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Abstract— The Countdown Numbers Game is a mathematical 

puzzle that challenges players to combine a set of given integers 

using basic arithmetic operations (+, −, ×, ÷, ( )) to reach a specific 

target number. This game popularized by the British television 

show “Countdown,” that presents a rich of combination and step 

to get the target number. This paper analyzes the mathematical 

structure of the game using combinatorics to model number 

combinations and implements a recursive algorithm to explore all 

valid expression trees that could lead to a solution. The result 

highlights the effectiveness of combining discrete mathematics 

concepts with computational search methods in solving 

arithmetic-based puzzles. 

 Keywords—countdown numbers game, combinatorics, 

recursive algorithm, arithmetic puzzle, 

I.  INTRODUCTION  

Number games are among the most intriguing and 
intellectually stimulating forms of entertainment in the world. 
These games not only provide fun and enjoyment for many 
people, but they also serve as effective exercises to keep the 
brain active and sharp. The Countdown Numbers Game is a 
mathematical puzzle game in which the objective is to use a set 
of given numbers with basic arithmetic operations to reach a 
target number. One possible solution could involve combining 
the numbers using addition, subtraction, multiplication, or 
division to get as close as possible or exactly reach the target. 
This game has been popularized by the British television show 
Countdown, which has been airing since 1982 and remains on 
the air to this day. In the show, contestants are challenged to 
solve number puzzles under time pressure, typically within 30 
seconds, adding an element of urgency and excitement to the 
game. 

 

Fig. 1 Countdown Show and Example of the Countdown Numbers Game  

(source: https://youtu.be/b2VAPADS4N0?si=41v9vd2Nx2Qgoblr) 

 

 

    This game is simple. There will be six numbers randomly 

selected from the following integer list :{1, 1, 2, 2, 3, 3, 4, 4, 5, 

5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 25, 50, 75, 100}.The numbers 1 

to 10 are referred to as small numbers, and the numbers 25, 50, 

75, and 100 are referred to as large numbers. Players may 

choose up to a maximum of four large numbers for the game, 

meaning that the remaining numbers will be taken from the 

small numbers to complete a total of six. 

    Once the six numbers are chosen, a random three-digit target 

number (usually between 100 and 999) is generated. The goal 

of the player is to combine the six selected numbers using basic 

arithmetic operations to reach the exact target number or get as 

close as possible. The numbers only be used once, and not all 

the numbers must be used. In Countdown, participants with an 

exact solution will get 10 points. If no one succeeds in doing so, 

the contestant with the closest answer gets 7 points if their result 

is within 5 of the target number, or 5 points if it is within 10. 

    An example of the Countdown Numbers Game from 

figure1. the numbers 25, 9, 1, 5, 1, and 7 with a target number 

of 142. One solution that can be possible is: (25 × 5) + (9 × 1) 

+ (7 + 1) = 142.  

II. FUNDAMENTAL THEOREM 

A. Combinatorics 

Combinatorics is one of the main branches of mathematics 
that focuses on counting, arrangement, and selection of elements 
from a set based on specific rules, without the need to manually 
enumerate all possible outcomes. There are two basic counting 
principles in combinatorics, the product rule and the sum rule. 

1) Product Rule 

When a task can be broken down into two tasks, with n 
ways to do the first task and m ways to do the second, 
then there is n × m possible ways for the whole task to 
happen. 

2) Sum rule 

When a task can be done in n ways or in m ways, and 
the set of n ways does not overlap with the set of m 
ways (i.e., they are mutually exclusive), then there are 
n + m possible ways for the whole task to happen. 

mailto:annayuliati69@gmail.com
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 These two basic counting principles are often not sufficient 
to solve more complex problems. So, there are some advanced 
counting principles techniques that are required. 

1) The Subtraction Rule (Inclusion–Exclusion for Two Sets) 
This rule is an extends the idea of the sum rule. When a task 
can be done in n ways or in m ways and some of the set n 
ways does overlap with some of the set m ways, which 
means there are some ways on that two set and counting 
twice, we can use find possible ways with their union of the 
two set with the formula would be: 

|n ∪ m| = |n|+|m|−|n ∩ m| 

2) Permutation 

Permutation is a total arrangement of objects where the 

order of the arrangement matters. In other words, different 

sequences of the same elements are considered distinct 

outcomes. Permutations are used to count the number of 

possible ways to arrange elements when the position or 

order is important. Permutation can be written P(n,r), where 

n is the number of available elements, and r is the number 

of arranged elements. The formula for permutations is: 

𝑃(𝑛, 𝑟)  =  
𝑛! 

(𝑛 − 𝑟)!
 

3) Combination 

Combination is a total arrangement of objects where the 

order of the arrangement does not matter. Unlike 

permutations, combinations focus solely on which elements 

are chosen, not how they are arranged. As a result, different 

orders of the same elements are counted as a single 

outcome. Combination can be written as C(n,r) where n is 

the total number of elements, and r is the number of 

elements to be chosen. The formula for combinations is: 

𝐶(𝑛, 𝑟)  =  
𝑛! 

𝑟! (𝑛 − 𝑟)!
 

4) Combinations with Repetition (star and bars) 

Combinations with repetition involve selecting items from 

a set where elements can be chosen more than once, and the 

order of selection does not matter. This is different from 

standard combinations where each element can be used only 

once. The formula for combination with repetition is : 

𝐶(𝑛 + 𝑘 − 1, 𝑘)  = 𝐶(𝑛 + 𝑘 − 1, 𝑛 − 1) 

Which n is the number of distinct item types and k is the 

number of items to be selected.  

We can visualize these combinations using stars to represent 

the number of items selected, and bars to represent the 

separation between different item types. This method is 

known as the stars and bars technique.  

Example, Suppose we want to place 9 identical objects into 

5 distinct boxes. Each arrangement of stars and bars such as: 

∗∗∗ |∗| ∗∗∗ | | ∗∗ 

∗∗ |∗| ∗∗∗ | ∗ | ∗∗ 

∗∗∗ |∗| ∗ | ∗ | ∗∗∗ 

represents a different way to distribute the 9 objects. Since 

there are 9 stars and 4 bars (for 5 boxes), the total number 

of such combinations is: 

𝐶(5 + 9 − 1,9 − 1)  = 𝐶(13,9)  =  715 𝑤𝑎𝑦𝑠 

B. Countdown Numbers Game 

Countdown numbers game is the mathematical puzzle from 

Britain’s oldest game show with the gameplay is arranged in 6 

numbers with basic operation to get the numbers target. We can 

use this game just to play for fun or even for competition. 

In countdown numbers game, there are 25 numbers from 

this integer list :{1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 

10, 10, 25, 50, 75, 100} which the number 1 to 10 is called small 

numbers and the number 25, 50, 75, and 100 is called large 

numbers. The target, often called the “CECIL”, will display the 

target numbers between 100 to 999 from the 6 numbers that 

have been chosen. 

The rules of play of countdown numbers game is, 

1) One of the players requests the number of large 

numbers to be used in the game with the maximum of 

four. The moderator then randomly selects that 

amount of large and the remaining slots are filled with 

randomly chosen small numbers. 

2) Players are allowed to use basic arithmetic operators, 

such as addition (+), subtraction (-), multiplication (+), 

division (÷), and parentheses (( )). These operators can 

be used more than once as needed. However, when 

using the division operator, the result must be a whole 

number. 

3) Each number can be used only once, and not all six 

numbers are required to be used in forming the 

solution.  

4) The game will be played within a 1-minute time limit, 

and the player with the exact number target will earn 

10 points.  If no one succeeds in doing so, the 

contestant with the closest answer gets 7 points if their 

result is within 5 of the target number, or 5 points if it 

is within 10. 

 

The target numbers are randomly generated by “CECIL” 

using a set of six numbers. 1226 sets can solve any problem, 

ranging from 100 to 999. We can know it by the number of large 

numbers. 

TABLE I.  PERFECT SOLUTION SETS BY NUMBER OF LARGE NUMBERS 

#Big Count 

0 5 

1 614 

2 603 

3 4 

4 0 
a. #Big refers to how many large numbers use in the sets 

From table I, sets with one large number and two large 

numbers dominate the perfect solution, and sets with zero, 

three, and four large numbers have least the perfect solution. 

There is no perfect solution for set with four large numbers. 

This happens because including too many large numbers limits 

the flexibility of operations using small values, making it harder 

to form all target numbers between 100 and 999. 

In a set of numbers, not all numbers contribute equally to 

the probability of finding a solution. Some numbers, due to their 
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mathematical properties, are more flexible and strategic for use 

in arithmetic operations than others. 

TABLE II.  AMOUNT REACHABLE BY SINGLE SMALL NUMBER 

Game Set Contains Amount Reachable 

1 775 

2 804 

3 819 

4 813 

5 821 

6 824 

7 842 

8 836 

9 842 

10 835 
b. Game Set Contains refers to the specific small number that is guaranteed to be included in a game set, 

while Amount Reachable refers to the total amount of target numbers that can be solved.  

Table II shows the number of reachable targets when a 

game set is guaranteed to contain a specific small number. For 

example, if our set of numbers includes 3, we can expect to 

reach 819 different target numbers. Single number 1 is the least 

useful for reaching targets, single number 7 and 9 are the most 

effective small numbers for approaching target numbers. 

TABLE III.  AMOUNT REACHABLE BY DOUBLE SMALL NUMBER 

Game Set Contains Amount Reachable 

1 655 

2 738 

3 775 

4 773 

5 780 

6 798 

7 828 

8 818 

9 831 

10 808 
c. Game Set Contains refers to the specific small number that is guaranteed to be included in a game set, 

while Amount Reachable refers to the total amount of target numbers that can be solved.  

Table III explains the number of reachable targets when the 

set contains a pair of identical small numbers. If our set of 

numbers has a pair of 3, we can expect to reach 775 target 

numbers. Double numbers 1 are the least effective for reaching 

targets, otherwise double numbers 7 and 9 are the most effective 

pairs for approaching target numbers.  

 Based on these two tables, the numbers 7 and 9 are highly 

effective for reaching many targets. This is likely due to their 

properties, such as being relatively large prime numbers within 

the set of small numbers, which provides greater flexibility in 

calculations. 

 
Fig. 2 Percentage of Game Sets Solving a Given Target 

(source: https://datagenetics.com/blog/august32014/index.html) 

The target numbers have percentage chance to be solved 

with random set numbers. By recording figure 2, we can see 

that the target numbers get larger, the percentage of be able 

solve gets smaller. This is normally because the big target 

numbers need to be multiplication rather than the small target 

numbers that can be reached by addition or multiplication small 

numbers. Under 316 number targets, the percentage chance to 

be solved is above 95%. It is the opportunity to get to know the 

set of numbers that are chance solvable. The most difficult to 

reach the target number is 947 with the percentage chance is 

68.09%, meanwhile the most complicated reach target number 

is 961. 

 

III. IMPLEMENTATION 

A. Combination Sets of the Six Numbers Choose 

There are 6 numbers required to play the Countdown 
Numbers Game, which means there are many possible 
combinations of number selections. The six numbers can be 
filled with a random mix of large numbers and duplicated small 
numbers, since small numbers from 1 to 10 appear twice each. 

For example, if a player chooses 2 large numbers for the start 
game, then 4 small numbers left to complete the 6-numbers set. 
Since small numbers can appear more than once, several 
variations are possible in how these small numbers are selected. 
Let Li represent the chosen large number and Si represent the 
chosen small number. There are multiple ways the small number 
portion can be formed. For instance: 

1) Combination 1 : L1, L2, S1,S1,S2,S2 
The small number set contains two duplicated values. The 
total number of such combinations is: 𝐶(4,2) × 𝐶(10,2) =
270. 

2) Combination 2 : L1, L2, S1,S1,S2,S3 

The small number set contains one duplicated and two 
distinct values. The total number of such combinations is: 
𝐶(4,2) × 10 × 𝐶(9,2) = 2160. 

3) Combination 3 : L1, L2, S1,S2,S3,S4 

The small number set contains four completely distinct 
values. The total number of such combinations is: 𝐶(4,2) ×
𝐶(10,4) = 1260. 

From this illustration, we can get the amount of combination for 

2 of large numbers is 270 + 2160 + 1260 = 3690. 

We can count the combination of each large number by 

using:  

𝐶(4, 𝑛) ×  𝑉𝑎𝑙𝑖𝑑𝑆𝑚𝑎𝑙𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑠(6 − 𝑛) 

https://datagenetics.com/blog/august32014/index.html
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which n is the number of large numbers chosen (ranging from 

0 to 4), and ValidSmallNumbers (6 − n) represent the number 

of valid small-number combinations needed to complete the 6-

number set. The small number combinations are constrained 

such that each small number from 1 to 10 can appear at most 

twice. 

The function ValidSmallNumbers uses bounded multiset 

counting to determine the number of valid combinations that 

can complete the 6-number set. This method ensures that no 

small number is used more than twice, as limited by the 

Countdown game rules. The total number of valid small-

number combinations for each possible count of large numbers 

is summarized in table below: 

TABLE IV.  VALIDSMALLNUMBERS(6-N) 

Large number (n) k = 6 - n ValidSmallNumbers(k) 

0 6 2850 

1 5 1452 

2 4 615 

3 3 210 

4 2 55 
d. ValidSmallNumbers(k) refers to the number of valid small-number combinations of size k. 

From Table IV, we can find the total number of valid 

combinations for each possible count of large numbers. When : 

• 0 Large Numbers (n = 0) 

𝐶(4,0) ×  𝑉𝑎𝑙𝑖𝑑𝑆𝑚𝑎𝑙𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑠(6) = 1 × 2850 = 2850 

  

• 1 Large Numbers (n = 1) 

𝐶(4,1) ×  𝑉𝑎𝑙𝑖𝑑𝑆𝑚𝑎𝑙𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑠(5) = 4 × 1420 = 5808 

 

• 2 Large Numbers (n = 2) 

𝐶(4,2) ×  𝑉𝑎𝑙𝑖𝑑𝑆𝑚𝑎𝑙𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑠(4) = 6 × 615 = 3690 

 

• 3 Large Numbers (n = 3) 

𝐶(4,3) ×  𝑉𝑎𝑙𝑖𝑑𝑆𝑚𝑎𝑙𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑠(3) = 4 × 210 = 840 

 

• 4 Large Numbers (n = 4) 

𝐶(4,4) ×  𝑉𝑎𝑙𝑖𝑑𝑆𝑚𝑎𝑙𝑙𝑁𝑢𝑚𝑏𝑒𝑟𝑠(2) = 1 × 55 = 55 

 

Adding all of these together, we obtain the total number of 

valid 6-number combinations that can be formed in the 

Countdown Numbers Game: 2850 + 5808 + 3690 + 840 + 

55 = 13243. If the target value is selected randomly, there 

are exactly 900 possible target values (ranging from 100 to 

999 inclusive). Given that there are 13,243 unique 6-number 

sets, the total number of possible game instances is: 900 × 

13243 = 11918700 games. 

 

B. Reachable Numbers from a Given Game Set 

A set of six numbers selected according to specific 

rules must be combined using basic arithmetic operations in 

order to reach a target number between 100 and 999. 

Assume a, b, c, d, e, f represents the six chosen integers. 

These elements may be paired and operated on sequentially, 

generating intermediate results that can bring the total closer 

to the target or assist in subsequent operations. 

For instance, choosing two values from the set, such 

as a and d, and applying an operation (e.g., addition) results 

in a new value g = a + d. This newly derived value g is then 

introduced into the pool of usable operands and may serve 

one of two strategic purposes: 

• Be directly combined with another number to 

approach the target, or 

• Serve as a steppingstone toward a more complex 

multi-step construction. 

This process continues recursively, where each new result 

becomes a candidate for further combination, adhering to 

the constraint that each original number can be used at most 

once. 

 We can estimate the total number of valid arithmetic 

expression sequences by stepwise combining two numbers 

at a time and applying one of the four basic operations, with 

only integer results allowed. The total number of valid 

operation trees formed from a six-number set is:  

• First operation: 𝐶(6,2) × 4 = 60 

• Second operation: 60 × 𝐶(5,2) × 4 = 2400 

• Third operation: 2400 × 𝐶(4,2) × 4 = 57600 

• Forth operation: 57600 × 𝐶(3,2) × 4 = 691200 

• Last operation: 691200 ×  𝐶(2,2) × 4 = 2764800 

Thus, the total number of valid arithmetic expression 

sequences formed from a six-number set is: 

60 + 2400 + 57600 + 691200 + 2764800 = 3516060 

This value represents the total number of valid expression 

trees for a single six-number set. It does not indicate how 

many target numbers between 100 and 999 can be reached. 

Rather, it defines the maximum number of distinct operation 

paths evaluated during brute-force solution attempts in the 

Countdown Numbers Game. 

C. Algorithm to find the solution Countdown Numbers Game 

To find the solution for the Countdown Numbers 

Game, the program iterates through all possible 

combinations to find a valid solution. The code is structured 

into three specific steps to accomplish this. 

• Generating a Permutation Tree 

A permutation tree is created from the given set of 

numbers to efficiently generate all unique orders of 

those numbers. The procedure responsible for this step 

is generate_permutation_tree 

• Finding Solutions from the Permutation Tree 

The program iterates through each branch of the 

permutation tree to find a possible solution that matches 

the target number. The algorithm uses Reverse Polish 

Notation (RPN) with a stack and a recursive 

backtracking approach to try all operator combinations. 

The function used for this process is 
recursive_place_operators 

• Formatting the Solution Result 

A raw solution, once found, is converted into an 

expression tree using the Operation class. This 
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allows the solution to be optimized and formatted into 

a human-readable string.  

Here is the implementation of the code using python language 

 
def solve(arg_input, arg_target): 

    """ 

The main entry point function for the solver. 

It initializes the process, calls the 

permutation tree generation, starts the 

solution search,and prints the final unique 

solutions. 

    """ 

 

class NumberNode: 

    """ 

Defines the data structure for a node within 

the permutation tree. Each node represents a 

single number in a sequence, and it holds 

references to subsequent numbers (children) in 

the permutation. 

    """ 

 

def generate_permutation_tree(input): 

    """ 

Builds the permutation tree data structure from 

the provided list of numbers. Its purpose is to 

efficiently generate all unique permutations 

(orders) of the numbers. 

    """ 

 

def 

recursive_generate_permutation_tree(numbers, 

indices, node): 

    """ 

A recursive helper function that does the 

actual work of building the branches of the 

permutation tree, ensuring no duplicate 

permutations are generated. 

    """ 

 

def place_operators(root): 

    """ 

Kicks off the second major stage: the solution 

search. It initializes the evaluation stack and 

the RPN record, then calls the recursive 

solver. 

    """ 

 

def recursive_place_operators(node, 

num_consumed): 

    """ 

The core recursive solver that uses a 

backtracking algorithm. At each step, it tries 

either adding a new number to the stack or 

applying an operator(+, -, *, /) to the numbers 

already on the stack. 

    """ 

 

class Operation: 

    """ 

    Defines the data structure for a node 

within an expression tree. This class is used 

to convert a raw RPN solution into a 

mathematical expression that can be formatted 

and optimized. It holds the value, operator, 

children, and flags for optimization (e.g., 

negative, reciprocal). 

    """ 

 

def sort_children(children): 

    """ 

A helper function to sort the children of an 

expression node. This is crucial for ensuring a 

consistent, canonical output (e.g., "100 + 50" 

instead of "50 + 100"). 

    """ 

 

def compare_operations_less_than(op1, op2): 

    """ 

A helper comparison function that defines the 

standard order between expressions, used by the 

sorting function. 

    """ 

 

def contruct_solution_string(ops_record): 

    """ 

The main function for the third stage. It takes 

a raw solution record (in RPN format) and 

orchestrates the process of converting it into 

a final, human-readable string. 

    """ 

 

def construct_operation_tree(ops_record): 

    """ 

Builds the initial expression tree data 

structure from an RPN record. 

    """ 

 

def recursive_optimize_operation_tree(node): 

    """ 

Simplifies the expression tree by "flattening" 

sequential operations (like a+b+c) and 

normalizing operators to eliminate duplicates 

and unnecessary parentheses. 

    """ 

 

def 

recursive_print_binary_operation_tree(node): 

    """ 

an alternative formatting method that prints 

the expression exactly as it was calculated, 

including all original parentheses, without 

optimization. 

    """ 

 

def main(): 

    """ 

Handles all user interaction, such as asking 

for the numbers and the target, and then calls 

the main 'solve' function to start the process. 

    """ 

Fig. 3 Function and Class used on the Code (source: writer’s archive) 

IV. ANALYSIS 

A. Decision Making 

 Brute-forcing each possible combination of the number set 
is the simplest method available to all players; however, it 
requires a significant amount of time and a fair degree of luck to 
find a valid solution. There are some strategic, but not exactly 
the target number, in every single situation. 

1) Pitch and Put Technique 

The Pitch and Put technique involve a large number with 

another number to get close to the target number, called 

pitch, followed by adjusting the number into the target 

number by another set number left, called put. This 

technique is very common use by the player of countdown 

construct efficient solutions from the given numbers. Here 

are some examples of the game. 
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Fig. 4 Game Example for Pitch and Put 

(source: https://happysoft.org.uk/countdown/numgame.php) 

In this game example, we use one large number for the 
numbers of set. The set numbers are 75, 9, 7, 5, 2, and 2 with 
75 being the largest. The number 75 we can multiply by 9 to 
get number 675, which is pretty close we are about 60 away. 
We can subtract 675 by 9 multiply 7 to get 612, but because 
9 is can only use by one time, we can make correspond to 
another equation that same value with 612 it is (75 − 7) ×
9 = 612. After performing the pitch operation, we apply the 
put step by adding a number to reach the final target by 
addition 6. The number of 6 can be find by 5 + (2 ÷  2)  or 
 2 × (5 − 2). The solution of this game example is 
((75 − 7) × 9) + 5 + (2 ÷ 2) or  ((75 − 7) × 9) + (2 ×
(5 − 2)). 

2) Prime Factorizations 
This technique attempts to solve the puzzle by expressing the 
target number as a product of its prime factors and then 
reconstructing these factors using the available set numbers. 
It can be difficult because you need to factor the target 
number which can the factor of target number is so big or 
maybe the target number itself is the prime number. Here are 
some examples of prime factorizations: 

 

Fig. 5 Game Example for Prime factorization 
(source: https://happysoft.org.uk/countdown/numgame.php) 

In this game example, we use one large number for the 
numbers of set. The set numbers are 25, 9, 7, 6, 5, and 4. The 
target number of this game is 451. By factoring the target, 
we find that 451 = 11 × 41. This factor might take time if 
player is not easy for factorized. This factor can be got by 
addition 5 and 6 to get 11 and addition 25, 9, and 7 to get 41. 
So, the solution of this game example is (5 + 6) × (25 +
9 + 7). 

This example of a target number may seem conveniently 
suited for factorization. But what happens when the next 
target number is 452? 

  

Fig. 6 Game Example for Prime factorization 
(source: https://happysoft.org.uk/countdown/numgame.php) 

In this case, we use the same set of numbers as in the 
previous example: 25, 9, 7, 6, 5, 4. However, the new target 
number 452 is not as easily factorizable into values that can 
be readily constructed from the given set. While 452 can be 
factorized as 4 × 113 or 2 × 2 × 113, the number 113 is a 
prime that is too large to be built from the available digits in 
the set.  

Instead, we can look for nearby numbers that possess simpler 
and more accessible prime factorizations. One such number 
is 448, which factors into 64 × 7. Factor 7 is already present 
in the set, and 64 can be composed using the expression 25 
+ 9 + (6 × 5). By computing (25 + 9 + (6 × 5)) × 7, we arrive 
at 448 and then add the remaining number 4 to reach the 
target value. So, the solution of this case is (25 +  9 +
 (6 ×  5))  × 7 + 4. 

3) Using 7 and 9 for Reachable 

We know before that single and double numbers of 7 and 9 

are the most effective for approaching target numbers. We 

can use this knowledge to form a practical strategy during 

the game. Here are some examples of using 7 and 9 for 

reachable: 

 
Fig. 7 Game Example for Using 7 and 9 for reachable 
(source: https://happysoft.org.uk/countdown/numgame.php) 

In this game example, we use one large number for the 

numbers of set. The set numbers are 25, 9, 7, 6, 5, and 4. 

The target number of this game is 665. The target number 

can be factorized by 7, which results in the factor 95. The 

factor of 95 can be got by (25 × 4) − 5. So, the solution of 

this game example is 7 × ((25 × 4) − 5). 

However, this method can be problematic because there is 

no guarantee which small numbers will be included in the 

set. The situation becomes worse if the number of large 

numbers chosen is not one or two, due to the limited number 

of reachable targets in those configurations. 

https://happysoft.org.uk/countdown/numgame.php
https://happysoft.org.uk/countdown/numgame.php
https://happysoft.org.uk/countdown/numgame.php
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B. Code Analysis 

The implementation of solving the Countdown Numbers 

Game will be done by code in python language. The algorithm 

implemented is a recursive algorithm with backtracking. This 

approach is used to systematically explore all possible 

mathematical expressions that can be formed from the given 

numbers.  

The process begins with the solve function, which 

accepts 6 input numbers and a target number. The first crucial 

step is to call generate_permutation_tree to generate 

all unique sequences (permutations) of these numbers. This 

ensures that each sequence of numbers is processed only once, 

even if there are duplicate numbers. 
# Initialization and Permutation Tree Generation 

def solve(arg_input, arg_target): 

    # ... initialize target ... 

    root = generate_permutation_tree(arg_input) 

    # ... begin solution search ... 

 

def generate_permutation_tree(input): 

    # ... create all unique permutations ... 
Fig. 8 Initialization and Permutation Tree Function Call Code 

 (source: writer’s archive) 
 

After the permutation tree is created, the core algorithm is 
executed by the place_operators function, which then 

calls recursive_place_operators. This recursive 

function operates using the Reverse Polish Notation (RPN) 
method with a stack. At each step, this function attempts one of 
two possibilities: either taking a new number from the 
permutation to place on the stack, or applying one of the four 
arithmetic operators (+, -, *, /) to the top two numbers on the 
stack. This process continues until a solution is found or all 
possibilities have been exhausted. 

def recursive_place_operators(node, num_consumed): 

# ... (stopping condition if solution is found)... 

# ... (recursive step to add a new number) ...   

# ... (recursive step to try all operators) ... 

Fig. 9 Recursive Place Operator Code to Find the Solution 
 (source: writer’s archive) 

For a single set consisting of 6 distinct numbers, the 
algorithm must explore all possible valid "operation trees". The 
total number of these distinct operation paths that the algorithm 
might evaluate for a single permutation of numbers is 3516060. 

When a solution is found in its raw RPN format (e.g., [100, 
25, '+', 5, '*']), functions contruct_solution_string 

and recursive_optimize_operation_tree are called 

to convert it into a canonical, simplified, and human-readable 
string (e.g., (100 + 25) * 5). This optimization process is 
important to ensure that mathematically identical solutions are 
displayed in a uniform format. 

Here some test cases using the code implementation 

 

Fig. 10 Countdown Number Game with number set 100, 6, 6, 2, 3, 7 and target 
number 561 (source: writer’s archive) 

  

Fig. 11 Countdown Number Game with number set 25, 75, 3, 8, 6, 3 and target 
number 783 (source: writer’s archive) 

V. CONCLUSION 

The Countdown Numbers Game is a mathematical puzzle 
that can be used for entertaiment or to improve our logical 
thinking skills. The game offers immense variety through its 
different combinations of six numbers and the target number. 
With 11,918,700 possible game instances, a significant portion 
3,516,060 are valid and solvable. To find a solution, players can 
employ several strategies: 

• Pitch and Put Technique: A method where one number 
is multiplied by another to get close to the target, and the 
result is then adjusted using the remaining numbers. 

• Prime Factorization: This strategy involves using the 
prime factors of the target number (or a number close to 
it) to guide the calculation. 

• Using 7 and 9 for Reachable: Statistically, the numbers 
7 and 9 are the most effective small numbers for 
reaching a target, making them strategic starting points. 

 From a computational standpoint, the solution can be found 
efficiently using an algorithm that combines a permutation tree 
(to handle number order), Reverse Polish Notation (RPN) with 
a stack (to manage calculations), and a recursive backtracking 
approach to explore all possibilities. 
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APPENDIX 

Source code for implementing the solution Countdown 
Numbers Game program : 
https://github.com/Raymond13524059/Countdown-Number-
Game-Solver---13524059---Raymond-Jonathan-Dwi-Putra-
Julianto.git 
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