
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Design and Analysis of a Virtual File System Using
N-ary Trees with a Depth-First Search Traversal

Algorithm
Kurt Mikhael Purba – 13524065

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10, Kota Bandung, 40132, Indonesia
E-mail: 13524065@std.stei.itb.ac.id, kurtmikhael123@gmail.com

Abstract—File system is a component in an operating system
that functions to organize data. This paper will try to implement a
tree to represent the virtual file system data structure. The
programming language used to realize this idea is the python
programming language which has an object oriented programming
paradigm. By using this programming language, each node can
have its own features. The implementation of the DFS algorithm is
made to help search for a file and directory. The analysis section
demonstrates the system's operational correctness and evaluates the
performance of its core functions. The time complexity for the
DFS-based search is shown to be linear with respect to the total
number of files and directories in the system. This work serves as a
practical demonstration of applying fundamental tree theory and
graph traversal algorithms to solve a classic computer science
problem.

Keywords—graph,tree,depth-first search,node.
I. INTRODUCTION

The file system is the most fundamental component in
modern computing. It is responsible for organizing, storing,
and managing data with a hierarchical and logical structure, so
that users and applications can access and manipulate data
efficiently. This hierarchical structure can be represented as a
tree. Each directory and file can be represented as a node.

Although users interact with file systems every day, the
process of modeling and implementing this structure from the
ground up involves core concepts from discrete mathematics
and computer science. One of the most common operational
challenges is how to efficiently search for files in a directory
structure that can be very large and deep. Without a systematic
algorithm, the search process will be slow and unreliable.

This paper proposes the modeling and implementation of a
simple virtual file system using an N-ary tree data structure.
The N-ary tree was chosen because a directory can have an
unlimited number of children, unlike a binary tree. To
overcome the challenge of file searching, the Depth First
Searching (DFS) search algorithm will be implemented. This
algorithm was chosen because it intuitively mimics the way a
deep search works in a directory hierarchy.

Through this implementation, the paper aims to practically
demonstrate the application of tree theory in solving real
problems in the field of informatics. In addition, a performance

analysis will be carried out on the implemented DFS algorithm
to provide an overview of its efficiency in the context of file
systems [1].

II. THEORITICAL BASIS
A. Graph

A graph G is defined as G = (V, E), where V is a non-
empty set of vertices,defined as V = { v1 , v2 , ... , vn }, the set
V can’t be empty, meaning that the graph can’t contain no
vertices , and E is an edge connecting a pair of vertices ,defined
as E = {e1 , e2 , ... , en }, the set E can be empty, meaning the
graph can’t contain a single edge [2].

Fig 2.1 Example of Graph [2]

Based on whether there are rings or double edges in the

graph, then graphs are classified into two types [2]:
a. Simple Graph

Simple graph is a graph that does not contain loops or
multiple edges.

b. Unsimple Graph
Unsimple graph is a graph that contains multiple edges
or rings.
Non-simple graphs are further divided into:

• Multi-graph: Graph containing multiple edges
• Pseudo-graph: Graph containing loop edges

mailto:13524065@std.stei.itb.ac.id
mailto:kurtmikhael123@gmail.com

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig 2.2 a) Simple Graph, b) Multi-Graph, and c) Pseudo-

Graph [2]

B. Tree
A tree is an undirected graph that is connected and does not

contain circuits (cycles).

Fig 2.3 Example of Tree [3]

A forest is a collection of disjoint trees or a disconnected

graph that contains no circuits. Each component in the
connected graph is a tree.

Fig 2.4 Examples of Forest [3]

A tree has some basic properties. Let G = (V, E) be a

simple undirected graph and the number of vertices is n. Then,
all the following statements are equivalent [3]:

• G is a tree.
• Every pair of vertices in G is connected by a

single path.
• G is connected and has m = n – 1 edges.
• G doesn’t contain circuits and has m = n – 1

edges.
• G doesn’t contain circuits and adding one edge to

the graph will create only one circuit.
• G is connected and all its edges are bridges.

C. Depth-First Searching
Depth-First Search (DFS) is a fundamental algorithm used

for traversing or searching graph and tree data structures. As
the name implies, the main working principle of DFS is to
explore depth first. This algorithm will explore one branch of
the data structure as deep as possible until it reaches the end
point (the furthest node) before returning (backtracking) to
explore other branches that have not been visited.

This "depth-first" philosophy fundamentally distinguishes
it from other search algorithms such as Breadth-First Search
(BFS), which explores in a wide layer by layer. The most
intuitive analogy to understand DFS is the way someone
solves a maze: we will choose one path and continue to follow
it until we find a dead end or reach the goal. If the path is a
dead end, we will backtrack to the last intersection and try
another path that has never been passed. This "depth-ward
motion" search movement is very suitable for handling
hierarchical structures.

This suitability makes DFS a very relevant choice in the
context of virtual file systems. The hierarchical structure of a
file system, where a directory can contain multiple
subdirectories, is a perfect real-world model for a DFS search
strategy. The algorithm naturally mimics the way a user or
program traverses a deep directory path before returning to
explore a lower directory level.

Conceptually, the DFS process is inherently recursive. The
core operation of DFS is from the current node, visit one of its
unvisited neighbors. This newly visited neighbor then
becomes the current node, and the same operation is repeated.
This pattern of repeating the same operation over smaller parts
of the problem (i.e., the subgraph rooted at a neighbor node) is
the definition of recursion. When a path has been exhausted,
the algorithm must return to the previous node to explore the
remaining neighbors. This return process is the natural
behavior of a recursive function call that has completed and
returned control to its caller. Thus, the logic of DFS that
exhaustively explores a subproblem before returning is
inherently recursive, making an iterative implementation a
manual simulation of the process [4].

Fig 2.5 DFS Search Sequence Example [5]

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

The efficiency of the DFS algorithm is measured through
time and space complexity. This analysis depends heavily on
how the graph is represented [4].

a. Times Complexity
Time complexity measures how the execution time of
an algorithm grows as the input size (number of
vertices and edges) increases [4].
1. Adjacency List Representation

The analysis is based on two main operations:
• Vertex Visit: Each vertex (V) is visited and

processed exactly once thanks to the use of
visited arrays or sets. Operations on each
vertex (such as marking) take constant time.
So, the total time to visit all vertices is
proportional to the number of vertices, which
is O(V) [4].

• Edge Traversal: The algorithm traverses the
adjacency list of each vertex exactly once
during the entire process. The total length of
all adjacency lists in a graph is equal to the
number of edges (E) for a directed graph, or
twice the number of edges (2E) for an
undirected graph. In both cases, it is
proportional to E. So, the total time to check
all edges is O(E) [4].

Thus, the total time complexity is the sum of these
two components,

O(V)+O(E)=O(V+E)
2. Adjacency Matrix Representation

When a graph is represented as a V×V
matrix, to find all neighbors of a vertex, the
algorithm must scan all rows of the corresponding
matrix, which contains V entries. This operation
must be performed for each vertex. As a result,
the total time for edge exploration becomes [4]:

O(V×V)=O(V2)
b. Space Complexity

Space complexity measures the additional memory
(auxiliary space) required by the algorithm, beyond the
space to store the graph itself.
1. Additional Space Complexity: O(V)

The space requirement of DFS is dominated by
two components:
• Recursion or iterative stack: In the worst

case, such as in a linear chain graph, the
recursion depth can be V. This means the call
stack will store up to V function frames.
Similarly, the explicit stack in the iterative
version can store up to V vertices. This
contributes O(V) to the space complexity [4].

• Visited data structure: To keep track of the
vertices that have been visited, an array or set

whose size is proportional to the number of
vertices is required, which is O(V).

Since both components are O(V), the additional space
complexity of DFS is O(V) [4].

D. File System
In the context of this research, a virtual file system is a

software model that simulates the structure and functionality
of a real file system on an operating system. The mapping of
the file system concept into tree theory is as follows:

• Directory (Folder): Represented as an internal node
in an N-ary Tree, because a directory can contain
files or other directories (have children).

• File: Represented as a leaf node in a tree, because a
file cannot contain other items (it has no children).

• Parent-Child Relationship: The relationship between
a directory and the files or sub-directories within it is
represented as an edge in the tree.

• Root Directory (/): Represents the root of the entire
file system structure [1].

III. IMPLEMENTATION
This chapter explains the design and implementation of a

virtual file system. This system is built using the object
oriented programming (OOP) paradigm in Python to wrap data
structures and their functionality logically.
A. Object Definition

• Node: This class is designed as a representation of
every single unit in the file system, it can be a file or
a directory. Each node object has essential attributes
to define its status and position in the hierarchy. The
following are the attributes that each node has.

Attributes Explanation
Name Each file and directory

has a name as its identity.
Each name must be
unique, it cannot be the
same between one node
and another.

Is_Directory Is_Directory is a marker
whether a node is a
directory/folder or not, if
it is a directory, then the
node can have children, if
is_directory is false, then
the node cannot have
children nodes.

Parent Parent is an attribute that
points to the parent node
of a directory.

Children Children is an attribute
that states the child nodes
of a directory. If a node

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

has an is_directory value
of false, then the node
does not have any child
nodes.

Table 3.1 Attributes of Node

Fig 3.1 Node Class Code
• File System: This class acts as the main manager of

the entire tree structure. It is responsible for
initializing the system with a root directory, keeping
track of the current directory (current_directory), and
providing an interface for all file operations.

B. Function and Procedure Definition
The core functions are implemented as methods in

the FileSystem class. Here is an explanation of each key
method:
• Mkdir(name) and touch(name): These two methods

add a new node to the tree. They check whether the
given name already exists in the current directory. If
not, a new Node object (either a directory or a file) is
created and added to the children dictionary of
current_directory.

Fig 3.2 Implementation of Mkdir

Fig 3.3 Implementation of Touch

• Cd(name): This method handles navigation between
directories. Its logic handles three main cases: moving
to a child directory, moving to a parent directory (..),
and staying in the current directory (.).

Fig 3.4 Implementation of cd
• Get_full_path(node): This is an internal helper

function used to reconstruct the absolute path of a
node. It works by traversing the hierarchy upwards
from the given node through its parent attributes until
it reaches the root.

Fig 3.5 Implementation of get_full_path

• DFS(current_node, target_name, found_paths): This
recursive function is the heart of the DFS algorithm. It
takes a node as a starting point, then recursively visits
all the nodes below it. If a node with a name matching
target_name is found, its full path will be recorded.

Fig 3.6 Implementation of DFS
• Ls : Ls is a feature where the program will search for

files and directories that are child nodes of a directory.

Fig 3.7 Implementation of Ls

• Find(Name) : Find is a function that will search for a
node in the form of a file or directory. This search
process will use the dfs function that has been created
previously. The find search process always starts from
the root node. If a file/directory is found, the program
will provide its full path to the user, conversely, if not

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

found, the program will provide a message that the
file/directory is not found in the file system.

Fig 3.8 Implementation of Find
C. Program Flow and User Interaction

The main program is located in the if __name__ ==
'__main__' block, which means this block is executed if and
only if the program is run from that file. This program has the
following workflow,

1) A file system object is initialized, which
automatically creates a root directory.

2) The program will also initialize some initial files and
directories to demonstrate the initial structure of the
file system.

3) The program then enters an interactive loop, where it
displays a prompt showing the current directory path.

4) The user can enter commands (such as ls, cd, mkdir,
find), which the program will parse to call the
appropriate methods on the file system object, the
input structure being:

a) Mkdir,touch,find,cd: [command] [filename].
b) Ls : [command] .

5) The loop will continue until the user types the exit
command.

Fig 3.9 Flowchart of The Main Program

Fig 3.10 Code of The Main Program

IV. RESULTS AND DISCUSSION
After implementing the code part. Next, this paper will

provide an explanation of the results of running the program
that has been created.

Fig 4.1 Terminal view when you want to create a new
directory and file

As can be seen in Fig 4.1 that the file system has been
given several directories and files for its initial initiation. In
Fig 4.1 it can be seen that when the user wants to create a new
node in the form of a directory named home, the program will
check the child node belonging to root (marked as '/'), because
the directory named home already exists in the root then the
program gives a message that the directory already exists in
the root. The user then creates directories named DataD and
DataC in the root directory and the program successfully
creates both directories because both directories are still not
found in the child node belonging to root.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

The same thing also happens when the user wants to add a
file to a directory. The program will first check the user's input
file name is found in the child nodes of the current directory, if
not then the program will successfully create the file in the
directory.

Fig 4.2 Terminal view when you want to find a file

In Fig 4.2, it can be seen that the user wants to find out the
path of a file. The program will start searching for files with
DFS from the root node. If a node does not have the file being
searched for, the program will move to the next node. One
example is when the user wants to search for test2.pdf. It can
be seen in Fig 4.2 that test2.pdf is created in the direc1
directory. The program will start searching from the root node,
then it will enter the home node. After entering the home
node, the program will enter the user directory node, because
test2.pdf is not found in the user node, the program will move
from the child node of the home node, namely the direc1 node.
The program will start searching for the test2.pdf node in the
direc1 node. It turns out that test2.pdf is in the direc1 node so
the program will provide a path from the root to the test2.pdf
file.

V. CONCLUSION

The conclusion of this paper is that a virtual file system
can be represented as an N-ary tree. Each node represents a
file/directory where a file is a leaf node and a directory can be
a leaf node or a parent node. The DFS algorithm also helps the
process of searching for a node. With this algorithm, the
program can search for the deepest node of a parent node
before moving to another parent node. Of course, there are
still faster search algorithms than DFS, but DFS is a suitable
algorithm because someone often puts a file in a very deep
place, so this algorithm is very suitable for searching for the
file.

VI. APPENDIX
The following is the source code for implementing an N-

ary tree on a virtual file system and the DFS algorithm for
searching a file/directory :

https://github.com/Kurt-Mikhael/Virtual-File-System-
Using-N-ary-Trees-with-a-Depth-First-Search-Traversal-

Algorithm

VII. ACKNOWLEDGMENT

The author wishes to express gratitude to God
Almighty for His blessings and guidance during the
preparation of this paper. The author also thanks Dr. Ir.
Rinaldi Munir, M.T., the lecturer for the IF1220 Discrete
Mathematics course, for the knowledge and guidance he
provided. Gratitude is also extended to the author's family for
their constant support during the studies.

REFERENCES

[1] B.L. Pratama, “Representasi pohon dalam hierarki Linux filesystem dan
manajemen direktori/file,” Makalah IF2120 Matematika Diskrit, Institut
Teknologi Bandung, Bandung, Indonesia, 2015.

[2] R. Munir, ”Graf: Bagian 1 [course material],” Bahan Kuliah IF1220
Matematika Diskrit. Bandung, Indonesia: Program Studi Teknik
Informatika STEI-ITB, 2024.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf. [accessed 17 June 2025]

[3] R. Munir, ”Pohon: Bagian 1 [course material],” Bahan Kuliah IF1220
Matematika Diskrit. Bandung, Indonesia: Program Studi Teknik
Informatika STEI-ITB, 2024.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-
Pohon-Bag1-2024.pdf. [accessed 18 June 2025].

[4] L.E. Zen and D.U. Iswavigra, “Penggunaan algoritma depth first search
dalam sistem pakar: studi literatur,” J. Inf. dan Teknol., vol. 5, no. 2, pp.
85–90, Jun. 2023.

[5] GeeksforGeeks, “DFS traversal of a tree using recursion,”
GeeksforGeeks, https://www.geeksforgeeks.org/dsa/dfs-traversal-of-a-
tree-using-recursion/. [accessed 19 June 2025].

STATEMENT
I hereby declare that the paper I wrote is my own writing, not
an adaptation or translation of someone else's paper, and is not
plagiarized.

Bandung, 19th June 2025

Kurt Mikhael Purba-13524065

https://github.com/Kurt-Mikhael/Virtual-File-System-Using-N-ary-Trees-with-a-Depth-First-Search-Traversal-Algorithm
https://github.com/Kurt-Mikhael/Virtual-File-System-Using-N-ary-Trees-with-a-Depth-First-Search-Traversal-Algorithm
https://github.com/Kurt-Mikhael/Virtual-File-System-Using-N-ary-Trees-with-a-Depth-First-Search-Traversal-Algorithm
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/%7Erinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://www.geeksforgeeks.org/dsa/dfs-traversal-of-a-tree-using-recursion/
https://www.geeksforgeeks.org/dsa/dfs-traversal-of-a-tree-using-recursion/

	I. Introduction
	II. THEORITICAL BASIS
	A. Graph
	B. Tree
	C. Depth-First Searching
	D. File System

	III. IMPLEMENTATION
	A. Object Definition
	B. Function and Procedure Definition
	The core functions are implemented as methods in the FileSystem class. Here is an explanation of each key method:
	C. Program Flow and User Interaction

	IV. Results and Discussion
	V. Conclusion
	VI. Appendix
	VII. Acknowledgment
	References

