
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

One-Way Optimization in Urban Networks:
Strong Orientation of Road Graphs in

Tanjung Priok and Cipayung
Syaqina Octavia Rizha - 13524088

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
E-mail: syaqinaoctavia@gmail.com , 13524088@std.stei.itb.ac.id

Abstract—This paper addresses the critical challenge of urban
traffic congestion by proposing a systematic method for converting
road networks into fully functional one-way systems. We conduct a
comparative analysis on two diverse case studies in Jakarta,
Indonesia: the industrial port district of Tanjung Priok and the
suburban residential area of Cipayung. The core of our methodology
is modeling the network as a mixed graph, where existing one-way
streets are treated as fixed directed arcs and two-way streets are
treated as flexible, undirected edges requiring orientation. The
process begins with a crucial validation step to ensure the underlying
graph structure is 2-edge-connected, a necessary precondition for a
valid solution. We then implement a deterministic, iterative
algorithm that assigns a direction to each flexible edge by
sequentially making choices that probably maintain the network's
viability to be strongly connected. The result is a fully oriented,
strongly connected directed graph for each case study, providing a
robust and computationally sound framework for traffic engineers
to redesign urban flow efficiently.

Keywords—strong orientation, one-way street, traffic
optimization, mixed graph, urban planning, graph theory, Jakarta.

I. INTRODUCTION
Urban traffic congestion remains one of the most critical

challenges faced by growing metropolitan areas. In Jakarta, this
issue manifests across diverse urban typologies, from the dense,
industrial port area of Tanjung Priok to the sprawling residential
district of Cipayung. Both regions experience daily traffic
bottlenecks, driven by factors ranging from high commercial
vehicle density to unbalanced commuter road usage. Among
various strategies to manage congestion, converting selected
two-way roads into one-way systems has shown significant
promise in improving traffic flow and reducing conflict points.
However, the decision to reconfigure road directions must be
based on a systematic analysis to avoid causing isolated regions
or inefficient circulation patterns.

To address this challenge, the city’s road network can be
represented mathematically as a graph, where intersections serve
as nodes and road segments as edges. In this representation, one-
way roads are modeled as directed arcs, and two-way roads as
undirected edges. The key problem then becomes how to assign
directions to the undirected edges such that the resulting graph
is strongly connected, meaning every intersection remains

reachable from any other. This requirement is vital for ensuring
navigability and avoiding local disconnections after direction
changes.

The problem of assigning directions while preserving strong
connectivity is known in graph theory as finding a strong
orientation. By leveraging the theoretical framework of strong
bridges and bound edges, we can identify which roads must
follow a specific direction to prevent the formation of one-way
cuts. This paper proposes an algorithmic approach for generating
strong orientations on real-world traffic graphs using data from
Tanjung Priok. The resulting model provides a computational
basis for one-way road planning that is both efficient and
structurally robust, offering a scalable solution for traffic
optimization in complex urban environments.

Fig. 1. Projected road network graph of Tanjung Priok generated using

OSMnx, showing primary, secondary, and tertiary roads. (source: author)

Fig. 2. Projected road network graph of Cipayung generated using

OSMnx, showing primary, secondary, and tertiary roads.(source: author)

mailto:author@gmail.com
mailto:13524088@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

II. THEORETICAL FOUNDATIONS

A. Graph
A graph G = (V , E) consists of V, a nonempty set of

vertices (or nodes) and E, a set of edges. For a G to be called
graph, it should contains minimum one vertices and one edge.
The number of edges that a node is connected to is called the
degree. There are some kind of graph, the first one is simple
graph which does not contain loops or multiple edges.

Graphs can be categorized based on how their edges are
oriented. According to this classification, there are three
fundamental types of graphs:

1. Directed graph
A type of graph where each edge has a direction, going from
one vertex to another. In this structure, an edge from node A
to node B does not imply a connection from B to A
2. Undirected graph
Consists of edges that have no direction. If two vertices A
and B are connected, it is assumed that the connection works
both ways.
3. Mixed graph
Combines both directed and undirected edges in a single
structure.

Fig. 3. G1: Undirected Graph, G2: Directed Graph

(source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/20-Graf-Bagian1-2024.pdf)

Fig. 4. Mixed Graph

(source: https://cse.poriyaan.in/topic/graphs-and-graph-models-50655/)

Another common way to differentiate graphs is by
examining whether they contain loops or multiple edges. Based
on this criterion, graphs fall into two main categories:

1. Simple Graph
A simple graph is defined as one that has neither loops nor
multiple edges between any pair of nodes. It represents the
most basic form of a graph, where each edge connects two
distinct nodes with only a single connection.

2. Unsimple Graph

An unsimple graph includes at least one loop or more than
one edge between the same pair of nodes. This type of graph
is further divided into two subtypes:

• Multigraph: A multigraph allows multiple edges (also
known as parallel edges) between the same pair of
vertices. These repeated connections distinguish it
from a simple graph.

• Pseudograph: A pseudograph permits the existence of
loops, edges that originate and terminate at the same
vertex, alongside the possibility of multiple edges
between nodes.

Fig. 5. Simple Graph and Unsimple Graph
(source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf)

B. Theorem
1. Theorem 1 (Robbins Theorm)
 Let G = (V, E), a multigraph where the set of edges E is
decomposable into trails. Graph G has strong orientation if
and only if it is 2-edge connected.[1]
2. Theorem 2 (Boesch and Tindell)
A mixed multigraph G admits a strong orientation if and only
if it is both connected and 2-edge-connected.[2]
3. Theorem 3
A 2-edge connected mixed graph G = (V, E, A) can be
completed to form a strong orientation if and only if G does
not admit a one-way cut.[4]

C. Definition
These are some term that will be used throughout this paper.
1. One-Way Cut
A one-way cut occurs in a mixed graph when its nodes can
be divided into two groups, V1 and V2, such that all
connections between the groups are exclusively directed arcs
pointing in a single direction, for instance, all flowing into
V1 from V2, with no return path.[4]
2. Strong orientation
Process of taking an undirected graph (or a mixed graph
with two-way streets) and assigning a single, specific
direction to every edge, such that the final directed graph
(DiGraph) is strongly connected.
3. Strongly Connected
A directed graph is considered strongly connected if it meets
the following condition:
For every possible pair of nodes in the graph, let's call them
node A and node B, there must be:

• A directed path (following the arrows) to get from
A to B.

• A directed path to get back from B to A.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

III. IMPLEMENTATION
In this implementation, a combination of specialized

libraries is utilized to download, process, analyze, and visualize
geospatial network data. The primary tools are:

1. OSMnx: This library is fundamental to the project. It
provides tools to download real-world road network data
directly from OpenStreetMap. It automatically constructs a
topologically corrected networkx graph object
(MultiDiGraph) from the geographic data, including crucial
metadata such as road types and whether a street is one-way
(oneway=True).
2. NetworkX: This library is the workhorse for all graph-
theoretical analysis. It is used for creating and manipulating
graph structures (DiGraph, Graph, MultiDiGraph), checking
fundamental graph properties such as k-edge-connectivity
and strong connectivity, and executing algorithms like
finding bridges and strongly connected components. It also
serves as the backend for the final network visualization.
3. Matplotlib.pyplot: As Python's foundational plotting
library, it is used to create the figure and axes upon which
the network graph is drawn. It provides the canvas for
visualization and allows for detailed customization of titles,
colors, and layout, as well as saving the final output to a file.

These libraries work in concert to provide an end-to-end
workflow, from raw real-world data to a fully analyzed and
visualized network solution.

A. Projecting Map into a Graph using OSMnx
The first step of the implementation is to acquire and model

the real-world road networks of the case study locations:
Tanjung Priok and Cipayung. This is accomplished using the
osmnx.graph_from ”place” function. A custom_filter is applied
to select specific road types (e.g., primary, secondary, tertiary)
to focus the analysis on the main traffic arteries and reduce
computational complexity. OSMnx parses the OpenStreetMap
data and returns a nx.MultiDiGraph object. This graph type is
crucial as it accurately represents the real world, where multiple
parallel edges (e.g., a flyover and the road beneath it) can exist
between two intersections (nodes). Furthermore, it preserves
vital metadata for each edge, most importantly the oneway
attribute, which indicates if a road is already a one-way street.
This initial graph serves as the raw data for all subsequent
preprocessing and analysis steps.

Fig. 6. (source: author’s sourcecode)

B. Connectivity Preprocessing and Bridge Removal
Before any orientation can be attempted, the foundational

structure of the graph must be validated. According to Robbins
Theorem[1], a graph can only have a strong orientation if its
underlying undirected structure is 2-edge-connected. A graph
that is not 2-edge-connected contains at least one bridge, a
critical edge whose removal would split the network into
disconnected components.

This validation is performed in two stages:

1. The input graph is converted to an undirected
nx.Graph to analyze its structure.
2. The networkx.bridges() function is called on this
undirected graph to identify all bridge edges.

If bridges are found, the graph is not suitable for global
orientation. The implemented solution follows a "pruning"
strategy: all identified bridge edges are removed from the graph.
After their removal, the graph may consist of several
disconnected components. To ensure we work on a coherent
network, the largest of these components is identified using
networkx.connected_components(), and a new subgraph is
created containing only the nodes and edges of this main
component. This preprocessing step results in a clean, robust
graph that is guaranteed to be 2-edge-connected and thus
theoretically solvable.

Fig. 7. (source: author’s sourcecode)

C. Pruning One-Way Cut Nodes
Real-world data often contains topological dead-ends or

sinks, which can complicate orientation algorithms. A heuristic
step is implemented to handle obvious cases of "one-way cuts"
at the node level. The provided detection_oneway_cut function
inspects each node in the preprocessed graph. It checks if a node
acts as a sink (only has incoming oneway edges and no outgoing
paths) or a source (only has outgoing oneway edges and no
incoming paths), without any connecting two-way streets. Such
nodes are candidates for creating isolated regions. By identifying
and removing these nodes, the graph is further simplified,
removing trivial dead-ends and allowing the main algorithm to
focus on the more complex, cyclically connected core of the
network. The largest strongly connected component of the
resulting graph is then carried forward.

Fig. 8. (source: author’s sourcecode)

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 9. (source: author’s sourcecode)

Fig. 10. (source: author’s sourcecode)

D. Orientation Algorithm
This is the core of the implementation, where directions are

assigned to create a strongly connected system. The approach
handles a mixed graph, respecting existing traffic rules.

1. Decomposition: First, the algorithm iterates through
the cleaned graph and decomposes its edges into two distinct
sets:
• Fixed Arcs: A set of directed edges from streets that

were already marked as oneway=True in the original
data. These directions are immutable.

• Edges to Decide: A set of conceptually undirected
edges representing all two-way streets. These are the
edges that require orientation.

2. Iterative Orientation: The algorithm proceeds
iteratively through the Edges to Decide. For each edge {u, v},
a direction is tentatively assigned (e.g., 𝑢𝑢 → 𝑣𝑣).
3. The Viability Check: It runs is_strongly_connected()
on this temporary graph. If this check returns False, it means
the tentative direction would create a one-way cut, and the
algorithm is forced to choose the opposite direction (𝑢𝑢 → 𝑣𝑣),
which is guaranteed to be viable.

Fig. 11. (source: author’s sourcecode)

Fig. 12. (source: author’s sourcecode)

This process continues until all flexible edges have been
assigned a direction.

E. Final Validation
Once the orientation algorithm completes, a final

nx.DiGraph object is constructed from the complete set of
oriented arcs (both the original fixed ones and the newly
assigned ones). As a final verification step, the
networkx.is_strongly_connected() function is called on this final
graph. If the preceding steps have been executed correctly, this
check should always return True, confirming that the output is a
valid, fully connected one-way system. This step ensures the
integrity of the final solution before it is passed to the
visualization stage.

Fig. 13. (source: author’s sourcecode)

F. Visualization
Nodes are drawn on top as large, colored circles, and custom

text labels (e.g., "1", "2") are rendered onto each node for easy
identification. This detailed, multi-step visualization process
produces an informative map that clearly distinguishes between
pre-existing and newly engineered traffic flows.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 14. (source: author’s sourcecode)

IV. TESTING AND RESULT
This section presents the results of applying the strong

orientation algorithm to two distinct urban case studies in
Jakarta: the dense commercial network of Tanjung Priok and the
residential grid of Cipayung. The final, fully oriented graph for
each location is visualized, demonstrating the successful
creation of a valid one-way system. A subsequent discussion
will analyze the characteristics of these results and their practical
implications for traffic management in diverse urban settings.

Fig. 15. (source: author’s sourcecode)

Fig. 16. (source: author’s sourcecode)

This is a visualization of the graph of the area before and
after the two-way lane converted into a one-way lane

Fig. 17. Tanjung Priok Before (source: author’s sourcecode)

Fig. 18. Tanjung Priok After (source: author’s sourcecode)

Fig. 19. Cipayung Before (source: author’s sourcecode)

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 20. Cipayung After (source: author’s sourcecode)

This result validates the core theoretical premise of the study.
The successful generation of a strong orientation for both
Tanjung Priok and Cipayung confirms that a functional, fully
connected one-way system is achievable if and only if the
creation of any one-way cut is meticulously avoided. The
implemented algorithm adheres to this principle by using an
iterative viability check, which ensures that each assigned
direction does not compromise the network's overall strong
connectivity. By successfully applying this systematic approach
to complex, real-world mixed-traffic networks, this research
provides a powerful and verifiable method for urban planners. It
serves as a valuable tool for re-engineering traffic flow with a
mathematical guarantee against creating isolated zones, thereby
enhancing urban mobility efficiently and safely.

V. CONCLUSION
The application of graph theory, specifically the principle of

strong orientation, has been successfully demonstrated as a
robust and systematic framework for re-engineering complex
urban road networks. By modeling the traffic systems of
Tanjung Priok and Cipayung as mixed graphs—honoring
existing one-way streets while systematically assigning
direction to two-way roads—the implemented algorithm
effectively transformed these networks. The methodology,
which includes crucial preprocessing steps like pruning bridges
and isolating the largest 2-edge-connected component,
successfully generated a complete and verifiable one-way
system for each case study, guaranteeing a final network that is
fully and strongly connected.

While the project confirmed the algorithm's logical
correctness, it also highlighted challenges inherent in real-world
applications, such as handling the structural imperfections of
geospatial data and navigating the high computational cost of
enumerating all possible solutions. Nevertheless, the results
powerfully demonstrate that this graph-based approach offers a
significant advantage over traditional, often intuitive, traffic
planning. It provides city planners and traffic engineers with a
data-driven tool to design efficient, deadlock-free traffic systems
with mathematical certainty. This work not only validates a
powerful theoretical concept on Indonesian case studies but also
lays the groundwork for future extensions, such as incorporating
traffic volume data to find not just a valid, but an optimal, traffic
orientation.

VI. APPENDIX
The full codebase for this implementation can be found on

GitHub. A video walkthrough explaining the paper's model and
findings is also available here for viewing.

VII. ACKNOWLEDGMENT
The author wishes to express the deepest gratitude to the

Lord Almighty for His guidance and blessings throughout the
research and writing of “One-Way Optimization in Urban
Networks: Strong Orientation of Road Graphs in Tanjung Priok
and Cipayung”. Through His grace, perseverance was granted to
navigate the complexities of this project and bring it to a
successful conclusion. Heartfelt gratitude is also extended to all
who have supported this endeavor:

1. Arrival Dwi Sentosa, S.Kom., M.T., as the lecturer for
the K1 IF1220 Discrete Mathematics course, for his
essential guidance in applying abstract graph theory
concepts to tangible, real-world transportation problems.

2. The author’s parents, for their endless support, prayers,
and motivation.

3. Friends and colleagues, for the constructive discussions
and encouragement that were vital during the
development of this paper.

The completion of this work would not have been possible
without their invaluable contributions.

REFERENCES
[1] Robbins, H. E. (1939). A Theorem on Graphs, with an Application to a

Problem of Traffic Control. The American Mathematical Monthly, 46(5),
281–283. https://doi.org/10.2307/2303897. Accessed on June 18, 2025.

[2] Boesch, F., & Tindell, R. (1980). Robbins's theorem for mixed
multigraphs. The American Mathematical Monthly, 87(9), 716–720.
https://doi.org/10.2307/2321858. Accessed on June 18,

[3] Aamand, A., Hjuler, N., Holm, J., & Rotenberg, E. (2017). One-way trail
orientations. arXiv. https://doi.org/10.48550/arXiv.1708.07389.
Accessed on June 18, 2025.

[4] Conte, A., Grossi, R., Marino, A., Rizzi, R., & Versari, L. (2016).
Directing road networks by listing strong orientations. arXiv.
https://doi.org/10.48550/arXiv.1506.05977. Accessed on June 18, 2025.

[5] Thomassen, C. (2014). Strongly 2-connected orientations of graphs.
Journal of Combinatorial Theory, Series B, 109, 108–118.
https://doi.org/10.1016/j.jctb.2014.07.004. Accessed on June 19, 2025.

[6] Rosen, K. H. (2012). Discrete mathematics and its applications (7th ed.).
McGraw-Hill. Accessed on June 18, 2025.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini
adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari
makalah orang lain, dan bukan plagiasi.

Bandung, 20 Juni 2025

Syaqina Octavia Rizha‒13524088

https://github.com/SyaqinaOctavia/MakalahMatdis.git
https://youtu.be/MVDgKkzVUHo
https://doi.org/10.2307/2303897
https://doi.org/10.2307/2321858
https://doi.org/10.48550/arXiv.1708.07389
https://doi.org/10.48550/arXiv.1506.05977
https://doi.org/10.1016/j.jctb.2014.07.004

	I. Introduction
	II. THEORETICAL FOUNDATIONS
	A. Graph
	B. Theorem
	C. Definition
	1. One-Way Cut
	2. Strong orientation
	Process of taking an undirected graph (or a mixed graph with two-way streets) and assigning a single, specific direction to every edge, such that the final directed graph (DiGraph) is strongly connected.
	3. Strongly Connected

	III. IMPLEMENTATION
	A. Projecting Map into a Graph using OSMnx
	B. Connectivity Preprocessing and Bridge Removal
	C. Pruning One-Way Cut Nodes
	D. Orientation Algorithm
	E. Final Validation
	F. Visualization

	IV. TESTING AND RESULT
	V. CONCLUSION
	VI. APPENDIX
	VII. Acknowledgment
	References

