digest Length

SHA-256 generates a hash output of exactly 256 bits (32

bytes), as indicated by its name. This fixed-length output

ensures consistency, regardless of the input size.

2) Irreversible Quality (Preimage Resistance)

SHA-256 is a one-way function, this means it is

computationally infeasible to reverse the process. The

original input data is not retrievable with only the hash

digest.

3) Input Sensitivity

SHA-256 is sensitive to case and white space, meaning that

case changes, white space variations, and formatting

differences produces a completely different hash. This

ensures security against collision attacks.

String SHA-256

“test” 9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0

b822cd15d6c15b0f00a08

“TEST” 94ee059335e587e501cc4bf90613e0814f00a7b08bc

7c648fd865a2af6a22cc2

“ TEST” e7885219bfbeeb8b283a4c94fe67610458fb395bd96

a56eefdcf325d98702a67

Tab. 3.5. Examples of Input Sensitivity in SHA-256

IV. MERKLE TREES IN BLOCKCHAIN

A. Overview of Blockchain and Block Structure

Blockchain technology is built on two hash-based data

structures, linked lists with hash pointers and Merkle trees, to

achieve a secure and tamper-resistant system. At its core, a

blockchain functions as a linked list of data blocks, where each

block references its predecessor using a hash pointer instead of

a regular pointer. Within each individual block, transactions are

systematically organized using a Merkle tree. The root of this

tree, known as the Merkle root, is included in the block header

and serves as a compact and verifiable summary of all

transactions in the block.

Fig. 4.1. Blockchain and Block Structure

Source: https://www.researchgate.net/figure/Blockchain-and-block-

structure_fig1_351730117

B. Overview of Linked List with Hash Pointer

Fig. 4.2. Blockchain as linked list with hash pointer

Source: https://www.geeksforgeeks.org/software-engineering/blockchain-
merkle-trees/

Unlike a regular pointer that indicates a memory location, a

hash pointer directs to the data’s storage and incorporates

cryptographic hash of the data. This dual functionality allows

hash pointers to both retrieve the data and simultaneously

confirm its unaltered state.

In blockchain’s architecture, each block holds transaction

data and a hash pointer that cryptographically binds it to the

preceding block. This hash pointer functions as a unique digital

fingerprint of the previous block’s header. This design makes

the chain highly tamper evident. Any modification to historical

data would necessitate recalculating the hashes of all

subsequent blocks, which is an extraordinarily difficult

computational feat, therefore ensuring the data’s immutability.

C. Overview of Merkle Tree

A Merkle tree, also known as a hash tree, is a cryptographic

data structure that organizes data in the form of a binary tree.

This structure, originally proposed by Ralph Merkle in the late

1970s, is widely used in blockchain systems to provide data

integrity, enable proof of inclusion, and detect tampering with

minimal computational overhead.

In a blockchain block, each leaf node of the Merkle tree

contains the cryptographic hash of a single transaction. Each

internal node holds the hash of the combined hashes of its

immediate child nodes. The process of recursive hashing

continues upward until a single hash value, known as the

Merkle root, is obtained. This root serves as a compact

summary of all transactions in the block and is stored in the

block header.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 4.3. Merkle Tree Structure

Source: https://www.geeksforgeeks.org/software-engineering/blockchain-

merkle-trees/

To preserve the binary structure, Merkle trees require an

even number of leaf nodes, If the number of transactions is odd,

the final hash is duplicated to maintain balance. Merkle trees

are constructed from the bottom, this means transaction data is

hashed at the leaf level and successive levels are generated by

hashing pairs of child nodes, ultimately forming the Merkle

root. This results in an inverted binary tree structure, where data

flows upward.

D. Merkle Proof

Merkle proof, also known as proof of inclusion, is a

cryptographic method to verify whether a piece of data belongs

to a specific Merkle tree without revealing the full dataset.

Instead of traversing the entire tree or storing all transactions,

only the hashes along the path from the target leaf to the root

are needed for verification. Merkle proof is built on the

principle of one-way hashing (i.e., SHA-256), which ensures

that two distinct inputs do not produce the same hash, and that

each hash uniquely represents the data it was derived from.

For example, let’s look at the diagram below to illustrate the

process.

Fig. 4.4. Using Merkle Proof to Verify the Inclusion of Data K

Source: https://medium.com/crypto-0-nite/merkle-proofs-explained-

6dd429623dc5

Firstly, a one-way hash function is applied to K, which

results in HK. Without revealing K, we combine HK with HL to

obtain HKL. Then, we combine HKL with HIJ to form HIJKL. Next,

we combine HIJKL with HMNOP and HABCDEFGH until we

reconstruct the Merkle root. If this matches the known root, it

confirms K’s inclusion.

V. TIME COMPLEXITY AND COMPUTATIONAL EFFICIENCY

The advantage of implementing Merkle tree structures

within blockchain systems lies in their computational

efficiency. This efficiency is reflected when verifying the

presence of a specific transaction within a block. Merkle tree’s

hierarchical structure allows for logarithmic time verification

using Merkle proof.

Let n represent the total number of transactions (leaf nodes)

in a block. Since the tree is binary and full, with the assumption

that n is a power of two, the number of levels or the height of

the tree is:

ℎ = log2 𝑛

To verify whether a particular transaction T is present in the

Merkle tree, a Merkle proof is performed. This process

involves:

1. Computing the hash of T, which is a constant-time

operation.

2. Retrieving and combining log2 𝑛 sibling hashes along

the path from the leaf node to the root.

3. Performing log2 𝑛 hash operations, because a binary

tree of n leaves has the height of log2 𝑛, to iteratively

reconstruct the Merkle root.

4. Compare the resulting Merkle root with the one stored

in the block header.

Thus, the number of hash computations required is:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑎𝑠ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = log2 𝑛

Assume that every hash operation take constant time 𝑂(1),

given the fixed output size of SHA-256 and the uniformity of

input sizes during tree traversal. Therefore, the total time

complexity, in Big-O notation, for the Merkle proof is:

𝑇(𝑛) = log2 𝑛 = 𝑂(𝑙𝑜𝑔 𝑛)

In contrast, if the transactions are stored in a linear data

structure, like a linked list, verifying the inclusion of T will

require linear traversal from the head of the list. In the worst

case scenario, the desired transaction resides at the end of the

list or may not exist, requiring inspection of all n element:

𝑇(𝑛) = 𝑂(𝑛)

In conclusion, the Merkle tree, achieving logarithmic time

complexity 𝑂(𝑙𝑜𝑔 𝑛), offers a faster mechanism for transaction

verification than the linear data structure (i.e., a linked list),

which require 𝑂(𝑛) time.

VI. CONCLUSION

In this paper, we explored the foundational mathematical
concepts that underpin the operation of SHA-256 and Merkle
trees within blockchain systems. By analyzing SHA-256
through the lens of number, we highlighted how modular
arithmetic, and prime-derived constants contribute to its
cryptographic strength.

Concurrently, we studied the structure of Merkle trees using
concepts from tree theory and algorithmic complexity. We
demonstrated how their hierarchical construction allows for
efficient proof-of-membership operations in O(log n) time,
providing a scalable and secure method of transaction
verification. In contrast to linear data structures, Merkle trees
offer significant performance advantages in large-scale,
decentralized environments.

SHA-256 and Merkle trees illustrate how discrete
mathematics serves as a critical foundation for secure and
efficient blockchain architecture. This work reaffirms that the

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

interplay between theoretical constructs and practical
engineering is essential in the ongoing development of robust
cryptographic systems.

ACKNOWLEDGMENT

First and foremost, the author would like to express gratitude
to God for the guidance, and perseverance throughout the
semester and during the completion of this paper. The author is
also deeply thankful to the lecturers of the IF1220 Discrete
Mathematics course at ITB, Dr. Ir. Rinaldi, M.T., and Arrival
Dwi Sentosa, M.T., for the dedication to share their knowledge
and guide their students throughout the course. Their guidance
played a significant role in deepening the author’s understanding
of the subject. Appreciation is also extended to the author’s
friends, and family for their continuous encouragement and
motivation throughout the semester and during the writing of
this paper.

REFERENCES

[1] R. Munir, “Teori Bilangan (Bagian 1),” Informatika STEI ITB, Bandung,
Indonesia. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/15-
Teori-Bilangan-Bagian1-2024.pdf. [Accessed: Jun. 7, 2025].

[2] R. Munir, “Teori Bilangan (Bagian 2),” Informatika STEI ITB, Bandung,
Indonesia. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/16-
Teori-Bilangan-Bagian2-2024.pdf. [Accessed: Jun. 7, 2025].

[3] R. Munir, “Teori Bilangan (Bagian 3),” Informatika STEI ITB, Bandung,
Indonesia. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/17-
Teori-Bilangan-Bagian3-2024.pdf. [Accessed: Jun. 7, 2025].

[4] R. Munir, “Pohon (Bagian 1),” Informatika STEI ITB, Bandung,
Indonesia. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-
Pohon-Bag1-2024.pdf. [Accessed: Jun. 7, 2025].

[5] R. Munir, “Pohon (Bagian 2),” Informatika STEI ITB, Bandung,
Indonesia. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-
Pohon-Bag2-2024.pdf. [Accessed: Jun. 7, 2025].

[6] Federal Information Processing Standards Publication 180-4, “Secure
Hash Standard,” National Institute of Standards and Technology,

Gaithersburg, Maryland. [Online]. Available:
http://dx.doi.org/10.6028/NIST.FIPS.180-4. [Accessed: Jun. 7, 2025].

[7] GeeksforGeeks, “SHA-256 and SHA-3,” GeeksforGeeks. [Online].
Available: https://www.geeksforgeeks.org/computer-networks/sha-256-
and-sha-3/. [Accessed: Jun. 7, 2025].

[8] T. Chitty, “The Mathematics of Bitcoin ─ SHA-256,” The Startup.
[Online]. Available: https://medium.com/swlh/the-mathematics-of-
bitcoin-74ebf6cefbb0. [Accessed: Jun. 7, 2025]

[9] R. Munir, “Kompleksitas Algoritma (Bagian 1),” Informatika STEI ITB,
Bandung, Indonesia. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-
Kompleksitas-Algoritma-Bagian1-2024.pdf. [Accessed: Jun. 8, 2025].

[10] R. Munir, “Kompleksitas Algoritma (Bagian 2),” Informatika STEI ITB,
Bandung, Indonesia. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-
Kompleksitas-Algoritma-Bagian2-2024.pdf. [Accessed: Jun. 8, 2025].

[11] GeeksforGeeks, “Blockchain Merkle Trees,” GeeksforGeeks. [Online].
Available: https://www.geeksforgeeks.org/software-
engineering/blockchain-merkle-trees/. [Accessed: Jun. 8, 2025].

[12] B. Prahalad, “Merkle Proofs Explained,” Crypto-0-nite. [Online].
Available: https://medium.com/crypto-0-nite/merkle-proofs-explained-
6dd429623dc5. [Accessed: Jun. 8, 2025].

STATEMENT

I hereby declare that this paper is an original work, written

entirely on my own, and does not involve adaptation,

translation, or plagiarism of any other individual’s work.

Bandung, 19 Juni 2025

Aurelia Jennifer Gunawan - 13524089

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/15-Teori-Bilangan-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/15-Teori-Bilangan-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/16-Teori-Bilangan-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/16-Teori-Bilangan-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/17-Teori-Bilangan-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/17-Teori-Bilangan-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/24-Pohon-Bag2-2024.pdf
http://dx.doi.org/10.6028/NIST.FIPS.180-4
https://www.geeksforgeeks.org/computer-networks/sha-256-and-sha-3/
https://www.geeksforgeeks.org/computer-networks/sha-256-and-sha-3/
https://medium.com/swlh/the-mathematics-of-bitcoin-74ebf6cefbb0
https://medium.com/swlh/the-mathematics-of-bitcoin-74ebf6cefbb0
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-Kompleksitas-Algoritma-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-Kompleksitas-Algoritma-Bagian2-2024.pdf
https://www.geeksforgeeks.org/software-engineering/blockchain-merkle-trees/
https://www.geeksforgeeks.org/software-engineering/blockchain-merkle-trees/
https://medium.com/crypto-0-nite/merkle-proofs-explained-6dd429623dc5
https://medium.com/crypto-0-nite/merkle-proofs-explained-6dd429623dc5

