
Implementation of Dijkstra’s Algorithm on Directed
Graphs for the Optimization of The Persona Fusion

System in Persona 3 Reload

Renuno Yuqa Frinardi - 13524080
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: renunofrinardi @gmail.com , 13524080 @std.stei.itb.ac.id

Abstract—This paper presents a graph-based approach to
optimizing the Persona fusion system in Persona 3 Reload. By
modeling fusions as a directed, weighted graph and applying
Dijkstra’s algorithm, the program can get the most cost-efficient
fusion path while considering constraints such as player level and
Social Link requirements. Implemented in Python with CSV-
based input, this solution demonstrates a practical application of
discrete mathematics specifically graph theory in game
mechanics.

Keywords—Dijkstra’s Algorithm; Graph Theory; Directed
Graph; Persona 3; Persona 3 Reload;

I. INTRODUCTION

Video games are becoming more prevalent in this digital
age. As an interactive form of entertainment, this medium
quickly attracts a wide range of audiences. This can be
attributed to the immersive experiences that video game has to
offer, particularly those within the genre of Role-Playing
Games (RPG). Video games that are within the scope of this
genre usually have complex storyline with branching paths that
player could choose. Allowing players a high degree of
freedom and creativity.

A recent release within this genre is Persona 3 Reload
(2024), a remake of the original Persona 3 (2006). As the
fourth installment in the main persona series, Persona 3 (2006)
played a significant role in expanding the franchise’s reach
within the global gaming community. Justifying its
reintroduction into newer generation of consoles and
computers.

Developed by Atlus, Persona is a prominent RPG series
that falls under the subgenre genre of Japanese Role-Playing
Games (JRPG). JRPGs is a subgenre of RPG which typically
developed by East Asian developers that can be distinguished
by certain aspects from other RPGs. A notable aspect from this
genre is the gameplay mechanics that mostly focuses on turn-
based battle.

In terms of gameplay mechanics, Persona 3 Reload uses a
calendar system that divides each day into several time
segments that players can allocate to doing many different
activities, including combat. Consistent with many JRPGs,
Persona 3 Reload utilize turn-based battle system. Player

controls a set of entities known as “Personas,” that will help
them battle using various skills attacks. There are many
different types of Personas, each with a different kind of skill
sets, strengths, and weaknesses, giving the player many aspects
to take into consideration before engaging in a battle. With
different types of Persona, player can fuse their owned Persona
to gain a different one with new properties. This fusion system
resulting in numerous possible combination for a single
persona. In which most players tend to seek the most efficient
and cost-effective way fusion paths.

This fusion systems from the game can be modeled as a
directed graph, where each Persona is a node with edges that
have different weights depending on the cost of each fusion.
Using this graph-based representation we can find the optimal
way to fusion certain Persona with the help of pathfinding
algorithm such as Dijkstra’s Algorithm.

II. THEORETICAL BACKGROUND

A. Graph

Graphs are a commonly used way to represent discrete
objects and the relation between them. A graph G can be
represented mathematically as G = (V, E), where:

 V, a non-empty set of nodes and can be denoted as V =
{v1, v2, …, vn}

 E, a set of edges that can be denoted as E = {e1, e2, …,
en}. Each edge has either one or two nodes associated
with it, called an endpoint. The set E can also be empty
in a graph in which there can exist a graph without any
edges.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 1. Example of a graph
Source: https://study.com/academy/lesson/weighted-graphs-

implementation-dijkstra-algorithm.html

mailto:author@gmail.com
https://study.com/academy/lesson/weighted-graphs-implementation-dijkstra-algorithm.html
https://study.com/academy/lesson/weighted-graphs-implementation-dijkstra-algorithm.html
mailto:author@std.stei.itb.ac.id

Graphs can be classified as a many types depending on the
structure. Depending on the edges insides of the graph, graphs
can be classified into two types. A simple graph and a non-
simple graph. A simple graph is a graph that doesn’t have an
edge that starts and ends in the same nodes (loops) and has at
most one edge between two distinct nodes. A non-simple graph
is the opposite of a simple graph.

Graphs can also be classified based on the direction of their
edges. Depending on the direction of the edge there are two
types of graphs. An undirected graph and a directed graph. An
undirected graph doesn’t have any direction in their edges, but
a directed graph has.

Graphs can have many different terminologies, some of it
are:

1. Adjacent
Two nodes in a graph are adjacent if there is an edge
directly connecting them

2. Incidence
A node is called incident with an edge if the edge starts
or ends in the node.

3. Isolated Vertex
A node is an isolated vertex, if the node doesn’t have
any edges connected to it.

4. Null Graph
A null graph is a graph with no edges at all.

5. Degree
The degree of a node is the sum of how many edges
that are incident to it. The sum of all node degrees in a
graph will always satisfy the handshaking theorem, in
which the sum of the degrees of a graph equals to
twice the number of edges in the graph.

6. Path
An alternating sequence between nodes and edges that
is ending in a node from a graph G {vo, e1, v1, e2, v2,
…, vn-1, en, vn}. Path shows the way that needs to be
taken from v0 to vn.

7. Cycle
A path that starts and ends at the same node.

8. Connectivity
A graph is a “connected” graph if and only if there
exist a path between every pair of its nodes. If it lacks
such property the graph is considered a “disconnected
graph.”

9. Sub-graph and Complement of a Sub-graph
Sub-graph of a graph G = (V, E) is a graph G1 = (V1,
E1) if and only if V1 is a subset of V and E1 is a subset
of E. The complement of a sub-graph G1 relative to G
is G2 = (V2, E2) where E2 = E – E1 and V2 is a set of
nodes that are incident with the edges in E2.

10. Weighted Graph
A graph where each edge has an associated numerical
weight, representing cost, distance, or other metric.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 2. Difference between simple and nonsimple graph
Source: https://mathworld.wolfram.com/SimpleGraph.html

Fig. 3. Difference between directed and undirected graph
Source: https://www.researchgate.net/figure/a-An-example-of-

undirected-graph-and-b-an-example-of-directed-graph_fig3_50591619

Fig. 4. List of all paths from node 2 to 3
Source: https://www.geeksforgeeks.org/dsa/print-paths-given-

source-destination-using-bfs/

Fig. 5. Connected and disconnected graph
Source: https://www.researchgate.net/figure/llustration-of-

graph-connectivity_fig6_258188158

Fig. 6. Subgraph 1 that have a Complement of subgraph,
graph 2, that can be combined to create graph 3

Source: https://www.geeksforgeeks.org/complement-of-graph/

Fig. 7. A weighted graph
Source:

https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Gra
ph/dijkstra1.html

https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Graph/dijkstra1.html
https://www.cs.emory.edu/~cheung/Courses/253/Syllabus/Graph/dijkstra1.html
https://www.geeksforgeeks.org/complement-of-graph/
https://www.researchgate.net/figure/llustration-of-graph-connectivity_fig6_258188158
https://www.researchgate.net/figure/llustration-of-graph-connectivity_fig6_258188158
https://www.geeksforgeeks.org/dsa/print-paths-given-source-destination-using-bfs/
https://www.geeksforgeeks.org/dsa/print-paths-given-source-destination-using-bfs/
https://www.researchgate.net/figure/a-An-example-of-undirected-graph-and-b-an-example-of-directed-graph_fig3_50591619
https://www.researchgate.net/figure/a-An-example-of-undirected-graph-and-b-an-example-of-directed-graph_fig3_50591619
https://mathworld.wolfram.com/SimpleGraph.html

Graphs can be represented in many different ways. Usually
there are three common ways to represent a graph:

1. Adjacency Lists
A list that specify the nodes that are adjacent to each
node insides of the graph.

2. Adjacency Matrices
A square matrix A with the size of nxn in which n is the
amount of nodes in a graph. The element aij in the
matrix will be filled with 0 if there exist no edges
between node vi and vj and filled with 1 if there exist.
If it is a weighted graph, then element aij in the matrix
will be filled with the weight of the edges between vi

and vj or filled with 0 if there exist no edges between
them.

3. Incidence Matrices
A matrix A with the size of nxm in which n is the
amount of nodes in a graph and m is the amount of
edges in a graph. The element aij in the matrix will be
filled with 0 if there exist no connection between node
vi and edges ej and filled with 1 if there exist. If it is a
weighted graph, then element aij in the matrix will be
filled with the weight of the edges ej if vi is connected
to ej and or filled with 0 if not.

B. Dijkstra’s Algorithm

Dijkstra’s algorithm is a pathfinding algorithm that used to
determine the fastest path from a starting node A to every other
node in a weighted graph, provided that the nodes are
reachable from the starting node A. This algorithm will
continue to run until it has found the shortest path from the
starting nodes to all reachable nodes in the graph, or until it has
found the shortest path to a specified target node. For this
algorithm to works, all the weights of the edge have to be non-
negative. This algorithm works by following a simple set of
steps:

1. Set the starting node distance/cost to 0 and all the
unvisited node to infinity or undefined. Mark the
starting node as explored.

2. From the current node, visit all the neighboring node
and count the distance/cost from the current node. If
the newest distance/cost is smaller than the current
recorded distance/cost at the node, update it.

3. From the current node select a node that is unexplored
and has the smallest distance/cost value, then go to the
node. Mark the node as explored.

4. Repeat steps 2 and 3 until all reachable nodes are
explored or the shortest path to a target node is found.

Implementing Dijkstra’s algorithm efficiently into a
programming language requires a suitable data structure to be
used. Usually this algorithm uses priority queue. Priority queue
is being used to stores all the unexplored nodes along with their
current shortest known distance/cost. It allows the algorithm to
access the node with the smallest distance first. As the
algorithm updates all the distances, the priority queue will
maintain the correct order for processing the next node with the
smallest distance/cost.

C. Persona 3 Reload

Persona 3 Reload is a Japanese Role-Playing Game (JRPG)
developed by Atlus and a remake of the fourth mainline title in
the persona series. The game is set in the fictional Japanese city
of Tatsumi Port Island in the year 2009.

The story follows a young transfer student returning to the
city where he was born. On the night of his arrival, the

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 8. Adjacency list of a graph
Source: https://www.oreilly.com/library/view/learning-
javascript-data/9781788623872/ef9a9b77-a6d4-480b-

a4f4-77336f587b36.xhtml

Fig. 9. Adjacency matrix of a graph
Source: https://www.upgrad.com/tutorials/software-

engineering/data-structure/adjacency-matrix/

Fig. 10. Incidence matrix of a graph
Source: https://www.oreilly.com/library/view/learning-

javascript-data/9781788623872/7e3a2a29-
8b6d-471e-9753-7cf3210063ad.xhtml

Fig. 11. Step by step of Djikstra's Algorithm (left to right)
Source: https://steemit.com/popularscience/@krishtopa/dijkstra-s-

algorithm-of-finding-optimal-paths

https://steemit.com/popularscience/@krishtopa/dijkstra-s-algorithm-of-finding-optimal-paths
https://steemit.com/popularscience/@krishtopa/dijkstra-s-algorithm-of-finding-optimal-paths
https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/7e3a2a29-8b6d-471e-9753-7cf3210063ad.xhtml
https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/7e3a2a29-8b6d-471e-9753-7cf3210063ad.xhtml
https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/7e3a2a29-8b6d-471e-9753-7cf3210063ad.xhtml
https://www.upgrad.com/tutorials/software-engineering/data-structure/adjacency-matrix/
https://www.upgrad.com/tutorials/software-engineering/data-structure/adjacency-matrix/
https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/ef9a9b77-a6d4-480b-a4f4-77336f587b36.xhtml
https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/ef9a9b77-a6d4-480b-a4f4-77336f587b36.xhtml
https://www.oreilly.com/library/view/learning-javascript-data/9781788623872/ef9a9b77-a6d4-480b-a4f4-77336f587b36.xhtml

protagonist found himself in a strange dormitory during a
mysterious time called the dark hour, a hidden period of time
between the change of day, occurring right after midnight.
During this time, most humans are unknowingly asleep and
dangerous entity called Shadows roam freely. After
encountering a shadow, he awakens to a unique inner power,
known as Persona, enabling him to fight back. He soon joins
an extracurricular group called SEES (Specialized
Extracurricular Execution Squad), which its purpose is to
investigate and exterminate the Shadows during the dark hour.
To uncover the truth behind the Dark Hour, the protagonist and
his allies must explore a mysterious, ever-changing tower that
appears only during this time, Tartarus. Climbing its floors,
they confront Shadows, grow stronger, and unravel the secrets
behind the strange phenomenon threatening their world.

The gameplay in Persona 3 Reload is divided into two main
components:

1. Daily Life
This aspect takes place in the city of Tatsumi Port
Island. Each in-game day is broken into distinct
time segments, typically daytime/after-school and
evening in which players can choose how to spend
their time to doing different activities. Activities
such as hanging out with friends, studying, taking
part-time jobs, or preparing for upcoming battles.

2. Dark Hour
Occurring during the Dark Hour, players can enter
the mysterious tower or Tartarus. If the player
decides to dedicate their time to visit the Dark
Hour, they can explore Tartarus, battle Shadows,
and advance toward the game’s main objectives.
Each lunar cycle culminates in a major boss battle,
and progressing through Tartarus is essential to
reaching the milestone for each month.

All combat in Persona 3 Reload takes during the Dark
Hour, either while inside the Tartarus or during a scripted story
encounters. The game uses a turn-based battle system, where

each party member can perform actions such as attacking,
defending, using items, or activating the special abilities of
their currently equipped Persona.

There are 173 unique Personas in the base game of Persona
3 Reload. Each skill used by a Persona or Shadow can be
categorized into one of ten different elemental types, as a
healing, as a passive ability, or a status ailment ability. Every
Persona and Shadow has a unique set of strengths and
weaknesses to certain elemental attacks. If a Persona or
Shadow weak to a specific element it will receive 1.5x more
damage when hit by it. If they are strong against an element,
the resistance falls into one of following categories:

 Drain, absorbs the attack and restores HP.
 Repel, reflects the attack back to the attacker
 Null, completely negates all the damage
 Resist, reduces the incoming damage by 50%

There are two primary types of Persona fusion systems in
this game:

 Dyad Fusion, fusion that combines two Personas
 Special Fusion, fusion that involves three or more

Personas.
Each Persona belongs to one of 22 Arcana, corresponding

to the 22 Major Arcana of the tarot cards. A Persona’s Arcana
plays a key role in determining the outcome of a dyad fusion
when combining two Personas of different types, several other
factors that influence the fusion results are:

 Persona levels, the base level of the fused Personas can
change the resulting Persona. The highest level of all
the Personas involved in the fusion will also dictate the
minimum level required for the player to be able to do
the fusion

 Social links, some Personas are locked until the player
reaches a certain bond level with specific characters.

 Skill inheritance, selected skills from the fused
Personas can be inherited to the new one.

 Skill change, depending on the moon phase during the
fusion, the player may have the option to replace a
randomly inherited skill to a randomly generated one.

 Fusion accidents, a small chance in which the fusion
result is randomized completely.

Aside from fusion, players can also obtain their Personas
from the Personas Compendium, a database of all previously
acquired Personas. Players can re-summon these Personas at
any time by using the in-game currency (yen). Every persona
has an associated summoning cost based on its level. The
higher the level, the more expensive it is to summon.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 12. Persona 3 Reload game covers
Source:

https://www.reddit.com/r/PERSoNA/comments/15ywdrw/the_box_
art_for_persona_3_reload/

Fig. 13. The elemental properties of Orpheus Telos in Persona 3 Reload
that resists all elemental damage except Almighty (from left to right: Slash,

Strike, Pierce, Fire, Ice, Lightning, Wind, Light, Dark, Almighty)
Source:

https://aqiu384.github.io/megaten-fusion-tool/p3r/personas/Orpheus%20Te
los/fissions

https://aqiu384.github.io/megaten-fusion-tool/p3r/personas/Orpheus%20Telos/fissions
https://aqiu384.github.io/megaten-fusion-tool/p3r/personas/Orpheus%20Telos/fissions
https://www.reddit.com/r/PERSoNA/comments/15ywdrw/the_box_art_for_persona_3_reload/
https://www.reddit.com/r/PERSoNA/comments/15ywdrw/the_box_art_for_persona_3_reload/

III. PROBLEM ANALYSIS

To determine the most efficient fusion path for a Persona,
the entire fusion system must first be modeled as a graph.
Given that there are 173 different Personas, it is practical to
begin with a simplified version of the miniature version of the
fusion database. The scaled down model allows for easier
development. Later, the program can be expanded to support
the full fusion dataset dynamically loaded from a CSV file.

However, before constructing the graph, several special
considerations must be addressed. Unlike traditional
applications of graph theory, such as geographic maps,
modelling a Persona fusion system involves a non-standard
transformations. The things that need to be taken when
converting the dataset into a graph are:

 Each node in the graph will represent one of the base
Personas used in a fusion.

 The name of the edges will represent the name of the
second required Personas.

 The weight of the edges will represent the cost (in yen)
of summoning the second Persona from the
compendium.

 The graph that must be directed, showing the direction
of the fusion, from base Personas to the resulting
Persona.

 Fusion accident will be excluded from the system due
to their low probability and unpredictability

Knowing the considerations above, therefore, it can be
determined a step-by-step on how to convert the dataset and
represents it into a graph.

A. Filtering Unnecessary Persona Attributes

Persona has a wide range of attributes, but not all of them
are relevant for the fusion pathfinding algorithm. To improve
both memory efficiency and source code clarity, only a select
number of key properties will be retained:

 First Persona’s name, as the Persona’s name will be
used as the name of the graph node.

 Resulting Persona, as the resulting persona will
determine the adjacency.

 Cost, as the cost will represent the amount of yen
required to summon the second Persona from
compendium.

 Second Persona’s name, as the Persona’s name will be
used to name all the edges as well as the required
component of the fusion.

 Required social link, ensures locked Personas are only
accessible if the corresponding bond is completed.

 Highest level among three Personas involved in the
fusion (two required Personas and one resulting
Persona), sets the minimum level required for the
player to perform the fusion.

All other attributes, such as elemental affinities, strengths,
and weaknesses, will be excluded, as they are not necessary for
the fusion program optimization.

B. Choosing the Graph Representation

Once the essential data fields have been identified, the next
step is to find the suitable graph representation. Given that each
fusion involves multiple pieces of metadata, such as social link

requirements and level restriction, an adjacency list is the most
appropriate choice. This representation allows for easy
association with descriptive edge information while
maintaining efficiency in both memory and traversal
operations.

IV. ALGORITHM IMPLEMENTATION

To calculate the most efficient fusion path for a Persona
using the graph, it is crucial to determine the suitable
pathfinding algorithm. Given that this graph different from the
traditional geographical maps, the fusion graph presents unique
challenges, such as multiple directed edges between the same
pair of nodes, each with potentially vastly different costs
depending on the targeted fusion node. These cost disparities
make it difficult to apply heuristic-based algorithms (an
approach used to find solutions to complex problems by
providing near-optimal solutions in a faster and more efficient
way compared to traditional methods) like A-Star effectively,
as estimating an admissible and consistent heuristic becomes
unreliable.

Given these complexities, a more suitable approach is
Dijkstra’s algorithm, which can find the shortest path in a
weighted graph without relying on heuristics. Dijkstra’s
algorithm explores all possible path from the starting node,
always expanding the node with the lowest accumulated cost.
This makes it well suited for scenarios where edge weights
vary unpredictably. Additionally, Dijkstra’s algorithm can be
easily modified to account for specific restriction such as level
restriction and social link requirements.

Taking all prior factors into account, a step-by-step process
can be defined for implementing the algorithm within the
graph. For simplicity and flexibility, this algorithm will be
implemented using Python programming language.

A. Creating the Graph Representation

The dataset’s graph will be represented using an adjacency
list, where each node is going to be mapped to its adjacent
node. Since there are additional information needs to be stored
such as incident edge name, incident edge cost, required level,
as well as the required social link, the adjacency list will store a
set of properties from the adjacent node. In Python this can be
represented as a dictionary, where each key corresponds to a
Persona, and the value is a list of dictionaries containing the
details of each fusion, as such:

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

From the image it can be determined that the Slime is
adjacent to Angel and Pyro Jack, and Angel is adjacent to Pyro
Jack. All the weight as well as the properties of the edge and
the requirements that are connecting the fusion are also listed
in the dictionary.

B. Creating the Dictionary from a CSV File

To easily modified the adjacency list, the program can be
made to read the input directly from a CSV file, therefore a
function to read the CSV must be created. An implementation
such as a readFromCSV function could be created with the
built-in library from Python, named csv. This results in a
function such as:

Reading from a CSV file with the structure of:

The function first initialized an empty adjacency list. It then
prepares to read the specified CSV file from the input. For each
row inside the CSV file the function is going to extract the data
from each column and stores it into appropriate variables. The
function then going to check if the node has already been
initialized into the graph or not, if it isn’t, it will create the
entry for current node. Then, it appends the properties of
adjacent node into the list associated with the current node.
Once all the row has been processed, it will return the
adjacency list that has been created.

C. Finding the Shortest Path

To traverse the graph, the program will implement a
function that uses Dijkstra’s Algorithm, such as
dijkstraFusion. Before creating the algorithm, the
program needs to use another built-in library from Python,
named heapq. This library will serve as a generator for the
priority queue. The function will receive five different
parameters, such as the graph, starting Persona, target Persona,
completed social links, and player level. This results in a
function such as:

D. Showing The Results

After the shortest path has been found, the results will be
shown. If the path has been found it will print the fusion path
from the starting Persona to the target Persona, if it hasn’t been
found, it will print a message that the path hasn’t been found
with the current level and social links. This section of the
program will result in:

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 14. Representation of graph in
adjacency list in Python

Source: author

Fig. 15. Implementation of readFromCSV function in Python
Source: author

Fig. 16. Example of the CSV file
Source: author

Fig. 17. Implementation of the Dijkstra's Algorithm
Source: author

This program will output two different result depending on
the return value of the path. Using the CSV dataset from
section B, here are the result:

V. CONCLUSION

In conclusion, this short analysis has presented a structured
approached to modeling an in-game fusion system from
Persona 3 Reload using graph theory and a pathfinding
algorithm, specifically Dijkstra’s Algorithm, in Python. By
representing the fusion dataset as a graph and using pathfinding
algorithm, the program can determine the most cost-efficient
fusion path while accounting for certain restriction from the
game, such as level and required social links. This
implementation shows the versatility of graph theory on
tackling problem that we can found on our daily activities.

VIDEO LINK AT YOUTUBE & GITHUB REPOSITORY

Youtube: https://youtu.be/jObilZD3duI

Github: https://github.com/renuno-frinardi/program-
makalah-matdis.git

ACKNOWLEDGMENT

First and foremost, I sincerely thank Allah, whose guidance
has enabled me to complete this paper. I would also like to
express my heartfelt appreciation to my Discrete Mathematics
lecturer, Mr. Arrival Dwi Sentosa, M.T, as well as to my
family and friends for their unwavering support, valuable
insights, and continuous encouragement throughout the
development of this work. Lastly, I apologize for any mistakes
or shortcomings that may be present in this paper.

REFERENCES

[1] K. H. Rosen, Discrete Mathematics and Its Application, 7th Ed. New
York:McGraw-Hill, 2012, pp. 641–678.

[2] R. Munir, "Graf (Bag.1)." Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf. Accessed: June 16th 2025.

[3] M. Sigid, “Decision Tree Application to Find the Optimal Way of
Spending Daily Life Activities in Persona 4.” Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/
Makalah/Makalah-Matdis-2020 (149).pdf. Accessed: June 16th 2025.

[4] G. Simon, “Tree-Based Phylogenetic Analysis: A Tool for
Understanding Pathogen Dynamics in Indonesia.” Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/
Makalah/Makalah-IF1220-Matdis-2024%20(162).pdf. Accessed: June
16th 2025.

[5] C. Norris, “Persona 3 Reload – Review.” Available:
https://turnbasedlovers.com/review/persona-3-reload-review. Accessed
June 16th 2025.

[6] A. Warih, “Penggunaan Algoritma Dijkstra untuk Mengoptimalisasi
Rute Pengumpulan Starconch dalam Permainan Genshin Impact.”
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-
2024/Makalah2023/Makalah-Matdis-2023%20(155).pdf. Accessed: June
17th 2025.

[7] N. N. Srinidhi, “Network optimizations in the Internet of Things: A
review.” Available:
https://www.sciencedirect.com/science/article/pii/S2215098618303379.
Accessed: June 17th 2025.

[8] V. Joshi, “Finding The Shortest Path, With A Little Help From
Dijkstra.” Available: https://medium.com/basecs/finding-the-shortest-
path-with-a-little-help-from-dijkstra-613149fbdc8e. Accessed June 17th

2025.

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 18 Juni 2025

Renuno Yuqa Frinardi
13524080

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 18. Main section of the program
Source: author

Fig. 19. Output from the program for the most efficient fusion path
from Slime to Oberon (found)

Source: author

Fig. 20. Output from the program for the most efficient fusion path from
Slime to Oberon (not found)

Source: author

https://medium.com/basecs/finding-the-shortest-path-with-a-little-help-from-dijkstra-613149fbdc8e
https://medium.com/basecs/finding-the-shortest-path-with-a-little-help-from-dijkstra-613149fbdc8e
https://www.sciencedirect.com/science/article/pii/S2215098618303379
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/Makalah2023/Makalah-Matdis-2023%20(155).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/Makalah2023/Makalah-Matdis-2023%20(155).pdf
https://turnbasedlovers.com/review/persona-3-reload-review/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/Makalah/Makalah-IF1220-Matdis-2024%20(162).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/Makalah/Makalah-IF1220-Matdis-2024%20(162).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Makalah/Makalah-Matdis-2020%20(149).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2020-2021/Makalah/Makalah-Matdis-2020%20(149).pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://github.com/renuno-frinardi/program-makalah-matdis.git
https://github.com/renuno-frinardi/program-makalah-matdis.git
https://youtu.be/jObilZD3duI

	I. Introduction
	II. Theoretical Background
	A. Graph
	B. Dijkstra’s Algorithm
	C. Persona 3 Reload

	III. Problem Analysis
	A. Filtering Unnecessary Persona Attributes
	B. Choosing the Graph Representation

	IV. Algorithm Implementation
	A. Creating the Graph Representation
	B. Creating the Dictionary from a CSV File
	C. Finding the Shortest Path
	D. Showing The Results

	V. Conclusion
	Video Link at Youtube & Github Repository
	Acknowledgment
	References

