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Abstract—This paper explores the role of number theory, tree 

theory, and algorithmic complexity in building secure and efficient 

blockchain systems through SHA-256 and Merkle trees. SHA-256 

is analyzed using number-theoretic concepts such as modular 

arithmetic and prime-based constants, while Merkle trees are 

explored as binary structures enabling efficient proof-of-

membership and data integrity. The paper also contrasts the time 

complexity of Merkle tree transaction verification with linear data 

structures. The findings highlight the foundational role of discrete 

mathematics in ensuring blockchain security, scalability, and 

immutability. 
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I.  INTRODUCTION  

The development of blockchain technology marks a 
significant advancement in decentralized and tamper-resistant 
data systems. A blockchain is a distributed ledger composed of 
sequential data blocks, each cryptographically linked to its 
predecessor. This structure ensures immutability, as altering a 
single block would invalidate all subsequent blocks and making 
tampering computationally impractical without majority 
control. Consensus mechanisms, such as Proof of Work or Proof 
of Stake, ensure trust and coordination among participating 
nodes. 

Each block consists of a header, which contains metadata 
such as a timestamp, cryptographic nonce, Merkle root, and 
previous block hash, and a body comprising verified 
transactions. The inclusion of the previous hash forms a secure, 
hash-linked chain of blocks. 

Blockchain’s integrity and efficiency rely heavily on two 
core components, the SHA-256 hash function and the Merkle 
tree. Although widely used in systems like Bitcoin, their 
mathematical foundations are often underappreciated. SHA-256 
draws from number theory, including modular arithmetic and 
prime-based constant derivation, while Merkle trees are rooted 
in tree theory, enabling efficient and verifiable proofs of data 
inclusion through recursive binary hashing. 

II. THEORETICAL BASIS 

A. Foundations of Number Theory 

Number theory is a branch of pure mathematics devoted to 
the study of integers and the relationships between them. It deals 
with fundamental concepts such as divisibility, prime numbers, 
greatest common divisor, and modular arithmetic. Despite its 
abstract origin, number theory is highly relevant in modern 
computer science applications, including cryptography and 
hashing.  

1) Integers and Divisibility 

Number theory begins with the study of integers and 

the rules of divisibility. And integer a is said to divide 

another integer b (denoted a | b) if there exists an integer c 

such that b = ac. This fundamental notion leads to concepts 

like prime numbers, common divisors, and congruences. 

 

2) The Eucledian Algorithm and Greatest Common Divisor 

(GCD) 

The greatest common divisor (GCD) of two non-zero 

integers a and b denoted gcd(a, b), is the largest integer that 

divides both. The Euclidean Algorithm provides an efficient 

method to compute the GCD using repeated division:  

  𝑟0 = 𝑟1𝑞1 +  𝑟2                      0 ≤  𝑟2 < 𝑟1, 
  𝑟1 = 𝑟2𝑞2 +  𝑟3                      0 ≤  𝑟3 < 𝑟2, 

⋯ 

  𝑟𝑛−2 = 𝑟𝑛−1𝑞𝑛−1 + 𝑟𝑛         0 ≤  𝑟𝑛 < 𝑟𝑛−1 

  𝑟𝑛−1 = 𝑟𝑛𝑞𝑛 +  0 

The last non-zero remainder is the GCD.  

 

3) Linear Combinations 

An important property of the GCD is its 

representations as a linear combination of the two integers:  

gcd(𝑎, 𝑏) = 𝑚𝑎 + 𝑛𝑏 

For some integers m and n. This result, known as 

Bezout’s Identity, is foundational in solving Diophantine 

equations and computing modular inverses.  

 

4) Prime Numbers and The Fundamental Theorem of 

Arithmetic 
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A prime number is a positive integer greater than 1 that 

has no divisors other than 1 and itself. The Fundamental 

Theorem of Arithmetic states that every integer 𝑛 ≥ 2 can 

be uniquely factored into prime numbers (up to order). This 

property forms the backbone of number theory and 

underlies many cryptographic systems.  

 

5) Relatively Prime Numbers 

 Two integers a and b are said to be relatively prime, if 

gcd(a, b) = 1. When this condition holds, there always exist 

integers m and n such that: 

𝑚𝑎 + 𝑛𝑏 = 1 

 This property is essential in modular arithmetic, 

particularly in determining the existence of modular 

inverses.  

 

6) Modular Arithmetic 

Modular arithmetic is a central topic in number theory 

where numbers are considered “wrapped around” after 

reaching a certain value called the modulus. For a positive 

integer m, two integers a and b are congruent modulo m if: 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑚) ⟺  𝑚|(𝑎 − 𝑏) 

 

 Modular arithmetic is governed by a set of well-

defined rules that dictate how arithmetic operations such as 

addition, multiplication, and exponentiation behave under a 

given modulus.  

 

Let m be a positive integer.  

1. If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) and c is any integer, then: 

a. 𝑎 + 𝑐 ≡ 𝑏 + 𝑐(𝑚𝑜𝑑 𝑚) 

b. 𝑎𝑐 ≡ 𝑏𝑐(𝑚𝑜𝑑 𝑚) 

c. 𝑎𝑝 ≡ 𝑏𝑝(𝑚𝑜𝑑 𝑚) for any non-negative integer p 

This means both sides can be added, multiplied, or 

raised to a power by the same constant.  

2. If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) and 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑚) then:  

a. 𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 𝑚) 

b. 𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑 𝑚) 

This means two congruent integers (modulo is the 

same number) can be added or multiplied.  

 

However, this set of rules does not include division 

operations, because dividing both sides of a congruence by 

an integer does not always preserve the congruence. That is, 

congruence under modular arithmetic is not guaranteed to 

hold after division. 

 

7) Modular Inverses  

Given integers a and m such that gcd(a, m) = 1, there 

exists a unique modular inverse of a mod m, denoted a-1, 

satisfying:   

𝑎 ⋅ 𝑎−1 ≡ 1(𝑚𝑜𝑑 𝑚) 

This inverse can be computed using the extended 

Euclidean algorithm, and is crucial in solving linear 

congruences and in cryptographic algorithms such as RSA.  

 

8) Systems of Congruence and The Chinese Remainder 

Theorem 

A system of linear congruences involves finding an 

integer x that satisfies multiple modular conditions. If the 

moduli are pairwise coprime, the Chinese Remainder 

Theorem (CRT) guarantees a unique solution modulo the 

product in the moduli. Formally, for: 

𝑥 ≡ 𝑎1(𝑚𝑜𝑑 𝑚1) 

𝑥 ≡ 𝑎2(𝑚𝑜𝑑 𝑚2) 

  … 

𝑥 ≡ 𝑎𝑛(𝑚𝑜𝑑 𝑚𝑛) 

with gcd(mi, mj) = 1 for all 𝑖 ≠ 𝑗, there exists a unique 

solution modulo 𝑀 = 𝑚1𝑚2 … 𝑚𝑛. 

9) Fermat’s Little Theorem 

Let p be a prime and a and integer such that gcd(a, p) 

= 1. Then:  

𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝) 

 

This result, known as Fermat’s Little Theorem, is 

widely used in modular exponentiation and public key 

cryptography 

B. Tree Theory  

A tree is rigorously defined as an undirected graph that 

possesses two fundamental characteristics:  

1. it must be connected, and 

2. it must not contain any circuits or cycles. 

This definition implies that in a tree, there is always a 

unique simple path between any two vertices, and the 

addition of any single edge between non-adjacent vertices 

will invariably create exactly one circuit.  

 
Fig. 2. Tree Illustration 

Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/23-Pohon-Bag1-2024.pdf  

 

For a finite, undirected graph G with n vertices and m 

edges, the following seven properties are demonstrably 

equivalent, meaning if any one of them is true, all others 

are also true, thus characterizing G as a tree:  

1. G is a tree.  

2. Every pair of distinct vertices in G is connected by 

exactly one simple path.  

3. G is connected and contains exactly m = n – 1 edges. 

4. G contains no circuits and possesses exactly m = n – 1 

edges.  
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5. G contains no circuits, and the addition of any new 

edge to G (between any two non-adjacent vertices) 

results in the formation of exactly one circuit.  

6. G is connected and the removal of any single edge 

disconnects the graph.  

7. G is a connected graph in which every edge is a bridge. 

 

a) Forest 

A forest is a collection of one or more disjoint trees, 

Alternatively, it can be conceptualized as an undirected 

graph that is not necessarily connected but contains no 

circuits. In a forest, each of its connected components is 

a tree. This means that if a graph is acyclic but 

disconnected, it is considered a forest where each 

connected segment forms an individual tree.   

 

b) Spanning Trees  

For any given connected graph G, a spanning tree is 

defined as a spanning subgraph of G that is also a tree. A 

spanning subgraph is one that includes all the vertices of 

the original graph G. A spanning tree is constructed by 

selectively removing edges from the original graph G 

such that all vertices remain connected, no cycles are 

formed, and the total number of edges is minimized to n 

- 1. Every connected graph is guaranteed to possess at 

least one spanning tree.  

 

In the context of disconnected graphs, if a graph has k 

connected components, then it will have k corresponding 

spanning trees, one for each component, these k spanning 

trees collectively form a spanning forest.  

 

c) Minimum Spanning Trees (MST) 

When dealing with a connected and weighted graph, a 

minimum spanning tree is a spanning tree whose sum of 

edge weights is the smallest among all potential spanning 

trees of that graph. The concept of an MST is paramount 

in optimization problems where the goal is to connect all 

nodes in a network with the lowest possible cumulative 

“cost”.  

 

There are two widely used algorithms to determine an 

MST: 

1. Prim’s Algorithm 

This algorithm builds an MST by iteratively adding 

the minimum-weight edge that connects a vertex in 

the growing tree to a vertex outside it, avoiding 

cycles, until all vertices are included.  

2. Kruskal’s Algorithm 

This algorithm forms an MST by sorting all edges by 

weight in ascending order and iteratively adding 

edges that do not create a cycle, until n-1 edges have 

been selected.  

It is important to note that while the total weight of an 

MST of a given weighted graph is unique, the specific 

set of edges that constitute the MST may not be unique. 

This non-uniqueness can occur if there are multiple 

edges with the same weight that could be chosen at a 

particular step in the algorithm, leading to different valid 

MST structures with the identical minimum total weight. 

 

d) Rooted Trees 

A rooted tree is a specialized form of tree where one 

vertex is designated as the root. In a rooted tree, a natural 

hierarchical structure emerges. The edges are 

conventionally understood to be directed away from the 

root, establishing parent-child relationships. Key 

terminology associated with rooted trees includes:  

1. Parent 

The vertex directly above another vertex on the path 

from the root. 

2. Child 

A vertex directly connected to and below a parent 

vertex. 

3. Ancestor 

Any vertex on the path from the root to a given 

vertex, excluding the vertex itself. 

4. Descendant 

Any vertex in the subtree rooted at a given vertex, 

excluding the vertex itself. 

5. Sibling 

Vertices that share the same parent.  

6. Leaf 

A vertex with no children. 

7. Internal Node 

A vertex that has at least one child.  

8. Level/Depth 

The length of the path from the root to a given vertex. 

The root is typically at level 0.  

9. Height 

The maximum level of any leaf in a tree, or the 

length of the longest path from the root to a leaf. 

C. Algorithmic Complexity 

In an algorithm, efficiency is considered equally important 

as correctness. An efficient algorithm aims to minimize the 

computational resources required, specifically time and space, 

relative to the input size n. The time complexity, T(n), is the 

number of elementary steps or operations as a function of n, 

while the space complexity, S(n), indicates the amount of 

memory consumed during execution.  

Algorithm performance is commonly expressed using 

asymptotic notations, such as: 

1. Big-O  

The Big-O notation, 𝑂(𝑓(𝑛)), defines an upper bound 

on the growth rate of an algorithm’s runtime by 

focusing on its dominant term as 𝑛 → ∞. For instance, 

an algorithm with 𝑇(𝑛) = 2𝑛2 + 6𝑛 + 1 is classified 

as 𝑂(𝑛2), as the quadratic term dominates the overall 

behavior for large inputs.  

2. Big-Omega 

The Big-Omega notation, Ω(𝑓(𝑛)), defines a lower 

bound.  
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3. Big-Theta 

The Big-Theta notation, Θ(𝑓(𝑛)), provides a tight 

bound when both upper and lower growth rates are 

equivalent.  

Common time complexity classes include: 

1. Constant time complexity (𝑂(1)) 

2. Logarithmic time complexity (𝑂(log 𝑛)) 

3. Linear time complexity (𝑂(𝑛))_ 

4. Polynomial time complexity (i.e., 𝑂(𝑛2), 𝑂(𝑛5)) 

5. Exponential and factorial time complexity (i.e., 

𝑂(2𝑛), 𝑂(𝑛!)) 

These classifications facilitate comparison between 

algorithms solving the same problem. For instance, selection 

sort and buble sort operate in 𝑂(𝑛2), while quicksort runs in 

𝑂(𝑛 log 𝑛) on average, offering better performance for large 

input sizes.  

III. THE SHA-256 HASH FUNCTION 

A. Overview of SHA-256 

SHA-256 (Secure Hash Algorithm 256) was developed by 
the National Security Agent (NSA) and published by the 
National Institute of Standards and Technology (NIST) in 2001. 
It was introduced to replace SHA-1, which had become 
increasingly susceptible to brute-force and collision attacks. As 
a cryptographic hash function, SHA-256 produces a fixed-length 
256-bit hash output regardless of the size of the input messages. 

According to the NIST specification for SHA-256, SHA-256 
processes data in fixed-size blocks. For each block, it creates a 
message schedule of 64 words, 32 bits each, labeled W0, W1, …, 
W63. The algorithm also uses eight 32-bit working variables, 
labeled a, b, c, d, e, f, g, h, along with two temporary values, T1 
and T2, to compute the compression function. The hash values 
are updated in each round using logical and arithmetic 
operations like bitwise shifts and modular addition. These values 
are stored in eight 32-bit words, H0

(i) to H7
(i), which are updated 

with each processed block. After all blocks are processed, the 
final 256-bit hash, H(N), represents the unique fingerprint of the 
input data.  

B. SHA-256 Computation Process 

1) SHA-256 Preprocessing 

Before computation begins, the input message M 

undergoes a preprocessing phase to ensure it meets the 

specific formatting requirements.  

a. Converting the Message into Binary 

To start the hashing process, the message is first 

transformed into its binary representation by encoding 

each character using the American Standard Code for 

Information Interchange (ASCII) standard. 

 

As an example, consider the message “portsmouth”. 

The table below presents the binary representation of 

each character based on its ASCII encoding. 

Character Binary 

p 01110000 

o 01101111 

r 01110010 

t 01110100 

s 01110011 

m 01101101 

o 01101111 

u 01110101 

t 01110100 

h 01101000 
Tab. 3.1. Binary representation of each character in “portsmouth” 

 

b. Padding the Message 

The message is padded to ensure its length (in bits) is 

congruent to 448 module 512. Padding begins with the 

addition of a single ‘1’ bit, followed by a sequence of ‘0’ 

bits, whose length is determined by how many bits are 

needed to reach the required alignment. Finally, a 64-bit 

big-endian integer representing the original length of the 

message is appended to the end of the padded message. 

This guarantees that the total length of the message is a 

multiple of 512 bits, and it allows the algorithm to 

process the message in fixed-size blocks. 

 

From previous example, each character is represented 

using 8 bits, and these binary values are combined into 

one continuous string. After that, a single '1' bit is 

appended to the end of the string, as follows:  

01110000011011110111001001110100011100110110110101

1011110111010101110100011010001 

 

Next, we determine the length of the original message. 

In this example, the message is 10 characters long, each 

occupying 8 bits, giving a total length of 80 bits. This 

length is then converted into binary.  

80 = 0101000 

After that, we append this binary length value to the 

end of the message. Before doing so, we insert a series of 

‘0’s between the message and the length, padding the 

data until it reaches a total size of 512 bits.  

01110000011011110111001001110100011100110110110101

10111101110101011101000110100010000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000

000001010000 

 

If the original message exceeds 512 bits, it is divided 

into multiple 512-bit blocks, and the length value is 

added only to the final block.  

 

c. Parsing the Message 

Once the message has been padded, it is divided into 

N 512-bit blocks, labeled M(1), M(2), …, M(N). These 
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blocks serve as the input units for the main computation 

process. 

0. 01110000011011110111001001110100 

1. 01110011011011010110111101110101 

2. 01110100011010001000000000000000 

. 

. 

. 

15. 00000000000000000000000001010000 

 

d. Setting Initial Hash Values 

The algorithm initializes eight working hash values 

H0
(0), H1

(0), …, H7
(0), each a 32-bit word. In SHA-256, the 

initial hash values are derived from the square roots of 

the first eight prime numbers. These values are fixed and 

constant regardless of the input message. To compute 

them, each prime number is square rooted, and the 

fractional part (i.e., the value modulo 1) is extracted. This 

fractional portion is then multiplied by 232, or 

equivalently 168, and the result is rounded down to the 

nearest whole number to produce the final initial 

constant.  

𝑖𝑛𝑡((√𝑝 𝑚𝑜𝑑 1) ∗ 232) 

Next, we convert the results into hexadecimal form. 

𝑎 = 𝐻0
(0)

= 6𝑎09𝑒667 

𝑏 = 𝐻1
(0)

= 𝑏𝑏67𝑎𝑒85 

𝑐 = 𝐻2
(0)

= 3𝑐6𝑒𝑓372 

𝑑 = 𝐻3
(0)

= 𝑎54𝑓𝑓53𝑎 

𝑒 = 𝐻4
(0)

= 510𝑒527𝑓 

𝑓 = 𝐻5
(0)

= 9𝑏05688𝑐 

𝑔 = 𝐻6
(0)

= 1𝑓83𝑑9𝑎𝑏 

ℎ = 𝐻7
(0)

= 5𝑏𝑒0𝑐𝑑19 

These initial values form the starting state of the 

hashing procedure and are subsequently updated during 

the processing of each message block.  

 

2) SHA-256 Hash Computation Process 

For each message block M(i), the algorithm follows 

four major steps as specified in FIPS PUB 180-4.  

a. Prepare the Message Schedule Wt 

The message schedule consists of 64 32-bit words  

Wt = {
𝑀𝑡

(𝑖)
,                                                                   0 ≤ 𝑡 ≤ 15 

𝜎1(𝑊𝑡−2) + 𝑊𝑡−7 + 𝜎0(𝑊𝑡−15) + 𝑊𝑡−16, 16 ≤ 𝑡 ≤ 63
 

Here, 𝜎0 and 𝜎1 are bitwise functions defined as: 

𝜎0(𝑥) = (𝑥 ≫ 7)⨁(𝑥 ≫ 18)⨁(𝑥 ≫ 3) 

𝜎1(𝑥) = (𝑥 ≫ 17)⨁(𝑥 ≫ 19)⨁(𝑥 ≫ 10) 

 

For example, this is the calculation of the 17th word, 

W16, to illustrate the process. To calculate W16, we need 

to obtain W0, 𝜎0(W1), W9, and 𝜎1(W14).  
W0 = 01110000011011110111001001110100 

W9 = 00000000000000000000000000000000 

 

W1 = 01110011011011010110111101110101 

𝜎0(𝑊𝑡−15) = 𝜎0(𝑊1) = (𝑊1 ≫ 7)⨁(𝑊1 ≫ 18)⨁(𝑊1 ≫ 3) 
(𝑊1 ≫ 7) =   11101010111001101101101011011110 
(𝑊1 ≫ 18) =  01011011110111010101110011011011 
(𝑊1 ≫ 7)⨁(𝑊1 ≫ 18)= 10110001001110111000011000000101 
(𝑊1 ≫ 3) =  00001110011011011010110111101110 

𝜎0(𝑊1) =   10111111010101100010101111101011 

 

W14 = 00000000000000000000000000000000 

𝜎1(𝑊14) = (𝑊14 ≫ 17)⨁(𝑊14 ≫ 19)⨁(𝑊14 ≫ 10) 
(𝑊14 ≫ 17) = 00000000000000000000000000000000 
(𝑊14 ≫ 19) = 00000000000000000000000000000000 
(𝑊14 ≫ 17)⨁(𝑊14 ≫ 19) =00000000000000000000000000000000 
(𝑊14 ≫ 10) = 00000000000000000000000000000000 

𝜎1(𝑊14) = 00000000000000000000000000000000 

 

𝑊16 = 𝜎1(𝑊14) + 𝑊9 + 𝜎0(𝑊1) + 𝑊0 
𝜎1(𝑊14) = 00000000000000000000000000000000 

𝑊9 = 00000000000000000000000000000000 

𝜎1(𝑊14) + 𝑊9 = 00000000000000000000000000000000 

𝜎0(𝑊1) = 10111111010101100010101111101011 

𝜎1(𝑊14) + 𝑊9 + 𝜎0(𝑊1) = 10111111010101100010101111101011 

𝑊0 = 01110000011011110111001001110100 

𝑊16 = 00101111110001011001111001011111 

Hexadecimal =  2fc59e5f 

  

b. Initialize Working Variables 

Eight working variables a, b, c, d, e, f, g, h are 

initialized with the hash value from the previous block. 

𝑎 =  𝐻0
(𝑖−1)

 

𝑏 =  𝐻1
(𝑖−1)

 

𝑐 =  𝐻2
(𝑖−1)

 

𝑑 =  𝐻3
(𝑖−1)

 

𝑒 =  𝐻4
(𝑖−1)

 

𝑓 =  𝐻5
(𝑖−1)

 

𝑔 =  𝐻6
(𝑖−1)

 

ℎ =  𝐻7
(𝑖−1)

 

 

c. Main Compression loop (for t =0 to 63) 

Each round computes two temporary values, T1 and T2. 

𝑇1 = ℎ + ∑ (𝑒)
1

+ 𝐶ℎ(𝑒, 𝑓, 𝑔) + 𝐾𝑡 + 𝑊𝑡 

𝑇2 = ∑ (𝑎)
0

+ 𝑀𝑎𝑗(𝑎, 𝑏, 𝑐) 

Where the bitwise operations are as follows: 

∑ (𝑥)
0

= (𝑥 ≫ 2) ⊕ (𝑥 ≫ 13) ⊕ (𝑥 ≫ 22) 

∑ (𝑥)
1

= (𝑥 ≫ 6) ⊕ (𝑥 ≫ 11) ⊕ (𝑥 ≫ 25) 

𝐶ℎ(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦) ⊕ (¬𝑥 ∧ 𝑧) 

𝑀𝑎𝑗(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦) ⊕ (𝑥 ∧ 𝑧) ⊕ (𝑦 ∧ 𝑧) 

𝐾𝑡 = 𝐴 𝑠𝑒𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 

Then, the working variables are updated. 

ℎ = 𝑔 
𝑔 = 𝑓 
𝑓 = 𝑒 
𝑒 = 𝑑 + 𝑇1 
𝑑 = 𝑐 
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𝑐 = 𝑏 
𝑏 = 𝑎 
𝑎 = 𝑇1 + 𝑇2 

All additions are performed modulo 232. 

 

For example, this is the computation for the first 

iteration (t =0), to illustrate the process. Firstly, we will 

find T1, the calculation is as follows: 
e = 510e527f = 01010001000011100101001001111111 

f = 9b05688c = 10011011000001010110100010001100 

g = 1f83d9ab = 00011111100000111101100110101011 

h = 5be0cd19 = 01011011111000001100110100011001 

∑ (𝑒)
1

= (𝑒 ≫ 6) ⊕ (𝑒 ≫ 11) ⊕ (𝑒 ≫ 25) 

(𝑒 ≫ 6) =  11111101010001000011100101001001 
(𝑒 ≫ 11) =  01001111111010100010000111001010 
(𝑒 ≫ 6)⨁(𝑒 ≫ 11) = 10110010101011100001100010000011 
(𝑒 ≫ 25) =  10000111001010010011111110101000 
∑ (𝑒)1 =  00110101100001110010011100101011 

 

𝐶ℎ(𝑒, 𝑓, 𝑔) = (𝑒 ∧ 𝑓) ⊕ (¬𝑒 ∧ 𝑔) 

(𝑒 ∧ 𝑓) = 00010001000001000100000000001100 
(¬𝑒 ∧ 𝑔) = 00001110100000011000100110000000 

𝐶ℎ(𝑒, 𝑓, 𝑔) = 00011111100001011100100110001100 

 

𝑇1 = ℎ + ∑ (𝑒)
1

+ 𝐶ℎ(𝑒, 𝑓, 𝑔) + 𝐾𝑡 + 𝑊𝑡 

h =  01011011111000001100110100011001 
∑ (𝑒)1 = 00110101100001110010011100101011 

𝐶ℎ(𝑒, 𝑓, 𝑔) = 00011111100001011100100110001100 

𝐾0 = 01000010100010100010111110011000 

𝑊0 = 01110000011011110111001001110100 

𝑇1 = 01100011111001110101111111011100 

 

Secondly, we will find T2, the calculation is as follows: 
a = 6a09e667 = 01101010000010011110011001100111 

b = bb67ae85 = 10111011011001111010111010000101 

c = 3c6ef372 = 00111100011011101111001101110010 

∑ (𝑎)
0

= (𝑎 ≫ 2) ⊕ (𝑎 ≫ 13) ⊕ (𝑎 ≫ 22) 

(𝑎 ≫ 2) =  11011010100000100111100110011001 

(𝑎 ≫ 13) =  00110011001110110101000001001111 

(𝑎 ≫ 2) ⊕ (𝑎 ≫ 13) = 11101001101110010010100111010110 

(𝑎 ≫ 22) =  00100111100110011001110110101000 

∑ (𝑎)0 =  11001110001000001011010001111110 

 

𝑀𝑎𝑗(𝑎, 𝑏, 𝑐) = (𝑎 ∧ 𝑏) ⊕ (𝑎 ∧ 𝑐) ⊕ (𝑏 ∧ 𝑧𝑐) 

(𝑎 ∧ 𝑏) =  00101010000000011010011000000101 

(𝑎 ∧ 𝑐) =  00101000000010001110001001100010 
(𝑎 ∧ 𝑏) ⊕ (𝑎 ∧ 𝑐) = 00000010000010010100010001100111 
(𝑏 ∧ 𝑐) =  00111000011001101010001000000000 

𝑀𝑎𝑗(𝑎, 𝑏, 𝑐) = 00111010011011111110011001100111 

 

𝑇2 = ∑ (𝑎)
0

+ 𝑀𝑎𝑗(𝑎, 𝑏, 𝑐) 

∑ (𝑎)0 =  11001110001000001011010001111110 

𝑀𝑎𝑗(𝑎, 𝑏, 𝑐) = 00111010011011111110011001100111 

𝑇2 =  00001000100100001001101011100101 
 

Next, we can calculate a and e with the previously 

obtained T1 and T2.  
a = T1+T2  

= 01101100011101111111101011000001  

= 6c77fac1 

d = a54ff53a  

= 10100101010011111111010100111010 

e = d + T1 

 = 00001001001101110101010100010110 

 

Finally, we now have the final values for the first iteration 

(t = 0) 
a 6c77fac1 

b 6a09e667 

c bb67ae85 

d 3c6ef372 

e 09375516 

f 510e527f 

g 9b05688c 

h 1f83d9ab 
Tab. 3.2. Final hash values after the 1st iteration 

 

This process will be performed for 63 more iterations, 

using the values from the previous iteration, which are 

being updated every round. At the 64th iteration, we will 

have the final values as below.  
a d2c53dd2 

b a56ddf12 

c cec9ec4d 

d 013bf08b 

e 03b8f3ad 

f fb054bf4 

g 73bad7c0 

h b197c87e 
Tab. 3.3. Final values after the 64th iteration 

d. Compute Intermediate Hash Values 

After completing all 64 rounds, update the 

intermediate hash values. 

𝐻𝑗
(𝑖)

= 𝐻𝑗
(𝑖−1)

+ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒, 0 ≤ 𝑗 ≤ 7 

 Using the final values from the previous example, we can 

obtain the intermediate hash values and its hexadecimal 

form.  

For instance, this is the calculation for H0
(i), to illustrate the 

process. 

𝐻0
(𝑖)

= 𝐻0
(𝑖−1)

+ 𝐻0
(0)

 

𝐻0
(𝑖−1)

 = a 

𝐻0
(𝑖)

  =  11010010110001010011110111010010 +   

01101010000010011110011001100111 

= 00111100110011110010010000111001 

Lastly, this is the complete conversion of the 

intermediate hash values into hexadecimal form. 

𝐻𝑗
(𝑖)

 Binary Hexadecimal 

𝐻0
(𝑖)

 00111100110011110010010000111001 3ccf2439 

𝐻1
(𝑖)

 01100000110101011000110110010111 60d58d97 

𝐻2
(𝑖)

 00001011001110001101111110111111 0b38dfbf 

𝐻3
(𝑖)

 10100110100010111110010111000101 a68be5c5 
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𝐻4
(𝑖)

 01010100110001110100011000101100 54c7462c 

𝐻5
(𝑖)

 10010110000010101011010010000000 960ab480 

𝐻6
(𝑖)

 10010011001111101011000101101011 933eb16b 

𝐻7
(𝑖)

 00001101011110001001010110010111 0d789597 

Tab. 3.4. Conversion of every intermediate hash values into 

hexadecimal 

 

After all N message blocks are processed, the final 256-

bit hash is the concatenation of  

𝐻(𝑀) = 𝐻0
(𝑁)

||𝐻1
(𝑁)

||𝐻2
(𝑁)

||𝐻3
(𝑁)

||𝐻4
(𝑁)

||𝐻5
(𝑁)

||𝐻6
(𝑁)

||𝐻7
(𝑁)

 

 

Finally, the final 256-bit hash for the message 

“portsmouth” is 

3ccf243960d58d970b38dfbfa68be5c554c7462c960ab4809

33eb16b0d789597. 

C. Characteristics of SHA-256  

1) Digest Length 

SHA-256 generates a hash output of exactly 256 bits (32 

bytes), as indicated by its name. This fixed-length output 

ensures consistency, regardless of the input size.  

 

2) Irreversible Quality (Preimage Resistance) 

SHA-256 is a one-way function, this means it is 

computationally infeasible to reverse the process. The 

original input data is not retrievable with only the hash 

digest.  

3) Input Sensitivity 

SHA-256 is sensitive to case and white space, meaning that 

case changes, white space variations, and formatting 

differences produces a completely different hash. This 

ensures security against collision attacks.  

String SHA-256 

“test” 9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0

b822cd15d6c15b0f00a08 

“TEST” 94ee059335e587e501cc4bf90613e0814f00a7b08bc

7c648fd865a2af6a22cc2 

“ TEST” e7885219bfbeeb8b283a4c94fe67610458fb395bd96

a56eefdcf325d98702a67 

Tab. 3.5. Examples of Input Sensitivity in SHA-256 

IV. MERKLE TREES IN BLOCKCHAIN 

A. Overview of Blockchain and Block Structure 

Blockchain technology is built on two hash-based data 

structures, linked lists with hash pointers and Merkle trees, to 

achieve a secure and tamper-resistant system. At its core, a 

blockchain functions as a linked list of data blocks, where each 

block references its predecessor using a hash pointer instead of 

a regular pointer. Within each individual block, transactions are 

systematically organized using a Merkle tree.  The root of this 

tree, known as the Merkle root, is included in the block header 

and serves as a compact and verifiable summary of all 

transactions in the block.  

 
Fig. 4.1. Blockchain and Block Structure 

Source: https://www.researchgate.net/figure/Blockchain-and-block-

structure_fig1_351730117 

B. Overview of Linked List with Hash Pointer 

 
Fig. 4.2. Blockchain as linked list with hash pointer 

Source: https://www.geeksforgeeks.org/software-engineering/blockchain-
merkle-trees/ 

 

Unlike a regular pointer that indicates a memory location, a 

hash pointer directs to the data’s storage and incorporates 

cryptographic hash of the data. This dual functionality allows 

hash pointers to both retrieve the data and simultaneously 

confirm its unaltered state.  

In blockchain’s architecture, each block holds transaction 

data and a hash pointer that cryptographically binds it to the 

preceding block. This hash pointer functions as a unique digital 

fingerprint of the previous block’s header. This design makes 

the chain highly tamper evident. Any modification to historical 

data would necessitate recalculating the hashes of all 

subsequent blocks, which is an extraordinarily difficult 

computational feat, therefore ensuring the data’s immutability. 

 

C. Overview of Merkle Tree 

A Merkle tree, also known as a hash tree, is a cryptographic 

data structure that organizes data in the form of a binary tree. 

This structure, originally proposed by Ralph Merkle in the late 

1970s, is widely used in blockchain systems to provide data 

integrity, enable proof of inclusion, and detect tampering with 

minimal computational overhead.  

In a blockchain block, each leaf node of the Merkle tree 

contains the cryptographic hash of a single transaction. Each 

internal node holds the hash of the combined hashes of its 

immediate child nodes. The process of recursive hashing 

continues upward until a single hash value, known as the 

Merkle root, is obtained. This root serves as a compact 

summary of all transactions in the block and is stored in the 

block header.  
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Fig. 4.3. Merkle Tree Structure 

Source: https://www.geeksforgeeks.org/software-engineering/blockchain-

merkle-trees/ 

To preserve the binary structure, Merkle trees require an 

even number of leaf nodes, If the number of transactions is odd, 

the final hash is duplicated to maintain balance. Merkle trees 

are constructed from the bottom, this means transaction data is 

hashed at the leaf level and successive levels are generated by 

hashing pairs of child nodes, ultimately forming the Merkle 

root. This results in an inverted binary tree structure, where data 

flows upward. 

D. Merkle Proof 

Merkle proof, also known as proof of inclusion, is a 

cryptographic method to verify whether a piece of data belongs 

to a specific Merkle tree without revealing the full dataset. 

Instead of traversing the entire tree or storing all transactions, 

only the hashes along the path from the target leaf to the root 

are needed for verification. Merkle proof is built on the 

principle of one-way hashing (i.e., SHA-256), which ensures 

that two distinct inputs do not produce the same hash, and that 

each hash uniquely represents the data it was derived from.  

 

For example, let’s look at the diagram below to illustrate the 

process. 

 
Fig. 4.4. Using Merkle Proof to Verify the Inclusion of Data K 

Source: https://medium.com/crypto-0-nite/merkle-proofs-explained-

6dd429623dc5 

Firstly, a one-way hash function is applied to K, which 

results in HK. Without revealing K, we combine HK with HL to 

obtain HKL. Then, we combine HKL with HIJ to form HIJKL. Next, 

we combine HIJKL with HMNOP and HABCDEFGH until we 

reconstruct the Merkle root. If this matches the known root, it 

confirms K’s inclusion. 

V. TIME COMPLEXITY AND COMPUTATIONAL EFFICIENCY 

The advantage of implementing Merkle tree structures 

within blockchain systems lies in their computational 

efficiency. This efficiency is reflected when verifying the 

presence of a specific transaction within a block. Merkle tree’s 

hierarchical structure allows for logarithmic time verification 

using Merkle proof.  

Let n represent the total number of transactions (leaf nodes) 

in a block. Since the tree is binary and full, with the assumption 

that n is a power of two, the number of levels or the height of 

the tree is: 

ℎ = log2 𝑛 

To verify whether a particular transaction T is present in the 

Merkle tree, a Merkle proof is performed. This process 

involves:  

1. Computing the hash of T, which is a constant-time 

operation. 

2. Retrieving and combining log2 𝑛 sibling hashes along 

the path from the leaf node to the root.  

3. Performing log2 𝑛 hash operations, because a binary 

tree of n leaves has the height of log2 𝑛,  to iteratively 

reconstruct the Merkle root.  

4. Compare the resulting Merkle root with the one stored 

in the block header. 

Thus, the number of hash computations required is:  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑎𝑠ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = log2 𝑛 

Assume that every hash operation take constant time 𝑂(1), 

given the fixed output size of SHA-256 and the uniformity of 

input sizes during tree traversal. Therefore, the total time 

complexity, in Big-O notation, for the Merkle proof is: 

𝑇(𝑛) = log2 𝑛 = 𝑂(𝑙𝑜𝑔 𝑛) 

 

In contrast, if the transactions are stored in a linear data 

structure, like a linked list, verifying the inclusion of T will 

require linear traversal from the head of the list. In the worst 

case scenario, the desired transaction resides at the end of the 

list or may not exist, requiring inspection of all n element:  

𝑇(𝑛) = 𝑂(𝑛) 

 

In conclusion, the Merkle tree, achieving logarithmic time 

complexity 𝑂(𝑙𝑜𝑔 𝑛), offers a faster mechanism for transaction 

verification than the linear data structure (i.e., a linked list), 

which require 𝑂(𝑛) time. 

VI. CONCLUSION 

In this paper, we explored the foundational mathematical 
concepts that underpin the operation of SHA-256 and Merkle 
trees within blockchain systems. By analyzing SHA-256 
through the lens of number, we highlighted how modular 
arithmetic, and prime-derived constants contribute to its 
cryptographic strength.  

Concurrently, we studied the structure of Merkle trees using 
concepts from tree theory and algorithmic complexity. We 
demonstrated how their hierarchical construction allows for 
efficient proof-of-membership operations in O(log n) time, 
providing a scalable and secure method of transaction 
verification. In contrast to linear data structures, Merkle trees 
offer significant performance advantages in large-scale, 
decentralized environments.  

SHA-256 and Merkle trees illustrate how discrete 
mathematics serves as a critical foundation for secure and 
efficient blockchain architecture. This work reaffirms that the 
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interplay between theoretical constructs and practical 
engineering is essential in the ongoing development of robust 
cryptographic systems.  
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