
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Combining Perceptual Hashing Based on Hamming

DIstance and BK Tree Indexing for Efficient Image

Similarity Detection

Steven Tan - 13524060

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: steventan6002@gmail.com , 13524060@std.stei.itb.ac.id

Abstract—This paper addresses the inefficieny of linear search

compared to more efficient searching allowed by metric data tree

and perceptual hashing.

Keywords—perceptual hash, bk tree

I. PENDAHULUAN

Recent technology advancement has led to an unprecedented
explosion in the volume of visual data. Billions of images are
uploaded daily to social media, e-commerce sites, and cloud
storage services. This has created a pressing need for systems
that can efficiently search these images. Content-Based Image
Retrieval (CBIR) has emerged as a key technology to address
this challenge. CBIR helps users find images based on their
content rather than relying on words decription or metadata.

A fundamental task in CBIR is similarity detection.
Similarity detection is about finding images that are visually
similar or near-duplicates of a queried image. A naive approach
involves a pixel by pixel comparison, which is not only slow but
also susceptible. Minor modifications such as resizing,
compression, or slight color adjustments can misidentify two
visually identical images to be completely different when
examined pixel by pixel.

Perceptual hashing algorithm have been developed to
address these limitations. Unlike cryptographic hashes which are
sensitive to even minor bit changes, perceptual hashes are robust
to minor, perceptually insignificant modifications. Similar
images will have similar hashes. The similarity between these
hashes can be measured using the Hamming distance, the
number of differing bits in their binary representations.

However, even with fast hash comparisons, searching a
database of millions or billions of images by calculating the
Hamming distance against every hashes could result in
significant time spent. This paper intends to analyse an
alternative solution that addresses this scalability issue by
indexing the perceptual hashes in a BK-Tree, a metric tree data
structure designed for efficient fuzzy searching. This
combination allows for a system that is both robust in detecting
similarity and efficient in its searching time.

II. THEORETICAL FRAMEWORK

A. Perceptual Hashing

Perceptual hashing is a type of hashing algorithm that
intends to maximize hash collision. This results in same or
similar hashes being produced for inputs that are similar. This
means we only need to check two inputs hashes to see if they are
similar or not. This also allows it to be robust against minor
modification made to the input. But, its strength is not only
limited to that

Image, when extracted into data, tends to be stored in a 2D
matrix format with pixel as its element. Although 2D matrix is
an intuitive data structure for this, doing a comparison for two
image is tedious and time consuming. So other ways of storing
image data was developed. One of those is storing it in a !D
matrix or an ordered list of pixel.

A 1D matrix representation allows images to be treated as a
single vector or point with every single element, pixel, as the
dimensions. While vectors or points are easier to deal with, it
also introduces problem. One of these is called the curse of
dimensionality. With each pixel being treated as a dimensions,
this means an image of N x M size will have N x M dimensions.

The curse of dimensionality is bad because higher
dimensions results in distance between any two points becoming
more similar to each other. This means the farthest distance
between any two points could be almost as close to the nearest
distance between any two points. This means if images
representated as data points were to be analyzed its similarity,
using Hamming distance to compare them would not be possible
as the farthest and nearest distance could just differ by one.

This is where perceptual hashing comes in. Since perceptual
hashing always reduce any images to just X bit hashes. This
effectively reduces an image dimensions of N x M to just X
dimensions. This also allows it to be compared with metric
distances like Hamming distance.

There are several algorithms that is included in this family,
such as difference hashing, average hashing, pHash, wavelet
hash etc. Difference hashing will be the algorithm used and
focused on in this paper.

mailto:steventan6002@gmail.com
mailto:13524060@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

In this paper, difference hash is implemented by converting
the image to a greyscale and reducing the size of the image to 9
x 8. Each pixel in a row will be compared with the order of left
to right. This will continue until the bottom row is reached. Two
adjacent pixel will determine the hash bits. If the left pixel is
smaller in value than the right pixel then one will be appended
to the end of the hash bits. Else zero will be appended.[1]

B. Hamming Distance

Hamming distance is a metric used to measure the edit

distance between two strings or vector of equal length.
Hamming distance measures only the substitution needed to
make two strings or vector equal. Hamming distance holds an
important property that is it satisfies the triangle inequality. Its
importance is related to BK Tree, a type of metric tree.

 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) ()

C. Metric Tree

A metric tree is a tree for indexing data in metric spaces. This
type of tree takes advantage of metric spaces’ properties such as
triangle inequality to do efficient data accessing. A Burkhard-
Keller Tree (BK Tree) is a type of metric tree.

Any string or vector can be chosen as the root. The child of
a parent node is determined by first checking if there is already
a child node with the same distance.

 𝑑(a, p) = 𝑑(p, c) ()

With d(x, y) being the distance function that returns the
distance between two nodes, a being the node to be inserted, p
being the parent node and c being the child node.

If there is already a child node with the same distance, then
we traverse to a subtree with that child node being the new root.
This process repeats until we find that the distance between the
node to be inserted and the parent node isn’t the same with the
distance between any children node and the parent node. That
node is then inserted as a new node.

The triangle of inequality shows its uses in searching a BK
Tree. Let q to represent the queried node, p to represent the
parent node and c to represent the child node. Then, from
equation(1) we derive the following equation

 𝑑(p, q) ≤ 𝑑(p, c) + 𝑑(c, q) ()

 𝑑(p, q) − d(p, c) ≤ 𝑑(q, c) ()

The next two equations can also be derived from equation(1),
just the pairing orders are switched.

 𝑑(p, c) ≤ 𝑑(p, q) + 𝑑(q, c) ()

 𝑑(p, c) − d(p, q) ≤ 𝑑(q, c) ()

Notice that equation(4) and (6) is similar in the left hand side.

 𝑑(p, q) − d(p, c) = −(𝑑(p, c) − d(p, q)) ()

From equation(7) we can conclude the following equation

Fig. 1. Hamming Distance Example Source :

https://docs.oracle.com/en/database/oracle/oracle-

database/23/vecse/hamming-distance.html

Fig. 2. BK Tree example Source : BK-Tree | Introduction

& Implementation - GeeksforGeeks

https://www.geeksforgeeks.org/dsa/bk-tree-introduction-implementation/
https://www.geeksforgeeks.org/dsa/bk-tree-introduction-implementation/

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 𝑑(q, c) ≥ |𝑑(p, q) − 𝑑(p, c)| ()

If we set a cutoff or tolerance n, then we mean that the
distance between queried node and the child must be less than n.

 𝑑(q, c) ≤ n ()

If the above equation is true, then we can say that the two
nodes, q and c, are similar. And with equation (8) and (9) we can
derive the following equation.

 𝑑(p, q) − n ≤ 𝑑(p, c) ≤ 𝑑(p, q) + n ()

The above equation allows us to know which child node of
a parent node is similar to the queried node.

III. IMPLEMENTATION

A. Implementing Hamming distance calculator

As the example in figure 1, a clever trick to computing the
Hamming distance is to XOR out the same bits that are in the
same position. Then, we can count the remaining 1 that are left.

B. Implementing difference hashing

Difference hash(dHash) will be implemented with the help
of the python library pillow. Pillow, the image module, helps is
extracting the pixel value of an image, converting an image to
grayscale and resizing an image. This allows the code to contain
only the hashing computation, thus simplifying it.

C. Implementing BK Tree

Each BK Tree Node will contain an item or value which is
the dHash value and a children. The children component is
implemented using dictionary since dictionary holds one
property that makes it fitting for this task. That is each key must
be unique from one another. Since the children of a node can’t

possibly have the same edge value this means the edge value can
be stored as the key, while the value will be the child node itself.

The BK Tree implementation will be as discussed in the
theoretical framework for metric tree.

IV. TESTING AND ANALYSIS

For the testing, module image from pillow library, os
module, time module and glob module will be imported to help
testing. os and glob module are imported to help in loading and
saving file images, while time is imported to help know the
search time with BK Tree and brute force.

Fig. 3. dHash implementation in Python

Fig. 4. Implementation of Hamming distance calculator in Python

Fig. 5. Implementation of BK Node in Python

Fig. 6. Implementation of BK Tree in Python

Fig. 7. Implementation of displaying similar images filename in Python

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 Before discussing the code, I would like to mention that the
dataset were taken from unsplash.com and modified to test
different cases.

First the time, as expected brute force search takes about
twice as long BK Tree searching. While this doesn’t matter
much since it is shorter than even 1 millisecond. As data grew
this difference will become more apparent. And not just apparent
too but also larger if we take a look at their Big O notation
respectively.

Brute force search has about O(n), linear scaling, compared
to BK Tree O(log(n)), logarithmic scaling. This means that as
more data is being indexed, searching with BK Tree becomes
much more efficient.

Though it doesn’t mean there isn’t downsides to this. While
BK Tree is faster, it comes with additional time and space cost.
As you can see in figure 12, there is time taken building BK tree.
It is insignificant now but when more data is being indexed, it
will take longer too. Same with the extra space to build a tree.

Fig. 8. Implementation of image similarity brute force searching in

Python

Fig. 9. Implementation of image similarity searching with BK Tree in

Python

Fig. 10. Implementation of testing setup in Python

Fig. 11.
Implementation of indexing image files in Python

Fig. 12. Implementation of image filename input in Python

Fig. 13. Implementation of testing and comparing both search in

Python

Fig. 14. Time took building trees and total images indexed

Fig. 15. Time comparison between both method of searching

Fig. 16. Image similarity results for both search method

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

While dHash is a good algorithm to detect image similarity,
it still fails to detect cropped and rotated image. Out of 8 similar
image, it only manage to detect 6, one of which is an exact
duplicate.

V. CONCLUSION

Using BK tree to index image hashes has proven to be a
solution to efficient image similarity searching. Instead of
checking one by one hashes, BK tree allows searching in a
pattern that proves to be fast. Triangle inequality allows BK tree
to have an effective and efficient pruning logic when searching.

While dHash fails in detecting cropped and rotated image, it
still manages to hash it in a way so it can detect other
modifications to an image. It remains a good, simple and
effective image deduplication algorithm.

There still remains the challenge of implementing a more
effective and image similarity algorithm. For indexing, one
could try to not rely on metric distance, in particular hamming
distance, for efficient searching and see if it could be more
efficient.

APPENDIX

Github repository for project: StevenT-1/Perceptual-Hashing-

and-BK-Tree-for-Makalah

ACKNOWLEDGMENT

I would like to express sincere gratitude to God

Almighty for the guidance and comfort in writing this paper. I

would also like to give special thanks to Arrival Dwi Sentosa,

S.Kom., M.T., for his role as the lecturer in the IF1220 Discrete

Mathematics course. Additionally, the author would like to

thank Dr. Ir. Rinaldi Munir, M.T., for publishing the lecture

materials on the website. Lastly, I would like to give special

thanks to unsplash.com for providing the image needed for free.

REFERENCES

[1] N. Krawetz, "Kind of like that...," HackerFactor, May 21, 2013.
[Online].
Available: https://www.hackerfactor.com/blog/index.php?/archives/529-
Kind-of-Like-That.html. [Accessed: Jun. 17, 2025].

[2] N. Johnson, "Damn cool algorithms: part 1 - BK-Trees," notdot.net, Apr.
21, 2007. [Online]. Available: http://blog.notdot.net/2007/4/Damn-Cool-
Algorithms-Part-1-BK-Trees. [Accessed: Jun. 17, 2025].

[3] R. Munir, "Pohon (Bagian 1)," Matematika Diskrit Course Notes,
Institut Teknologi Bandung, 2024. [Online].
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/23-Pohon-Bag1-2024.pdf. [Accessed: Jun. 17, 2025].

[4] R. Munir, "Pohon (Bagian 2)," Matematika Diskrit Course Notes,
Institut Teknologi Bandung, 2024. [Online].
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/24-Pohon-Bag2-2024.pdf. [Accessed: Jun. 17, 2025].

[5] R. Munir, "Teori bilangan (Bagian 3)," Matematika Diskrit Course
Notes, Institut Teknologi Bandung, 2024. [Online].
Available: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-
2025/17-Teori-Bilangan-Bagian3-2024.pdf. [Accessed: Jun. 17, 2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Steven Tan(13524060)

https://github.com/StevenT-1/Perceptual-Hashing-and-BK-Tree-for-Makalah
https://github.com/StevenT-1/Perceptual-Hashing-and-BK-Tree-for-Makalah
https://www.google.com/url?sa=E&q=https%3A%2F%2Fwww.hackerfactor.com%2Fblog%2Findex.php%3F%2Farchives%2F529-Kind-of-Like-That.html
https://www.google.com/url?sa=E&q=https%3A%2F%2Fwww.hackerfactor.com%2Fblog%2Findex.php%3F%2Farchives%2F529-Kind-of-Like-That.html
https://www.google.com/url?sa=E&q=http%3A%2F%2Fblog.notdot.net%2F2007%2F4%2FDamn-Cool-Algorithms-Part-1-BK-Trees
https://www.google.com/url?sa=E&q=http%3A%2F%2Fblog.notdot.net%2F2007%2F4%2FDamn-Cool-Algorithms-Part-1-BK-Trees
https://www.google.com/url?sa=E&q=https%3A%2F%2Finformatika.stei.itb.ac.id%2F~rinaldi.munir%2FMatdis%2F2024-2025%2F23-Pohon-Bag1-2024.pdf
https://www.google.com/url?sa=E&q=https%3A%2F%2Finformatika.stei.itb.ac.id%2F~rinaldi.munir%2FMatdis%2F2024-2025%2F23-Pohon-Bag1-2024.pdf
https://www.google.com/url?sa=E&q=https%3A%2F%2Finformatika.stei.itb.ac.id%2F~rinaldi.munir%2FMatdis%2F2024-2025%2F24-Pohon-Bag2-2024.pdf
https://www.google.com/url?sa=E&q=https%3A%2F%2Finformatika.stei.itb.ac.id%2F~rinaldi.munir%2FMatdis%2F2024-2025%2F24-Pohon-Bag2-2024.pdf
https://www.google.com/url?sa=E&q=https%3A%2F%2Finformatika.stei.itb.ac.id%2F~rinaldi.munir%2FMatdis%2F2024-2025%2F17-Teori-Bilangan-Bagian3-2024.pdf
https://www.google.com/url?sa=E&q=https%3A%2F%2Finformatika.stei.itb.ac.id%2F~rinaldi.munir%2FMatdis%2F2024-2025%2F17-Teori-Bilangan-Bagian3-2024.pdf

