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Abstract— Harmonic structures in music can be analyzed and 
shaped through systematic mathematical approaches, one of 
which is graph representation. Tonnetz, a conceptual lattice 
diagram representing tonal space that describes the relationship 
between tones based on harmonic intervals such as perfect fifth 
and major third, can be modeled as a planar graph to help the 
process of automatic generation of chord progressions. In this 
paper, Tonnetz is modeled as a graph, where each vertex 
represents a major or minor chord, and edges connect pairs of 
chords that have harmonic proximity. By applying graph theory 
concepts from discrete mathematics, graph traversal simulations 
are performed that generate a sequence of chord progressions 
with high harmonic connectivity. Graph visualization shows that 
the Tonnetz structure enables the construction of coherent 
progression paths and can be used in digital music creation. 
Experimental results show that this method can be used as a 
logical approach to support automatic chord composition or 
improvisation systems. 

Keywords— Tonnetz, graph theory, planar graph, chord 
progressions. 

I.  INTRODUCTION  
Music is one of the forms of artistic expression that has 

developed rapidly alongside advances in technology and 
science. One of the fundamental aspects of music is harmony, 
which refers to the orderly relationship between notes that 
form chord progressions and give a composition its distinctive 
character. Harmonious chord progressions are key to creating 
the mood, emotion, and musical appeal of a song. Therefore, 
the analysis and design of good chord progressions are 
important considerations in music theory and the development 
of digital music applications. 

In recent decades, mathematical approaches have been 
widely used to understand and develop musical structures. 
One of the approach is the representation of note and chord 
relationships in the form of graphs. Graph theory, as part of 
discrete mathematics, offers a formal framework that can be 
used to systematically model and analyze complex 
relationships between musical elements. By representing notes 
or chords as vertices and harmonic relationships as edges, 
various patterns and progression paths can be explored. 

One of the most famous graph models in music 
theory is the Tonnetz, first introduced by Leonhard Euler in 
the 18th century. The Tonnetz is a lattice diagram that depicts 

the tonal space based on harmonic intervals such as the perfect 
fifth and major third. In Tonnetz, notes or chords that are 
harmonically close are geometrically close, making it easier to 
analyze and create coherent chord progressions. In this model, 
each vertex represents a major or minor chord, while edges 
connect chords with harmonic proximity. By modeling 
Tonnetz as a planar graph, the process of finding chord 
progression paths can be done through graph traversal 
algorithms, enabling the automatic generation of chord 
progressions with high harmonic connectivity. . By using 
graph traversal algorithms, chord progression paths can be 
systematically generated while considering strong harmonic 
relationships between chords. This approach provides a logical 
and structured method to support the automatic composition of 
chords. 

The use of Tonnetz as a graph model for automatic chord 
progression generation is highly relevant in the context of 
developing digital music applications, such as automatic 
composition systems and improvisation tools. This approach 
not only strengthens the connection between music theory and 
discrete mathematics but also opens opportunities for the 
development of more advanced and adaptive music 
technology. Through graph traversal simulation on Tonnetz, 
coherent and harmonious chord progressions can be generated 
efficiently, thereby supporting creativity and innovation in 
music composition. 

This paper discusses the modeling of Tonnetz as a planar 
graph connecting major and minor chords based on harmonic 
intervals, as well as the implementation of graph traversal 
simulation to generate automatic chord progressions. This 
research aims to model Tonnetz as a graph, implement graph 
traversal simulations to generate automatic chord 
progressions, and analyze the results both visually and 
musically. The simulation results will be visually analyzed to 
assess the harmonic relationships and coherence of the 
generated chord progressions. Thus, this paper is expected to 
contribute to the development of applicable mathematical 
methods to support the automatic and systematic creation of 
digital music. 
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II. BASIC THEORY 

A. Graph 
1) Definition 

A graph is a structure used to represent discrete 
objects and the relationships between them. Formally, a 
graph is defined as an ordered pair represented as 𝐺𝐺 = 
(𝑉𝑉,𝐸𝐸), where V is a non-empty set of vertex (𝑣𝑣1 , 𝑣𝑣2 , … , 
𝑣𝑣n) and E is a set of edges (𝑒𝑒1 , 𝑒𝑒2 , … , 𝑒𝑒n) connecting 
two vertex in V.  

There are several variations of graph types based on 
the presence of multiple edges and loop edges. If a graph 
has no multiple edges or edges that return to the original 
vertex (loop edges), it is called a simple graph. A graph 
containing multiple edges is called a multi-graph, and a 
graph with edges connecting a vertex to itself (loop edges) 
is called a pseudograph. 

 
Figure 1.1.1 Graph types based on multiple and loop edges (source : 
[1]) 

 
Therefore, graphs can also be classified based on the 

orientation of their edges. A graph that does not have a 
direction on each edge is called an undirected graph, while 
a graph that has a direction is called a directed graph or 
digraph. In a directed graph, each edge is represented as an 
ordered pair indicating the direction from one vertex to 
another. 

 
Figure 1.1.2 (G1) undirected graph (G2) directed graph (source : [1]) 

 
In addition, there are several special graphs below 
a) Complete Graph : A graph in which each vertex is 
directly connected to all other vertex. A complete graph 
with vertex n is denoted as Kn, and has n(n – 1)/2 
edges. 
b) Cycle Graph : A simple graph in which each vertex 
has degree two and forms a closed cycle. 
c) Regular Graph : A graph in which every vertex has 
the same degree. If the degree is r, and the number of 
vertices is n, then the number of edges is nr/2. 

d) Bipartite Graph : A graph whose vertices can be 
divided into two sets V1 and V1 , such that each edge 
connects only a vertex from V1 to a vertex in V1 . This 
graph is denoted as 𝐺𝐺 = (𝑉𝑉1,V2) . 

 
               Figure 1.1.3 Another special graph (source : [1]) 

 
2) Terminology 

a) Adjacency : Two vertex are said to be adjacent if 
they are directly connected by an edge. 
b) Incidence: An edge is said to be incident to two 
vertex if it connects those two vertices. 
c) Isolated Vertex: A vertex that is not connected to 
any other vertex or has no edges at all. 
d) Null Graph or Empty Graph: A graph consisting of 
a number of vertices but no edges. 
e) Degree : The number of edges adjacent to a vertex. 
In a directed graph, there is in-degree (number of 
incoming edges) and out-degree (number of outgoing 
edges). 
f) Path : A sequence of vertices connected by edges in 
order without repeating edges. 
g) Cycle or Circuit : A closed path that starts and ends 
at the same vertex without repeating any edges. 
h) Connected : Two vertices are said to be connected if 
there is a path between them. A graph is said to be 
connected if all pairs of vertices are connected. 
i) Subgraph and Complement Subgraph : A subgraph is 
a part of a graph consisting of some of the vertices and 
edges of the original graph. The complement subgraph 
is a graph with the same set of vertices, but its edges 
are the complement of the edges of the original graph. 
j) Spanning Subgraph : A subgraph that contains all the 
vertices of the original graph and is part of that graph. 
k) Cut Set : A set of edges that, if removed, would 
cause the graph to become disconnected. 
l) Weighted Graph : A graph in which each edge has a 
specific value or weight, representing a particular thing. 
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3) Representation 
a) Adjacency Matrix : A matrix that represents the 
relationships between nodes. The value in row i and 
column j is 1 if nodes i and j are connected. In a 
directed graph, the direction is indicated by the location 
of the value 1. If the graph is weighted, the value in 
that position indicates the weight of the edge. 

 
               Figure 1.3.1 Adjacency matrix (source : [2]) 

 
b) Incidency Matrix: A matrix that shows the 
relationship between nodes and edges. The elements of 
the matrix are 1 if the th node is connected to the the 
edge, and 0 if not. For directed graphs, the values can 
be -1 and 1 depending on the direction of the edge. 

 
                  Figure 1.3.2 Incidency matrix (source : [2]) 

 
c) Adjacency List : Each node is wrote along with a 
list of its neighboring nodes. This representation is 
efficient for sparse graphs. 

                        Figure 1.3.3 Adjacency list (source : [2]) 
 

B. Planar Graph 
A planar graph is a graph that can be drawn on a flat 

surface without any edges crossing each other. If a planar 
graph is drawn in such a way that no edges cross each 
other, then the resulting drawing is called a plane graph. 
Planar graphs are often used in various practical 
applications, such as electronic circuit design, where the 
depiction of non-overlapping paths is essential to prevent 
electrical interference. 

 
Figure 2.1 (a) planar graph (b) and (c) plane graph (source : [2]) 
 
One of the fundamental concepts in planar graphs is 

Euler's Formula, which states the following:  
n−e+f=2  

where:  
• n: number of vertex,  
• e: number of edges,  
• f: number of regions (faces) including the outer 
region. 

This equation applies to simple connected planar graphs. 
This Euler characteristic forms the basis for analyzing the 
structure of planar graphs and can determining the 
possibility of planarity of a graph based on the number of 
vertex and edges. 

In addition to the Euler equation, there is the Euler 
inequality for simple planar graphs with e > 2, where: 

      e ≤ 3n − 6 
If a graph does not satisfy this inequality, then it is not 
planar. Therefore, if it satisfies the inequality, it is not 
necessarily planar, but it could be a candidate for a planar 
graph. 

The planarity of a graph can also be tested using 
Kuratowski's theorem, which states that a graph G is planar 
if and only if G does not have a subgraph that is 
isomorphic or homeomorphic to one of the two classical 
non-planar graphs, K3,3 and K5. These two graphs are 
called Kuratowski graphs. This theorem is very useful for 
proving that a graph is not planar by showing the existence 
of a subgraph identical to a Kuratowski structure. 

C. Chord Progression 
Chord progression is a sequence of chord changes played 

sequetially in a musical composition. This structure forms the 
harmonic framework of a song and greatly influences the 
mood, emotion, and musical direction of the piece. In music 
theory, common chord progressions often follow certain 
patterns such as I–IV–V–I or II–V–I, which are considered 
harmonically stable and pleasing to the listener. 

Each chord in the progression has a specific function; the 
tonic as the center of stability, the dominant creating tension, 
and the subdominant serving as a bridge between the two. 
These functions form the foundation of tonal harmony theory. 
Additionally, the selection and sequencing of chords can 
convey specific nuances, ranging from cheerful to 
melancholic, from tense to a calm resolution. 

In the context of music technology and mathematics, chord 
progressions can also be represented graphically, where each 
chord becomes a node and the transitions between chords 
become edges. This approach enables the application of graph 
algorithms to explore, analyze, and even automatically 
generate new chord progressions. 
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D. Tonnetz 
Tonnetz, is a geometric representation that illustrates the 

harmonic relationships between tones in tonal music, 
particularly those related to the major third (M3), minor third 
(m3), and perfect fifth (P5) intervals. This concept was first 
introduced by Leonhard Euler in the 18th century and later 
further developed by modern music theorists within the 
context of Neo-Riemannian theory. 

In a two-dimensional Tonnetz representation, each node 
represents a pitch class, and the edges connect notes with 
strong harmonic relationships, such as forming a major or 
minor triad. Thus, each triangle in the Tonnetz represents a 
triad chord. When connected as a whole, the Tonnetz forms a 
triangular lattice where movement between chords can be 
visualized as transitions between nodes or paths on a planar 
graph. 

 

 
Figure 1.4 Tonnetz (source : [6]) 

 
The structure of the Tonnetz facilitates understanding of 

the harmonic proximity between chords. For example, two 
chords adjacent to each other in the Tonnetz have overlapping 
notes (minimal voice leading), making them suitable for 
creating chord progressions that sound natural and coherent. 
Therefore, many music computing systems utilize this 
structure to automatically generate or analyze chord 
progressions. 

 

III. IMPLEMENTATION 

A. Representing Tonnetz as Planar Graph 
The Tonnetz structure is represented as an undirected 

graph, where the nodes represent pitch classes (notes such as 
C, D, E, and so on), and the edges represent harmonic 
relationships in the form of triads (groups of three notes). 

To ensure that the graph formed is truly planar, the 
representation is limited to a local subset of the Tonnetz, 
consisting of several major and minor triads that are 
harmonically related to each other. These triads partially 
overlap, forming neatly arranged triangles that do not 
intersect, as shown in the geometric Tonnetz grid. 

Examples of triads selected in this representation include: 
• C major: (C, E, G) 
• A minor: (A, C, E) 
• F major: (F, A, C) 
• D minor: (D, F, A) 
 
Each triad is formed as a triangle, and its vertices are 

connected to form the sides between harmonically related 

notes. The graph is then constructed using the networkx 
library and visualized using matplotlib. 

 

 

    Figure 3.1.1 Representing Tonnetz as Planar Graph using Python  
 

B. Generating Harmonic Chord Progressions and 
Classification Based On Song Genre 
The main implementation process in this research is to 

represent the Tonnetz structure as a planar graph, then utilize 
this structure to generate automatic chord progressions tailored 
to the characteristics of various music genres. The graph is 
constructed using the Python networkx library, while the 
probabilistic logic and chord transition processing are 
performed through the ChordNode representation. 

Each node in the graph represents a chord (in the form of 
pitch class and quality such as major, minor, or diminished). 
The edges between nodes reflect harmonic relationships based 
on musical transformations such as parallel (P), relative (R), 
leading-tone (L), as well as fifth (V) and fourth (IV) 
movements. 

Once the graph is formed, chord progressions are 
generated by traversing from the initial chord to its adjacency. 
The selection is not purely random but follows a weighted 
random selection scheme considering the harmonic weight of 
the edge, genre-specific weight, also enhancing genre 
influence by squaring the genre. With this approach, the 
resulting chord progression is not only musical but also 
reflects the distinctive nuances of the selected genre. 

 

 
 

                  Figure 3.2.1 Class to represent a chord 
The image above represents the basic structure of a chord 

in this system. The chord object is created using the __init__() 
constructor with the root parameter as the base note (e.g., C, 
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D#, or F#) and the quality parameter as the chord type (major, 
minor, dim, or aug). The __str__() function is used to return a 
string representation of the chord to be displayed to the user, 
for example C for major, Am for minor, and F#° for 
diminished. The implementation of the __hash__() and 
__eq__() functions aims to enable chord objects to be used as 
nodes in a networkx graph, while ensuring object equality 
based on value rather than just identity. 

 

 

Figure 3.2.2 Code of the TonnetzGraph constructor and the 
_initialize_genre_weights() function 

The __init__() constructor is used to initialize an empty 
graph, define a 12-tone equal temperament scale, form 
chord nodes with three types of qualities (major, minor, 
diminished), and set transition weights between chords 
based on genre through the _initialize_genre_weights() 
function. 

 

Figure 3.2.3 Code of the _build_tonnetz() function and the 
_add_tonnetz_edges() function 

 

The _build_tonnetz() function is responsible for 
constructing all nodes in the Tonnetz graph and storing them 
in the networkx graph structure. After all chord nodes have 
been added, the _add_tonnetz_edges() function will be called 
to form edges between nodes. The relationships between these 
chords are based on the principles of Neo-Riemannian 
harmonic transformation, such as P (Parallel), R (Relative), L 
(Leading-tone), V (Dominant/Fifth), and IV 
(Subdominant/Fourth).  

 

 

    Figure 3.2.4 Helper function code in class TonnetzGraph 

The code above displays helper functions such as 
_get_relative_minor(), _get_leading_tone_major(), 
_get_fifth(), and _get_fourth(). Each function is responsible 
for calculating tone transformations according to specific 
intervals used to construct the inner side of the graph. The 
_parse_chord() function is responsible for converting user 
input strings (e.g., Am, C#°) into ChordNode objects. 

 

 

         Figure 3.2.5 Code of generate_progression() function 

This function is used to generate automatic chord 
progressions from the initial chord provided by the user. For 
each step in the progression, the system will search for 
neighbors of the current chord, then select the next chord 
based on a combined weight calculation between basic 
harmonic side weight (e.g., P or R transition); genre-specific 
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transition weight (e.g., jazz prefers minor and dim); and an 
adjustment in the form of the square of the genre weight to 
make the genre more dominant in the selection. Chord 
selection is performed using a probabilistic approach through 
the weighted random selection method. This enables the 
system to generate chord progressions that remain consistent 
with the characteristics of the selected genre. 

 

           Figure 3.2.6 Code of classify_genre() function 
 
The classify_genre() function is used to predict the genre 

of music from a chord progression that has been formed. The 
classification process is carried out by comparing each 
transition between chords in the progression with the 
transition weights of each genre. The final result of this 
function is a dictionary containing match scores for each 
genre, which indicates how close the progression is to the 
harmonic characteristics of each genre. 

 

 

Figure 3.2.7 Code of visualize_graph() function 
 
The above function displays a visualization of the Tonnetz 

graph in planar form using the matplotlib library. The chords 
in the progression are visually marked with yellow (nodes) 
and red lines (transition sides), while the other nodes are 
distinguished based on chord type: light blue (major), pink 
(minor), and light green (diminished). 

 

Figure 3.2.8 Code of analyze_progression() function 
 

The analyze_progression() function is used to display a 
summary of the generated progression, including the type of 
transition between chords (e.g., P, R, L), its harmonic weight, 
and the genre classification results. This analysis helps users 
understand the harmonic structure of the progression that has 
been formed. 

 

IV. TESTING 

A. Testing Tonnetz as Planar Graph 

 

                     Figure 4.1.1 Checking if the tonnetz is planar graph 
 
Based on the code created in the implementation section 

and using is_planar function, the code was executed and the 
following results were obtained that Tonnetz is a planar graph.  

 

               Figure 4.1.2 Results of checking using Python 

After forming the Tonnetz graph, the next testing step can 
use Euler's formula by calculating the number of vertices (V), 
the number of edges (E), and the number of regions (F) 
bounded by the triad triangle.As a simple illustration: 
Suppose the Tonnetz graph has: 

• V =12 vertex (12 pitch classes) 
• E = 30 edges (harmonic relations between pitches) 
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• F = 20 areas (triad triangles and outer regions) 
Therefore, tested using Euler's characteristic:   

V – E + F = 12 – 30 + 20 = 2 

The calculation result satisfies Euler's characteristic for a 
simple connected planar graph, as seen below: 

V − E + F = 2 

Thus, the Tonnetz graph structure constructed is a planar 
graph. 
 

To further validate the test, Euler's inequality for simple 
planar graphs is also applied: 

E≤3V−6 ⇒ 30≤3(12)−6 = 30 

Since the inequality is satisfied, this graph is a valid candidate 
as a planar graph. 
 

Additionally, a test is performed using Kuratowski's 
theorem. According to Kuratowski's theorem, a graph is not 
planar if and only if it contains a subgraph isomorphic to: 

• K5 : a complete graph with 5 vertex 
• K3,3 : a complete bipartite graph with two parts, each 

with 3 vertex 
An examination of the local structure of the Tonnetz graph 
revealed no configurations of vertices and edges forming 
subgraphs isomorphic to those two graph. This can be visually 
inspected from the representation of adjacent triangles, with 
no vertices of degree 4 or higher being fully connected. Thus, 
based on Kuratowski's Theorem, the constructed Tonnetz 
graph is not a non-planar graph, reinforcing the conclusion 
that Tonnetz can be represented as a planar graph. 

B. Generating Harmonic Chord Progressions 
On this testing phase, the main() function is used to run the 

system interactively through the terminal interface. The 
program first creates a TonnetzGraph object that represents 
the planar graph of all chord combinations based on three 
main qualities: major, minor, and diminished. The 
initialization results show that the graph was successfully 
formed with a total of 36 nodes (12 notes multiplied by 3 
chord types) and 60 edges connecting the chords based on 
harmonic transformations such as parallel (P), relative (R), 
leading-tone (L), fifth (V), and fourth (IV). 

 

 

                    Figure 4.2.1 Main program to display the generated results 

Once the graph is formed, the user is prompted to enter 
input in the form of an initial chord, the desired progression 
length, and the music genre to be used as a weighting 
reference.  

 

       Figure 4.2.2 Testing result 

For example, when the user enters the initial chord E, a 
progression length of 6, and selects the jazz genre, the system 
generates the following progression sequence: E → C#m → 
F#m → A → Am → C. This result reflects the characteristics 
of jazz, which is known for its complex chord progressions 
and tonal shifts that are not always linear. The transition from 
major to minor chords, then to another minor chord, and 
shifting to the major subdominant and parallel minor 
demonstrates the effective application of the genre weighting 
designed for jazz. After the progression is displayed, the 
system also offers a graph visualization option. If selected, the 
system will display a complete graph containing all chords as 
nodes, with different colors for each type (major, minor, 
diminished). The resulting progression path is then highlighted 
in yellow for the nodes and with a thick red line for the 
transitions, allowing users to directly observe how the chord 
progression flows within the planar Tonnetz structure. This 
visualization reinforces understanding of harmonic structure 
and the effectiveness of traversal in generating progressions 
based on the selected genre. 
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V. CONCLUSION 
This paper demonstrates that the Tonnetz structure can be 

effectively represented as a planar graph consisting of major, 
minor, and diminished chord nodes, as well as edges 
representing harmonic relationships between chords. By 
utilizing fundamental graph principles such as Neo-
Riemannian transformations (P, R, L, V, and IV) and planar 
graph theory (Euler's formula and Kuratowski's theorem), the 
Tonnetz structure was successfully tested and confirmed as a 
valid simple planar graph. 

The system implementation automatically generates chord 
progressions based on user input such as the initial chord, 
progression length, and chosen music genre. Chord selection is 
performed using weighted random traversal, where weights are 
determined based on harmonic proximity and genre 
preferences. Testing results show that the system can generate 
chord progressions that are not only musical and coherent but 
also reflect the characteristics of the chosen genre, such as 
complexity in jazz or balance in pop. 

The graph visualization also successfully displays the 
progression path interactively, making it easier for users to 
understand the harmonic flow that occurs. Therefore, this 
approach demonstrates that graph theory from discrete 
mathematics can be practically utilized to support the 
automatic, systematic, and adaptive generation of digital music 
across different musical styles. 

SOURCE CODE AT GITHUB  
https://github.com/alyanrrhma/Makalah-Matdis.git 

VIDEO LINK AT YOUTUBE  
                    https://bit.ly/ytbmakalahmatdis81 
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