
Multi-Objective GoFood Route Optimization: Hamiltonian Path
Approach on Real-Time Traffic-Weighted Graphs in Bandung

Bryan Pratama Putra Hendra - 13524067
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia

bryanpratama0111@gmail.com, 13524067@std.stei.itb.ac.id

Abstract— In urban areas, food delivery platforms such as
GoFood are essential for daily convenience. However, assigning
multiple customers to a limited number of drivers in a fair
and efficient manner remains a significant challenge, especially
in cities with unpredictable traffic like Bandung. This paper
presents a graph-based optimization approach that models the
delivery network using weighted graphs, where edge weights
represent real-time travel durations. By evaluating all possible
customer groupings and solving small-scale Traveling Salesman
Problems (TSP) for each, the method aims to minimize both the
average delivery time and the time range across all drivers. This
dual-objective strategy improves delivery fairness and efficiency.

Keywords— Graph theory, Traveling Salesman Problem,
hamiltonian graph, route optimization, GoFood, fairness, ve-
hicle routing

I. INTRODUCTION

Food delivery services have become an essential part of
everyday life in today’s digital era, especially in cities like
Bandung. Users can buy food from local restaurants and have
it delivered directly to their homes through platforms like
Gojek’s GoFood service. This service not only provides jobs
for the community, but also makes it easier for people who
want to order food without leaving their homes.

However, there is a big question that is asked behind the
ease of use of food delivery software. How can a limited
number of drivers be assigned to many customers in a
way that ensures efficiency and fairness? It’s not just about
figuring out the shortest path. It involves figuring out how to
group and route deliveries so that no driver is overburdened
and no customer is left waiting too long.

To address this, the author modelled the delivery scenario
using graph theory and combinatorial optimization. Each
delivery task consists of three stages: a driver travels from
their starting location to the restaurant (pickup point), and
then proceeds to deliver food to one or more customers in
sequence. This system will be represented as a weighted
graph, where nodes are locations and edges are estimated
travel times.

This paper presents a fairness-aware optimization ap-
proach inspired by the Vehicle Routing Problem (VRP). By
evaluating all possible groupings of customers and solving a
small-scale Traveling Salesman Problem (TSP) for each as-
signment, this program aims to minimize not just the average
delivery time, but also the range—the difference between the

longest and shortest delivery times among all drivers. This
ensures a more balanced workload and consistent delivery
experience for all parties.

Through this method, the author showed how theoretical
concepts from discrete mathematics and graph algorithms
can be applied to real-world systems like GoFood to im-
prove efficiency, equity, and user satisfaction, even under the
dynamic constraints of urban traffic.

II. THEORETICAL FOUNDATION

A. Graph Theory

A.1. Graph Definition

Graphs are used to represent discrete objects and the
relationships between them. By definition, Graph G = (V, E),
where V is a non-empty set of vertices v1,v2,. . . ,vn, while E
is the set of edges connecting a pair of vertices e1,e2,. . . ,en.

Based on the presence or absence of loops or multiple
edges in a graph, graphs are classified into two types, namely
Simple Graphs and Non-Simple Graphs. Simple Graphs are
graphs that do not contain loops or multiple edges, while
Non-Simple Graphs are graphs that have multiple edges or
loops.

Fig. 1. Simple Graph (G1), Multigraph (G2) and Pseudograph (G3)
Source: https://informatika.stei.itb.ac.id/~rinaldi.
munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

A.2. Graph Type

Based on the orientation of the direction on the side of a
graph, graph is classified into two types, namely Undirected
Graph and Directed Graph. An undirected graph is a graph
whose edges do not have a direction orientation, while a
directed graph is a graph whose edges are given a direction
orientation.

Makalah IF1220 Matematika Diskrit – Sem. II Tahun 2024/2025 1

mailto:13524067@std.stei.itb.ac.id
https://maps.app.goo.gl/tBeAvvqoMbq2z1ot9
mailto:bryanpratama0111@gmail.com
mailto:13524067@std.stei.itb.ac.id
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf


Fig. 2. Illustration of Undirected Graph (G1) and Directed Graph (G2)
Source: https://informatika.stei.itb.ac.id/~rinaldi.
munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

A.3. Weighted Graph

A graph which each of its edge is assigned a numerical
value, or weight, that typically represents the cost, distance,
or time required to travel between two connected vertices. In
the context of route optimization, these weights are crucial
because they allow the graph to model real-world factors
such as traffic conditions, road lengths, or delivery time
estimates.

Fig. 3. Illustration of Weighted Graph
Source: https://informatika.stei.itb.ac.id/~rinaldi.
munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

A.4. Graph Representation

In graph theory, one common way to represent a graph is
using an adjacency matrix. An adjacency matrix is a 2D array
where the rows and columns represent the vertices of the
graph. Each cell (i,j) contains a value that indicates whether
there is an edge from vertex i to vertex j, and in the case
of a weighted graph, the cell holds the weight of that edge.
If there is no edge, the cell may contain a zero or a special
value like infinity. This representation is especially useful for
dense graphs, as it allows quick access to check the existence
and weight of edges between any two vertices.

Fig. 4. Illustration of Weighted Graph and Its Adjacency Matrix
Source: https://informatika.stei.itb.ac.id/~rinaldi.
munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

A.5. Graph Application

Graphs are widely used to model and solve real-world
problems involving connections and relationships between
objects. In logistics and delivery systems, graphs represent
locations as vertices and roads or routes as edges, allowing
for efficient route planning and navigation. Applications
include shortest path algorithms for GPS navigation, network
routing in telecommunications, and optimization problems
like the Traveling Salesman Problem (TSP) and vehicle
routing. For food delivery services like GoFood, graphs help
simulate urban road networks and traffic conditions, enabling
the system to compute optimal delivery routes that minimize
travel time and cost.

B. Hamiltonian Path Theory

B.1. Definition of Hamiltonian Path
In graph theory, a path is a sequence of vertices in which

each consecutive pair is connected by an edge. Paths can
be either directed or undirected, depending on the type of
graph. A path may or may not revisit the same vertices or
edges, depending on the specific constraints of the problem.
One important type of path is the Hamiltonian path, which
is a path that visits each vertex in the graph exactly once,
regardless of how many edges are used. Hamiltonian paths
are commonly applied in real-world scenarios where each
location must be visited once without repetition, such as in
the Traveling Salesman Problem (TSP), logistics planning,
and tour scheduling.

Fig. 5. Ilustration of Hamiltonian Path
Source: https://informatika.stei.itb.ac.id/~rinaldi.
munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

B.2. Algorithms
Since finding a Hamiltonian path or circuit is an NP-

complete problem, exact algorithms can be computationally
prohibitive for large graphs. For the purpose of optimizing
multi-stop deliveries, where the number of stops (vertices)
can be significant, the problem is often framed as a Traveling
Salesman Problem (TSP). The goal in TSP is to find the
shortest possible route that visits each city exactly once and
returns to the origin city. While the pure Hamiltonian path
problem doesn’t require returning to the start, in delivery
logistics, drivers typically start from a hub and ideally return
there after completing all deliveries.

C. GoFood

GoFood is one of the core services within the Gojek
ecosystem, a leading super app in Southeast Asia, partic-
ularly prominent in Indonesia. Go-Food was first launched
in Indonesia in 2015 in Jakarta. This service focuses on

Makalah IF1220 Matematika Diskrit – Sem. II Tahun 2024/2025 2

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf


the delivery of food and beverages from restaurants to
consumers through a network of driver-partners. Since its
launch, GoFood has become a key player in Indonesia’s food
delivery industry, significantly transforming how consumers
order and receive food in urban areas.

Fig. 6. GoFood Logo
Source: Author’s Archive

GoFood’s relevance to this research lies in its operational
nature, which necessitates multi-objective route optimiza-
tion. GoFood drivers often have to pick up orders from
one or multiple restaurants, then deliver them to various
customer locations within a single delivery run. The primary
challenge is to determine the most efficient sequence of
pickups and deliveries, taking into account real-time travel
times influenced by traffic congestion, and distance. The
success of services like GoFood is measured not only by
the number of orders completed but also by delivery speed,
customer satisfaction, and driver operational efficiency, all of
which are significantly impacted by the quality of the route
optimization algorithms employed. Therefore, research into
GoFood route optimization using dynamic traffic-weighted
graph approaches is crucial for enhancing the performance
and sustainability of food delivery services in dense urban
environments.

D. Real-Time Weighted Graphs

In this study, the author model the GoFood delivery prob-
lem using a traffic-weighted directed graph, where each edge
represents the estimated travel time between two locations.
These weights are not static or theoretical—they are derived
from real-time route data obtained via the OpenRouteService
(ORS) API. This allows the graph to reflect current traffic
conditions in urban environments such as Bandung at the
moment of computation.

Unlike fully dynamic graph models that continuously
update weights in response to live traffic feeds, our system
adopts a snapshot-based approach. At the start of the opti-
mization process, we retrieve up-to-date travel durations be-
tween all relevant nodes (drivers, restaurant, and customers),
and use these values as fixed edge weights during route
assignment and evaluation.

This preprocessed real-time weighting enables more accu-
rate modeling of urban travel conditions without the overhead
of constant API calls or re-optimization. By embedding real
traffic data directly into the adjacency matrix of the graph,

the system better approximates real-world constraints such
as congestion, detours, and variable road speeds.

Using this snapshot model, each edge in the graph effec-
tively encodes the latest known travel cost, forming a realistic
basis for solving the Traveling Salesman Problem (TSP)
and evaluating customer-driver assignments. While not dy-
namically reactive, this approach strikes a practical balance
between realism and computational feasibility, especially for
small-scale delivery batch planning.

E. Route Optimization

E.1. Traveling Salesman Problem (TSP) for Subroutes and
VRP Formulation

The Traveling Salesman Problem (TSP) is a classical
graph optimization problem where the goal is to find the
shortest possible route that visits each given node exactly
once and returns to the starting point (optional in open
TSP). In the context of this research, we apply TSP as a
subroutine to determine the optimal visiting order within
each driver’s assigned group of customers, starting from the
central restaurant.

Fig. 7. Vehicle Routing Problem
Source:

https://www.researchgate.net/figure/Classical-Vehicle-Routing-Problem

This local optimization is part of a broader formulation
resembling the Vehicle Routing Problem (VRP)—a general-
ization of TSP where multiple vehicles (drivers) are tasked
with visiting subsets of customers. In our case, we solve a
capacitated VRP without distance limits, where the objective
is not just efficiency but also workload fairness among
drivers.

Instead of solving a single large TSP across all customers,
we divide the six customers into four non-overlapping
groups—each assigned to a single driver—and solve a small-
scale TSP for each group. This allows the system to evaluate
every possible permutation within a group and determine the
best visiting order to minimize delivery time.
E.2. TSP vs. Eulerian Path

It is important to distinguish between the TSP (a form
of the Hamiltonian Path problem) and the Eulerian Path
problem. While both are fundamental problems in graph
theory, they target different goals:

• Eulerian Path: Seeks to traverse every edge in a
graph exactly once. This is relevant for tasks like street
sweeping, garbage collection, or utility inspection.

• Hamiltonian Path / TSP: Seeks to visit every node
exactly once. This model is more appropriate for food
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delivery, where each customer’s location must be visited
directly and efficiently.

In this delivery system, we adopt the TSP formulation
within a VRP framework, as it aligns directly with the
need to serve all customer nodes without redundancy or
unnecessary detours.
E.3. Fairness as a Multi-Objective Constraint in VRP

While traditional VRP approaches prioritize minimizing
the total distance or time, real-world urban logistics systems
must also address the issue of fairness among delivery agents.
In this study, fairness is formalized as the minimization of
the range between the longest and shortest delivery times
across all drivers:

Range=max(TotalTimedriver)−min(TotalTimedriver) (1)

This fairness objective ensures that no single driver is
disproportionately burdened with long or inefficient delivery
routes. A more balanced workload distribution improves
operational equity, increases driver satisfaction, and enhances
consistency in customer wait times—especially critical in
urban settings with variable traffic conditions.
E.4. Exhaustive Search in Small-Scale VRP vs. Heuristic
Approaches

Given the small size of the problem in this paper, the
author implement a full exhaustive search strategy. This
involves:

• Generating all valid groupings (partitions) of customers
into four non-empty subsets.

• Evaluating all permutations of driver-to-group assign-
ments.

• Solving a TSP for each group to determine the optimal
visiting order from the restaurant to the customers.

• Calculating the total delivery time per driver and com-
puting the overall delivery range and mean time.

Although exhaustive search has exponential complexity,
it guarantees globally optimal results in both fairness and
efficiency for small instances. However, for larger-scale de-
livery systems—such as those involving dozens or hundreds
of customers—this approach becomes infeasible.

In such cases, the fairness-aware VRP could be approxi-
mated using heuristic or metaheuristic techniques such as:

• Clustering-based pre-grouping (e.g., k-means, DB-
SCAN)

• Greedy or regret-based insertion heuristics
• Evolutionary algorithms (e.g., genetic algorithms, ant

colony optimization)
• Reinforcement learning-based route planning
These methods can approximate fairness while maintain-

ing computational feasibility, allowing the model to scale to
real-world logistics operations.

III. IMPLEMENTATION
A. Graph Initialization

The author modeled a delivery area in Bandung as a
weighted directed graph G = (V,E), where each vertex v ∈V

represents a real-world location such as a driver’s starting
point, a customer’s home, or a restaurant. Each edge e =
(u,v) ∈ E represents a directed route between two points,
weighted by the estimated travel time in minutes.

To visualize this graph, we plotted the spatial layout of
drivers, customers, and the restaurant on a map of Bandung
using their respective GPS coordinates. The nodes in the
visualization are color-coded based on their role in the
delivery system:

• Red node represents the restaurant,
• Green nodes represent the drivers,
• Blue nodes represent the customers.

Fig. 8. Spatial Visualization of Drivers, Customers, and Restaurant
Source: Author’s Archive

At the heart of every order you receive, there’s a care-
fully planned journey designed to ensure everything goes
smoothly. Think of it this way:

Each of the drivers (the green nodes) has a crucial mission.
That is to deliver a meal to the customers (the blue nodes).
But before your meal arrives at your door, the driver first
needs to stop by the central restaurant (the red node) to
pick up your order. So, the complete path for every delivery
always follows a two-stage route: Driver → Restaurant →
N Customer.

The author’s main goal is to make this delivery experience
as fair and efficient as possible for everyone involved. The
program is not just aiming for the fastest overall delivery,
but it’s deeply committed in making sure that no customer
has to wait disproportionately longer than others. We strive
to flatten out the delivery times, minimizing the difference
between the quickest and slowest deliveries.

By doing this, we can ensure that all customers receive
their orders within a relatively uniform time window. It’s
not just about speed; it’s about fairness. Our drivers can work
more smoothly without getting overwhelmed by bottlenecks,
and ultimately, you, our valued customer, can enjoy your
food without the stress of an unexpectedly long wait. This
more consistent and predictable system is especially benefi-
cial in a bustling urban environment like Bandung.

To construct the delivery graph, we begin by connecting
each node—representing a driver or customer—to the central
restaurant node. Then we will connect all the customer to
each other. This results in a directed graph structure, as
illustrated in Figure 13.
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Fig. 9. Graph Representing Delivery Route
Source: Author’s Archive

To assign weights to each edge, the author calculate the
estimated travel time between two locations. This is done us-
ing real-time route data fetched from the OpenRouteService
(ORS) API. The code snippet in Figure 10 demonstrates how
the travel duration between two geographical coordinates can
be retrieved.

Fig. 10. Function to fetch travel time using OpenRouteService
Source: Author’s Archive

Before executing the function, it is necessary to define
the geographical coordinates of all relevant entities in the
delivery system(the drivers, customers, and the restaurant).
These coordinates are represented using latitude and lon-
gitude, which are numerical values that pinpoint a specific
location on the Earth’s surface.

These spatial coordinates serve as the input for comput-
ing real-world travel distances and durations between loca-
tions. To retrieve accurate routing information, the system
integrates with the OpenRouteService (ORS) API, which
requires a valid API key for authentication. The API uses
the input coordinates to calculate the optimal road-based
paths between nodes, taking into account the actual road
network and optionally, real-time traffic data. Figure 11
shows how these locations are initialized in the code, laying
the groundwork for route computation.

Fig. 11. Initialization of coordinates and ORS client
Source: Author’s Archive

Running the function will help generate three tables dis-
playing the travel times from drivers to the restaurant, from
restaurant to customers, and from customer to customer.

• First Table Time from Driver to Restaurant,
• Second Table Time from Restaurant to Customer,
• Third Table Time from Customer to Customer.

The product is as shown in Figure 12.

Fig. 12. Output of travel times from each node to the restaurant

Using these values as edge weights, we can now construct
the full weighted directed graph that forms the basis for route
optimization in the next stage. For the representation we will
use an adjacency matrix like below.
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Fig. 13. Simplified graph connecting all nodes to the restaurant
Source: Author’s Archive

B. Route Assignment and Optimization

Once the weighted directed graph is constructed, the next
step is to assign all customers to the available drivers in a
way that minimizes disparities in delivery durations. Unlike
a strict one-to-one mapping (one driver to one customer), the
author allow each driver to serve multiple customers, as long
as all deliveries start from the restaurant. This results in a
delivery route of the form:

Driver → Restaurant → Customer1 → ··· → Customern

This problem can be modeled as a variant of the Vehicle
Routing Problem (VRP), with the following constraints:

• Each driver must start by visiting the central restaurant
(the pickup point).

• Every customer must be visited exactly once by exactly
one driver.

• The route from the restaurant to the customers follows
the most efficient visiting order (minimizing route cost).

The total delivery cost per driver is computed as:

TotalTimedriver = TimeD→R +TSPR→C1→···→Cn (2)

Unlike traditional VRP objectives that focus on mini-
mizing the overall cost, our goal emphasizes fairness. We
introduce a fairness metric called the delivery range, defined
as:

Range = max(TotalTimedriver)−min(TotalTimedriver) (3)

The lower this range, the more evenly distributed the de-
livery workload and waiting times are across all participants.
This leads to a more balanced and equitable system:

• No single driver is disproportionately burdened with
long delivery routes.

• All customers receive their orders within a similar time
frame.

To find the optimal assignment, we exhaustively evaluated
all valid partitions of the six customers into four non-empty
groups (matching the number of drivers). For each partition:

1) All permutations of driver-to-group assignments are
considered.

2) Each group’s delivery route is optimized using a brute-
force solution to the Travelling Salesman Problem
(TSP).

3) The total delivery time for each driver is calculated
using Equation (1).

4) The fairness of the configuration is assessed using
Equation (2).

Among all configurations, the one with the lowest delivery
range is selected as the most balanced. This method, al-
though exhaustive and computationally expensive, guarantees
optimality for our fairness-based objective within a small
instance. In urban environments like Bandung, this approach
helps mitigate traffic-induced inequalities in delivery time
and enhances the predictability of the overall system.

Fig. 14. Code Implementation(Fairness Time approach)
Source: Author’s Archive

The code shown in Figure 14 implements the fairness-
based route assignment algorithm. The tsp_cost() func-
tion exhaustively evaluates all permutations of a customer
group to find the minimum delivery route from the restaurant.
The all_partitions() function recursively generates
all possible ways to divide the six customers into four
non-empty groups. Finally, find_best_assignment()
iterates through every valid partition and driver-to-group
permutation, calculates the total time for each driver, and
selects the configuration with the smallest delivery range.

This implementation guarantees optimality by evaluating
every possible configuration, making it suitable for small-
scale delivery problems where fairness is a critical factor. The
total computational complexity of the algorithm is O(P ·D ·
T ), where P is the number of valid customer partitions into
four non-empty groups, D = 4! is the number of driver-to-
group permutations, and T is the cost of solving the Traveling
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Salesman Problem (TSP) for each group, which is factorial
in the group size (O(n!) in the worst case).

Fig. 15. Code Implementation(Fastest Time approach)

The code in Figure 17 implements the fastest-time-based
assignment strategy, where the primary objective is to min-
imize the total cumulative delivery time across all drivers,
regardless of fairness. Unlike the fairness-oriented method
shown earlier, this approach selects the configuration with
the lowest sum of delivery durations, even if it results in
some drivers having significantly longer routes than others.

The algorithm structure reuses the same core components:
tsp_cost() for solving the shortest delivery sequence
within each group, and all_partitions() for gener-
ating all valid customer groupings. However, the main func-
tion, find_fastest_assignment(), prioritizes global
efficiency by selecting the configuration with the minimal
total time:

TotalTimeall drivers =
4

∑
i=1

TotalTimedriveri (4)

This method is particularly suitable for scenarios where
speed is critical—such as time-sensitive deliveries or peak-
hour dispatching. However, it may lead to unbalanced work-
load distribution among drivers since it does not explicitly
minimize the delivery time range. As such, it represents a
trade-off between overall efficiency and equity.

IV. RESULTS AND DISCUSSION

The author evaluated two optimization strategies for as-
signing six customers to four drivers: one minimizing the
delivery range (fairness) and the other minimizing the total
delivery time (efficiency). Each solution computes the best
permutation of customer groupings and their internal rout-
ing using a brute-force Traveling Salesman Problem (TSP)
approach.

Table I presents the fairness-optimized configuration. Each
driver starts from their initial location, proceeds to the restau-
rant, and follows a route visiting one or more customers.

TABLE I
FAIRNESS-OPTIMIZED ASSIGNMENT

Driver Assigned Customers Total Time (minutes)
D1 [C2, C3] 15.49
D2 [C4] 13.02
D3 [C6, C5] 14.93
D4 [C1] 13.94

The configuration shown in Table I represents the most
balanced assignment based on fairness criteria. Each driver is
assigned one or more customers, with routing optimized via
the Traveling Salesman Problem (TSP) to minimize delivery
time within each group. This approach achieves a mean
delivery time of 14.35 minutes and a remarkably low range
of 2.47 minutes, ensuring equitable workload distribution
and consistent delivery experiences across all drivers.

In contrast, Table II presents the assignment optimized
solely for total delivery time, without regard to fairness:

TABLE II
FASTEST-TIME ASSIGNMENT

Driver Assigned Customers Total Time (minutes)
D1 [C1] 11.93
D2 [C4] 13.02
D3 [C6] 9.80
D4 [C2, C5, C3] 19.87

This configuration yields a lower mean delivery time of
13.66 minutes, indicating higher overall efficiency. However,
the range increases significantly to 10.07 minutes, high-
lighting a substantial imbalance in route durations. In this
scenario, one driver (D4) carries the heaviest burden, while
others complete relatively short trips.

Fig. 16. Optimized Directed Delivery Graph (Fairness-Based)
Source: Author’s Archive

Makalah IF1220 Matematika Diskrit – Sem. II Tahun 2024/2025 7



Fig. 17. Optimized Directed Delivery Graph (Fastest Time-Based)
Source: Author’s Archive

From a graph-theoretic perspective, each driver’s path
forms a directed subgraph beginning at the restaurant and
traversing one or more customers. The sequence within
each subroute is determined using a brute-force TSP solver
to ensure intra-group efficiency. While this approach has
factorial complexity, it remains computationally feasible for
small-scale problems involving a limited number of nodes.

In practical urban logistics scenarios such as those in
Bandung, where traffic unpredictability can heavily influence
delivery durations, fairness becomes a critical factor. A
fairness-optimized model reduces the likelihood of overbur-
dening specific drivers and helps maintain uniform delivery
standards. Conversely, while the efficiency-focused model
yields faster average completion times, it risks driver fatigue
and service disparity due to uneven load allocation.

V. CONCLUSION

In multi-customer food delivery, it is essential to adopt
routing strategies that balance speed and fairness. This paper
successfully introduces a fairness-driven optimization model
that assigns delivery tasks to drivers by exhaustively evalu-
ating all valid customer groupings and delivery sequences,
using combinatorial search and Traveling Salesman Problem
(TSP)–based route optimization.

The proposed method demonstrates that equitable task
distribution can be achieved without significantly sacrificing
overall efficiency. By minimizing the delivery time range.
The system ensures that no single driver is overloaded, and
all customers receive their food with relatively consistent
service times. This contributes to operational sustainability,
reduces driver fatigue, and enhances user satisfaction.

Although the approach relies on exhaustive computation,
which limits its scalability to small delivery batches, it serves
as a reliable baseline for fairness-aware routing. Future
enhancements may include real-time traffic integration, cus-
tomer location clustering, or heuristic and machine learning
methods to scale the approach while retaining its fairness
objective.

Ultimately, this paper underscores the importance of equity
in last-mile logistics and offers a practical foundation for
designing routing systems that are not only fast, but also
fair—especially in resource-constrained or traffic-sensitive
settings like urban Indonesia.

VI. APPENDIX

The complete source code that is used in this paper will
be available on my Github Repository

There will be a short video explaining this paper on my
youtube channel, My YouTube Channel
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