
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Approximation of the Optimal Badge Collection

Order in Pokemon Scarlet and Violet Using a

Modified Greedy Traveling Salesman Problem

Algorithm

Benedict Darrel Setiawan - 13524057

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: benedictdarrel572006@gmail.com , 13524057@std.stei.itb.ac.id

Abstract—Pokémon Scarlet and Violet are the latest mainline

games in the Pokémon Series. Being the series’ first ever delve

into the open-world genre, the game brings a new and improved

gameplay format that lets the player progress through the

storyline in any order. This change inevitably results in the

sudden spike in difficulty for players who try to find the most

optimal path in order to speedrun the game. This paper

determines the true optimal route to completing the game’s three

storylines by using a weighted directed graph representation.

This is done utilizing a modified version of a greedy Travelling

Salesman Problem algorithm, with the Nearest Neighbor

Algorithm as the base, that the author constructed to adjust

accordingly to the flow of gameplay.

Keywords — Pokémon, Graph, Travelling Salesman Problem,

Greedy Algorithm, Nearest Neighbor Algorithm, Speedrunning,

Hamiltonian Cycle

I. INTRODUCTION

Fig 1. Pokémon Scarlet and Violet banner (Source:

https://www.nintendo.com/ph/switch/scarlet_violet/index.html)

Pokémon Scarlet and Violet are the latest mainline games

in the Pokémon series, being released on November 18, 2022.
Like most new entries in the series, these games feature a brand
new region, the Paldea region, which is based on the real-life
Iberian Peninsula. However, what sets these games apart from
previous installments is that they are the Pokémon series’ first
dive into the open-world genre.

The open-world nature of Scarlet and Violet allows players
to progress through the game however they please. Usually,

Pokémon games follow a formula of needing to gather all of
the region’s 8 Gym badges in a specific order to be able to
enter the Pokémon League and beat the game. However,
Scarlet and Violet break the tradition by not only letting the
player gather the badges in any order they want, but also by
increasing the number of badges they need to beat the game.
There are a total of 18 badges that the player needs to collect,
all of them representing the 18 Pokémon types. These badges
are split into three different storylines, with 8 of them being the
usual Gym Badges in the Path of Victory storyline, 5 of them
being Star Badges from the Starfall Street storyline, and
another 5 being Titan Badges from the Path of Legends
storyline. While categorized as being different, these badges
usually have the same method of obtaining them, which is
typically by defeating a specific trainer or Pokémon.

 This big shift from the usual format of Pokémon games has
certainly made an impact in most aspects of the series. One of
them is adding another layer of complexity to speedruns.
Usually, speedruns of Pokémon games require the speedrunner
to know the optimal path to get through each location in the
game. However, in Scarlet and Violet, the speedrunner now
also has to consider what the optimal badge-collecting order is.
There are also a multitude of other factors that complicate this
process even more, such as the absence of level scaling.

 This paper will determine the optimal route to complete all
three storylines in the game, assuming that the player doesn’t
have access to fast travel, utilizing a modified Traveling
Salesman Problem (TSP) algorithm on a graph with dynamic
adjacency. The modifications are used to accommodate factors
such as levels and prerequisite objectives for completing
another objective. The application of TSP is used due to the
starting point of all three storylines and the final point of two of
the storylines are within the location known as Mesagoza on
the map. Therefore, we can conclude that the optimal route for
completing the game is indeed a Hamilton cycle, which means
it can be solved by application of TSP.

mailto:benedictdarrel572006@gmail.com
mailto:13524057@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

II. THEORETICAL FRAMEWORK

A. Graph

Graphs are generally used to represent discrete objects and
the relations between said objects. A graph is defined as G (V,
E), where V is a non-empty set of vertices and E is a set
consisting of edges that connect the vertices. Based on the way
that the direction of the edges is oriented, graphs can be
classified into two types, which are:

1. Undirected Graphs, which have no discernible
orientation of direction

Fig 2. Undirected Graphs (Source: [1])

2. Directed Graphs, a graph in which every edge is given
a direction

Fig 3. Directed Graphs (Source: [1])

Some of the various Graph terminologies that are relevant
to this paper are as follows:

1. Path
 A sequence of vertices in which each vertex is adjacent to
the one before and next after it.

Fig 4. Path Examples (Source: [2])

2. Cycle
A path that starts and ends on the same Vertex

Fig 5. Cycle Examples (Source: [2])

3. Weighted Graphs
A graph in which each edge contains a value or weight

Fig 6. A Weighted Graph (Source: [1])

4. Hamiltonian Graphs

A Hamiltonian path is a path that visits every single vertex
on the graph exactly once. A Hamiltonian circuit is a path that
visits every single vertex on the graph exactly once and returns
to the starting vertex at the end of the path. A graph that
contains a Hamiltonian circuit is defined as a Hamiltonian
graph, while one that contains a Hamiltonian path is regarded
as a semi-Hamiltonian graph.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig 7. A Hamiltonian Graph (Source:
https://en.wikipedia.org/wiki/Hamiltonian_path)

B. Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a theoretical
problem that states of a salesman trying to visit several cities
exactly once and then return to back to the city they started at.
The goal of this problem is to find the shortest possible route
for the salesman to travel across. The problem practically
implores to find the shortest Hamiltonian cycle in a graph
where the vertices represent each city the salesman has to visit.

TSP has become a popular problem in computation due to
there being almost no time-effective method to definitively find
the shortest possible route. Two of the most popular
approaches to solving the TSP are as follows:

1. The Brute Force Method
The brute-force approach calculates and compares every

permutation of the routes and picks the one that has the least
distance value. This method is popular in picking apart TSP
with a small number of cities/vertices, due to its objective
100% accuracy. However, due to its time complexity of O(n!),
this method is extremely impractical and unfeasible when
tackling TSP with a large number of vertices.

2. The Nearest Neighbor Algorithm

The Nearest Neighbor Algorithm (NNA) is a greedy
 approach to solving TSP. It is a relatively simple algorithm
to comprehend and quick to execute due to its time complexity
of O(n²). However, the trade-off is that the algorithm is prone
to faults and blind spots that affect the seemingly shortest
possible cycle it produces. The step-by-step algorithm of NNA
is as follows:

1. Pick a starting city.
2. Set it as the current city and put it in the list of

currently visited cities.
3. Move to the city closest to the current one.
4. Repeat 2-3 until all cities have been visited.
5. Return to the starting city.

C. Badges in Pokémon Scarlet and Violet

Pokémon Scarlet and Violet have a total of 18 badges to

obtain, each one belonging to one of the game’s three

storylines.

1. Victory Road (Gym Badges)

There are a total of 8 Gym Badges in Pokémon Scarlet and

Violet. They can be obtained after defeating a Gym Leader in

a battle. Obtaining Gym Badges will increase the level cap

that gives the player the ability to command a Pokémon that is

caught at said level cap or below. However, the player is still

able to command Pokémon that are above the level cap if the

Pokémon is caught at a lower level. After obtaining all 8 Gym

Badges, the player can challenge the Pokémon League, which

is located in Mesagoza.

Badge Attributes

Gym Location Type Specialization Obeying Pokémon Level Cap

Cortondo Bug 25

Artazon Grass 30

Levincia Electric 35

Cascaraffa Water 40

Medali Normal 45

Montenevera Ghost 50

Alfornada Psychic 55

Glaseado Ice 100

Fig 8. List of Gym Badges and Their Attributes (Source: [4])

2. Path of Legends (Titan Badges)

There are a total of 5 Titan Badges in Pokemon Scarlet and

Violet. They can be obtained after defeating a certain Titan

Pokémon. Obtaining Titan Badges will give the player unique

traversal abilities. After obtaining all 5 Titan Badges, the

player can initiate the final battle of the storyline in Poco Path

Lighthouse.

Badge Attributes

Titan Pokemon Type Specialty Ability Given

The Stony Cliff Titan Rock Dash

The Open Sky Titan Flying Swim

The Lurking Steel Titan Steel High Jump

The Quaking Earth Titan Ground Glide

The False Dragon Titan Dragon Climb

Fig 9. List of Titan Badges and Their Attributes (Source: [4])

3. Starfall Street (Star Badges)

There are a total of 5 Star Badges in Pokemon Scarlet and

Violet. They can be obtained after defeating the Team Star

Squad Bosses. Obtaining Star Badges will allow the player to

make a greater variety of TMs using the TM Machine. After

obtaining all 5 Star Badges, the player can initiate the final

battle of the storyline in Mesagoza.

Badge Attributes

Star Squad Type Specialty

Segin Squad Dark

Schedar Squad Fire

Navi Squad Poison

Ruchbah Squad Fairy

Caph Squad Fighting

Fig 10. List of Star Badges and Their Attributes (Source: [4])

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

III. METHOD AND RESULTS

A. Initial Graph Representation

The first step in modeling the graph is to establish what

each of the graph elements represents. In this case, each node

in our graph represents a location where the player can obtain

a certain badge or complete one of the three storylines. Below

is an image that details where each of the 18 badges in the

game can be obtained.

Fig 10. A Map that Shows Where All 18 Badges Are Located

(Source: https://www.mandatory.gg/en/pokemon/ecarlate-

violet/la-carte-de-paldea-le-monde-de-pokemon-ecarlate-et-

violet/html)

 From there, we can add two more notable locations to the
node list. One being Poco Path Lighthouse, which is where the
player can complete the Path of Legends storyline. The other
being Mesagoza, which is not only the starting location for all
three storylines, but also where the player is supposed to finish
the Victory Road and Starfall Street storylines.

Fig 11. An Updated Map that Details Mesagoza and Poco

Path Lighthouse

No.

Node Attributes

Location Pixel Coordinates (X, Y)
Highest-level

Pokemon

0 Mesagoza 516, 618 10

1 Cortondo Gym 352, 623 15

2
Stony Cliff Titan’s
Nest

667, 582 16

3 Artazon Gym 735, 611 17

4
Open Sky Titan’s
Nest

208, 515 19

5 Segin Squad Base 376, 473 21

6 Levincia Gym 803, 476 24

7
Schedar Squad
Base

716, 549 27

8
Lurking Steel
Titan’s Nest

780, 399 28

9 Cascarrafa Gym 371, 434 30

10 Navi Squad Base 636, 370 33

11 Medali Gym 461, 368 36

12 Montenevera Gym 573, 231 42

13
Quaking Earth
Titan’s Nest

236, 439 44

14 Alfornada Gym 266, 723 45

15 Glaseado Gym 592, 282 48

16
Ruchbah Squad
Base

490, 107 51

17
False Dragon
Titan’s Nest

394, 226 55

18 Caph Squad Base 790, 271 56

19
Poco Path
Lighthouse

547, 743 63

Fig 12. Details of Each Node to be Used in the Graph

 Next, we need to establish what the adjacency between two
nodes in the graph represents. The simplest option would be to
establish that an adjacency represents the ability to move from
one location to another. Since the game is open-world, this
would mean that our graph is a complete one, should we follow
this route. However, that option would be unfeasible due to the
game’s lack of level scaling.

 The lack of level scaling in Pokémon Scarlet and Violet
results in every battle having a fixed level of difficulty. For
instance, if the player begins in Mesagoza with the highest-
level Pokémon on their team at level 10, they are able to
attempt to earn the Glaseado Gym Badge in theory. However,
winning a battle becomes impractical because their team is 38
levels lower than the Gym Leader’s highest-level Pokémon.

 To counteract this problem, the assumption is made that the
player’s current ‘Highest-level Pokémon’ is always set to the
‘Highest-level Pokémon’ of the latest obtained badge. It is also
assumed that the player can obtain a badge that has a ‘Highest-
level Pokémon’ value of at most L levels higher than the

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

player’s current ‘Highest-level Pokémon’ value. From these
assumptions, the following relation between two nodes in set P
can be defined.

R₁ = {(u, v) | ‘Highest-level Pokémon’ of u ≤ ‘Highest-level
Pokémon of v’ ≤ ‘Highest-level Pokémon’ of u + L, u ≠ v}

 To determine the value of L, we need to simply find two
consecutive nodes with the largest difference in their highest-
level Pokémon. In this case, it’s Caph Star Base and Poco Path
Lighthouse, with their difference being 7. These assumptions
are made so that the algorithm will be able to traverse the graph
according to how the game intends the player to progress.

 The Python code to initialize the current graph is as
follows,

import networkx as nx

import os, math, copy

import matplotlib.pyplot as plt

script_dir = os.path.dirname(os.path.abspath(__file__))

nodefile = file_path('Badge_Data.txt')

LevelRange = 7

def initializeNodes(file, G, pos) :

 data = open(file_path(file))

 line = data.readline()[:-1]

 n = 0

 while line != '=======================' :

 name, attr = line.split(' : ')

 coords, lvl = attr.split(' ; ')

 nodecoords=[]

 for x in coords.split(',') :

 nodecoords.append(int(x))

 G.add_node(n, name=name, level=int(lvl),

 x=nodecoords[0],

 y=nodecoords[1])

 pos[n] = nodecoords

 n += 1

 line = data.readline()[:-1]

def addInitialEdges(G) :

 for i in (G.nodes) :

 offset = 0

 for j in (G.nodes) :

 if (G.nodes[j]['level'] <=

 G.nodes[i]['level'] + LevelRange)

 and (G.nodes[i]['level'] <=

 G.nodes[j]['level']) and (i != j):

 distance = pathDistance(G,i,j)

 G.add_edge(i, j, weight=distance)

 offset += 1

Fig 13. Initial Graph Representation

 To prove the existence of a Hamiltonian Circuit in our
future graph, we need to confirm that the above graph has at
the very least one Hamiltonian Path. This is provable by the

fact that the nodes in the initial graph are numbered based on
the order of the highest-level Pokémon attribute, starting from
lowest to highest. So, a path created from following the order
of the numbered nodes (0, 1, 2, 3, etc.) will lead us to the
Hamiltonian Path shown below

 Fig 14. A Hamiltonian Path in Fig 13

B. Determining The Distance Between Nodes

To fully realize our graph, we must determine the weight

that is given to each edge of the graph. In this problem, the

weight represents the distance between the two nodes that the

edge connects. However, a problem arises when we consider

the map layout further.

1. Area Zero

 Area Zero is a giant crater located in the middle of Paldea.

Due to its tall and unclimbable nature, crossing it would be

either difficult or even impossible to do.

Fig 14. Area Zero Border

To counteract this, we simply need to find the shortest path

by going around the border. The steps of the algorithm to do

so are as follows:

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

1. Define Area Zero as a polygon

2. Determine points A and B, and put them in list P

3. Create a line from point A to point B

4. If said line intersects through two points in the Area

Zero polygon, find the vertex of the polygon that is

closest to the middle point of the line. And then put

said vertex as C into list P in between A and B

5. Create a line from every consecutive Point in P

6. Repeat 4-5 until no line is formed from P that

intersects through two points in the Area Zero polygon

7. Delete any points in list P that are between two points

that create a line that doesn’t cut through the Area

Zero polygon

8. Sum up the distance between each consecutive point

in list P

Below is the implementation of said algorithm in the

Python language using the Shapely library and a visualization

of the result.

from shapely.geometry import Point, Polygon

AreaZeroPoints = [

 (404, 491), (409, 502), (401, 503), (395, 515),

 (400, 522), (413, 528), (413, 541), (433, 558),

 (449, 578), (482, 586), (499, 594), (496, 582),

 (519, 564), (556, 600), (576, 594), (606, 601),

 (615, 589), (617, 547), (619, 474), (590, 416),

 (569, 388), (547, 397), (518, 379), (495, 389),

 (469, 391), (448, 407), (439, 436), (415, 453),

 (412, 479)

]

def isPathIntersectingAreaZero(point1, point2) :

 line = LineString([point1, point2])

 AreaZeroPolygon = Polygon(AreaZeroPoints)

 if line.intersects(AreaZeroPolygon) :

 if line.intersection(AreaZeroPolygon).geom_type ==

 ‘Point’ :

 state = False

 else :

 state = True

 else :

 state = False

 return state

def pathDistanceAroundAreaZero(point1, point2) :

 CurrPath = [point1, point2]

 while True :

 state = False

 for I in [0, len(CurrPath) – 2]:

 if isPathIntersectingAreaZero(CurrPath[i],

 CurrPath[i+1]) :

 state = True

 middle = idpoint(CurrPath[i], CurrPath[i+1])

 closestPoint = AreaZeroPoints[0]

 for x in AreaZeroPoints :

 state2 = True

 for y in CurrPath :

 if (x == y) :

 state2 = False

 break

 if state2 and (pointDistance(closestPoint,

 middle) > pointDistance(x, middle)) :

 closestPoint = x

 CurrPath.insert(I + 1, closestPoint)

 if not(state) :

 break

 while not(isPathIntersectingAreaZero(CurrPath[0],

 CurrPath[2])) :

 CurrPath.pop(1)

 while not(isPathIntersectingAreaZero(CurrPath[len(CurrPath) –

 1], CurrPath[len(CurrPath) – 3])) :

 CurrPath.pop(len(CurrPath) – 2)

 distance = 0

 for I in range(len(CurrPath) – 1) :

 distance += pointDistance(CurrPath[i], CurrPath[I + 1])

 return distance

def pathDistance(G, node1, node2) :

 nodepoint1 = (G.nodes[node1][‘x’], G.nodes[node1][‘y’])

 nodepoint2 = (G.nodes[node2][‘x’], G.nodes[node2][‘y’])

 if isPathIntersectingAreaZero(nodepoint1, nodepoint2) :

 distance = pathDistanceAroundAreaZero(nodepoint1,

 nodepoint2)

 path_shape = ‘modified’

 else :

 distance = pointDistance(nodepoint1, nodepoint2)

 path_shape = ‘straight’

 return distance, path_shape

Fig 15. An Example of a Modified Path Visualized

2. Alternate Alfornada Route

Alfornada is a city located in the most southwestern part of

the Paldea region. What makes it different from most cities in

the game is that the main path to the city, which is Alfornada

Cavern, can only be traversed once the player has obtained the

high jump or the climb ability. However, there exists a longer

alternate path to the city that doesn’t require any abilities to be

traversed.

Fig 16. An Alternate Route to Alfornada

The solution to this problem implemented in the Python

language is as follows:
AlfornadaAlternatePathPoints = [

 (236, 654),

 (221, 666),

 (220, 683),

 (219, 696),

 (227, 701)

]

def AlfornadaAlternatePathDistance(G) :

 AlfornadaCoords = (G.nodes[14]['x'], G.nodes[14]['y'])

 distance = 0

 for i in range(len(AlfornadaAlternatePathPoints) - 1) :

 distance += pointDistance(AlfornadaAlternatePathPoints[i],

AlfornadaAlternatePathPoints[i + 1])

 distance +=

pointDistance(AlfornadaAlternatePathPoints[len(AlfornadaAlternatePathPoints) - 1],

 AlfornadaCoords)

 return distance

def pathDistance(G, node1, node2, visitedNodes) :

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 nodepoint1 = (G.nodes[node1]['x'], G.nodes[node1]['y'])

 nodepoint2 = (G.nodes[node2]['x'], G.nodes[node2]['y'])

 climb_obtained = False

 alternate_distance = 0

 for x in visitedNodes :

 if (x == 17) or (x == 8) :

 climb_obtained = True

 if (node2 == 14) and not(climb_obtained) :

 nodepoint2 = AlfornadaAlternatePathPoints[0]

 alternate_distance += AlfornadaAlternatePathDistance(G)

 if isPathIntersectingAreaZero(nodepoint1, nodepoint2) :

 distance = pathDistanceAroundAreaZero(nodepoint1, nodepoint2)

 path_shape = 'modified'

 else :

 distance = pointDistance(nodepoint1, nodepoint2)

 path_shape = 'straight'

 if alternate_distance > 0 :

 path_shape = 'modified'

 distance += alternate_distance

 return distance, path_shape

C. Dynamic Graph Progression

To fully represent Pokémon Scarlet and Violet’s gameplay

flow, the graph needs to be dynamic. The reasons are as

follows:

1. The player needs to be able to obtain badges, which

have a ‘highest-level Pokémon’ value lower than their

latest obtained badge, while also not lowering their

actual ‘highest-level Pokémon’.

2. The player only gains the ability to cross bodies of

water after they obtain the Open Sky Titan’s Badge

(Node 4). Due to this, the player cannot obtain the

False Dragon Titan’s Badge (Node 17) until then, due

to needing to cross a body of water.

3. The player is only able to do the Poco Path Lighthouse

objective (Node 19) after they obtain all 5 Titan

Badges (Nodes 2, 4, 8, 13, 17).

4. Alfornada’s main route can only be traversed when

the player has until the player has obtained either the

high jump ability from the Lurking Steel Titan’s

Badge (Node 8) or the climb ability from the False

Dragon Titan’s Badge (Node 17). Before gaining

either of those abilities, the player must take the

alternate longer route to reach the city.

5. To ensure that every node has been visited before

finishing the cycle, the player must only be able to

come back to Mesagoza (Node 0) after visiting all

other nodes.

So, each time a node is visited, the graph will update its

adjacencies according to the rules above. This means the

algorithm for finding the shortest possible path must save not

only the currently visited nodes but also the ‘highest-level

Pokémon’ value among the set of currently visited nodes. The

implementation in the Python language are as follows:

def currentLevel(G, VisitedNodes) :

 Curr = G.nodes[VisitedNodes[0]][‘level’]

 for l in VisitedNodes :

 if (G.nodes[l][‘level’] > Curr) :

 Curr = G.nodes[l][‘level’]

 return Curr

def updateGraphRoutes(G, VisitedNodes) :

 CurrentNode = VisitedNodes[len(VisitedNodes) – 1]

 CurrentLevel = currentLevel(G, VisitedNodes)

 state2 = False

 for Dest in (G.nodes) :

 state = True

 state1 = True

 state2 = True

 for (_,v) in (G.edges(CurrentNode)) :

 if (v == Dest) :

 state = False

 break

 for x in VisitedNodes :

 if (x == Dest) :

 if (len(VisitedNodes) != len(G.nodes)) or (x !=

 VisitedNodes[0]) :

 state = False

 break

 if (Dest == 17) :

 state1 = False

 for y in VisitedNodes :

 if y == 4 :

 state1 = True

 break

 if (Dest == 19) :

 state2 = False

 z2 = 0

 for z in VisitedNodes :

 if (z == 2) or (z == 4) or (z == 8) or (z == 13) or

 (z == 17) :

 z2+=1

 if z2 == 5 :

 state2 = True

 if state and state1 and state2 and (CurrentLevel + LevelRange

 >= G.nodes[Dest][‘level’]) :

 distance, shape = pathDistance(G, CurrentNode, Dest)

 G.add_edge(CurrentNode, Dest, weight=round(distance),

 shape=shape)

D. Determining the Shortest Possible Hamiltonian Circuit

To determine the shortest possible Hamiltonian circuit of

the graph, the author has employed the use of the Nearest

Neighbor algorithm as a basis to solve the Traveling Salesman

Problem. The said algorithm is used due to its relatively

simple, fast, and easily modifiable algorithmic framework. To

accommodate the changes made due to the dynamic nature of

the graph, the Nearest Neighbor algorithm used for this

problem is as follows:

1. Pick a starting node.

2. Set it as the current node, and put it in the list of

currently visited nodes

3. Move to the node with the lowest distance value that

is connected to the current node.

4. If the node’s ‘highest-level Pokemon’ value is higher

than the current highest value, set it to said value.

5. Update the graph’s adjacencies according to the

current node.

6. Repeat steps 2-5 until all nodes are in the list of

currently visited nodes.

7. Return to the starting node.

Using the algorithm above, the following Python code,

used to find the shortest possible Hamiltonian circuit, is

produced:

def closestPossibleNode(G, VisitedNodes) :

 if len(VisitedNodes) == len(G.nodes) :

 return VisitedNodes[0]

 CurrentNode = VisitedNodes[len(VisitedNodes) - 1]

 state = True

 for (_,x) in G.edges(CurrentNode) :

 state1 = True

 for y in VisitedNodes :

 if x == y :

 state1 = False

 break

 if state1 :

 if state :

 closestNode = x

 state = False

 else:

 if (G[CurrentNode][x]['weight'] <

 G[CurrentNode][closestNode]['weight']) :

 closestNode = x

 return closestNode

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

def findShortestCycle(G) :

 G2 = nx.DiGraph()

 pos2 = {}

 initializeNodes(nodefile, G2, pos2)

 addInitialEdges(G)

 visitedNodes = [0]

 n = 0

 while len(visitedNodes) <= len(G.nodes) :

 n += 1

 CN = closestPossibleNode(G, visitedNodes)

 visitedNodes.append(CN)

 G2.add_edge(visitedNodes[len(visitedNodes) - 2], CN,

 weight = G[visitedNodes[len(visitedNodes) -

 2]][CN]['weight'],

 shape = G[visitedNodes[len(visitedNodes) –

 2]][CN]['shape'])

 updateGraphRoutes(G, visitedNodes)

 print(f'Total Distance : {currentDistanceTraveled(G,

 visitedNodes)}')

Fig 17. Shortest Possible Hamiltonian Circuit using the

Nearest Neighbor Algorithm

 The figure above shows the result of the Nearest Neighbor
Algorithm trying to find the shortest possible Hamiltonian
circuit with a total relative distance of 4127. However, said
result is seemingly still not the shortest possible Hamilton cycle
that the graph contains. This is due to the Nearest Neighbor
Algorithm having a relatively shallow analysis of the graph.
Since it will always go to the nearest possible node, other
routes that are further in the short term but might be shorter in
the long term are ignored.

 To find the true shortest possible Hamiltonian Circuit of the
graph, the author has modified and improved upon the Nearest
Neighbor Algorithm. Instead of only analyzing the nodes that
are adjacent to the current node, the algorithm will now analyze
each possible option and iterate a route for each using the
previous Nearest Neighbor Algorithm. It will then calculate the
distance that each route has and pick the node that leads to the
shortest route. The complete steps for the algorithm are as
follows:

1. Set it as the current node and put it in the list of

currently visited nodes.

2. Pick a node that is adjacent to the current node.

3. Iterate a cycle with said node as the next node using

the previous Nearest Neighbor Algorithm.

4. Calculate the distance of said cycle.

5. Pick another node that is adjacent to the current node.

6. Repeat 4-5 until all possible options are explored.

7. Move to the node that leads to the cycle with the

shortest distance.

8. Repeat 2-8 until all nodes are in the list of currently

visited nodes.

9. Return to the starting node.

The realization of the algorithm above into Python code

and the resulting visualization are as follows:

def nearestLoopLength(G, VisitedNodes, NextNode) :

 G1 = copy.deepcopy(G)

 CurrVisited = []

 for x in VisitedNodes :

 CurrVisited.append(x)

 DestNode = NextNode

 while len(CurrVisited) <= len(G1.nodes) :

 CurrVisited.append(DestNode)

 updateGraphRoutes(G1, CurrVisited)

 #print(CurrVisited)

 if (len(CurrVisited) <= len(G1.nodes)) :

 DestNode = closestPossibleNode(G1, CurrVisited)

 return currentDistanceTraveled(G1, CurrVisited), CurrVisited

def recommendedNextNode(G, VisitedNodes) :

 if len(VisitedNodes) == len(G.nodes) :

 return VisitedNodes[0]

 CurrentNode = VisitedNodes[len(VisitedNodes) - 1]

 state = True

 for (_,x) in G.edges(CurrentNode) :

 state1 = True

 for y in VisitedNodes :

 if x == y :

 state1 = False

 break

 if state1 :

 if state :

 nextNode = x

 state = False

 else:

 if (nearestLoopLength(G, VisitedNodes, x)[0] <

 nearestLoopLength(G, VisitedNodes, nextNode)[0]) :

 nextNode = x

 return nextNode

def findShortestCycleVer2(G) :

 G2 = nx.DiGraph()

 pos2 = {}

 initializeNodes(nodefile, G2, pos2)

 addInitialEdges(G)

 visitedNodes = [0]

 n = 0

 while len(visitedNodes) <= len(G.nodes) :

 n += 1

 CN = closestPossibleNode(G, visitedNodes)

 visitedNodes.append(CN)

 G2.add_edge(visitedNodes[len(visitedNodes) - 2], CN,

 weight = G[visitedNodes[len(visitedNodes) -

 2]][CN]['weight'],

 shape = G[visitedNodes[len(visitedNodes) –

 2]][CN]['shape'])

 updateGraphRoutes(G, visitedNodes)

 print(f'Total Distance : {currentDistanceTraveled(G,

 visitedNodes)}')

Fig 18. Shortest Possible Hamiltonian Circuit using the

improved Nearest Neighbor Algorithm

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 The figure above shows the results of the improved version
of the Nearest Neighbor Algorithm attempting to find the
shortest possible Hamiltonian circuit, with a total relative
distance of 3623. While significantly shorter than the previous
cycle produced, further optimization is still possible. Upon
observation, the author found that rearranging the order of node
10 from after node 16 to after node 8 results in an even shorter
cycle. This change occurs because the sum of the weights on
edge (8, 10), edge (5, 10), and edge (18, 7) is less than the sum
of the weights on edge (8, 5), edge (18, 10), and edge (10, 7).
Consequently, the algorithm still has some blind spots that
need addressing, indicating that further improvements can be
made.

 After further analysis, the reason behind this specific blind
spot is that the closest adjacent node to node 10 is node 11. So,
when the algorithm is trying to find the best possible option to
take when the current node is node 8, the node 10 operation
will lead to a longer route due to its next closest node being
node 11. When in actuality, the best possible route to take is
indeed node 10, but with node 5 being the next node after it
instead of node 11.

 To solve this issue efficiently, the author has employed a
similar method that was originally used to identify the problem
in order to improve the previous version of the algorithm. This
method involves inserting another node adjacent to the current
one, positioned between it and the next planned node. The
newest version of the algorithm, after applying this
improvement, is as follows:

1. Pick a starting node.

2. Set it as the current node and put it in the list of

currently visited nodes.

3. Pick a node that is adjacent to the current node.

4. Iterate a cycle with said node as the next node using

the previous Nearest Neighbor Algorithm.

5. Calculate the distance of said cycle.

6. Repeat 4-5 until all possible options are explored.

7. Pick the node that leads to the cycle with the shortest

distance and save a copy of said cycle.

8. Pick another node that is adjacent to the current node,

delete it from the cycle, and re-insert it between the

current node and the planned next node.

9. Calculate the distance of said cycle. If it is shorter

than the previously saved cycle, then set it as the

current cycle and set the inserted node as the planned

next node.

10. Repeat 9-10 until the shortest possible cycle of the

iteration is found.

11. Move to the planned next node.

12. Repeat 2-13 until all nodes are in the list of currently

visited nodes.

13. Return to the starting point.

The realization of the algorithm above into Python code

and the resulting visualization are as follows:
def recommendedNextNode(G, VisitedNodes) :

 if len(VisitedNodes) == len(G.nodes) :

 return VisitedNodes[0]

 CurrentNode = VisitedNodes[len(VisitedNodes) - 1]

 state = True

 for (_,x) in G.edges(CurrentNode) :

 state1 = True

 for y in VisitedNodes :

 if x == y :

 state1 = False

 break

 if state1 :

 if state :

 nextNode = x

 state = False

 else:

 if (nearestLoopLength(G, VisitedNodes, x)[0] <

 nearestLoopLength(G, VisitedNodes, nextNode)[0]) :

 nextNode = x

 newNextNode = nextNode

 plannedLoopPath = nearestLoopLength(G, VisitedNodes, nextNode)[1]

 while True :

 shortestLoopPath = plannedLoopPath

 for (_,x) in G.edges(CurrentNode) :

 state1 = True

 for y in VisitedNodes :

 if x == y :

 state1 = False

 break

 if state1 and x != nextNode :

 if (currentDistanceTraveled(G, shortestLoopPath) >

 currentDistanceTraveled(G,

 moveTo(plannedLoopPath, len(VisitedNodes), x))) :

 shortestLoopPath = moveTo(plannedLoopPath,

 len(VisitedNodes), x)

 newNextNode = x

 plannedLoopPath = shortestLoopPath

 if nextNode == newNextNode :

 break

 else :

 nextNode = newNextNode

 return nextNode

Fig 19. Shortest Possible Hamiltonian Circuit using the

further improved Nearest Neighbor Algorithm

E. Discussion

Using the new and improved Nearest Neighbor algorithm,
The author was able to determine the most optimal route to
complete all three of the game’s storylines. However,
enhancing the Nearest Neighbor algorithm has significantly
increased its time complexity. The original NN algorithm has a
Big O notation of O(n²), where n represents the number of
nodes in the graph. Since the second version integrates the
original NN algorithm, it has an increased notation of O((n²)²)
or O(n⁴). And since the third version nests another process into
the nested loop, it has a notation of O((n² + n²)²) or O(n⁴).
Nonetheless, this is still far more efficient than using the brute-
force method, which has a notation of O(n!). The trade-off for
the increased time complexity is deeper analysis and
significantly better accuracy that the algorithm provides.

Another major factor in the algorithm’s attempt to find the

shortest possible path is L, or the level range in which decides

which badge the player will go for next. The L value used in

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

this paper is 7, which is the minimal value needed for there to

be at least one cycle. However, this value can always be

adjusted accordingly to the player’s skill, and can even lead to

an even shorter route than the one found in this paper.

IV. CONCLUSION

Using an approach based on the Traveling Salesman
Problem, the author has concluded that the optimal badge
collection route to take to complete all three of Pokémon
Scarlet and Violet’s storylines is as follows:

1. Stony Cliff Titan Badge (Node 2)

2. Artazon Gym Badge (Node 3)

3. Levincia Gym Badge (Node 6)

4. Lurking Steel Titan Badge (Node 8)

5. Navi Squad Star Badge (Node 10)

6. Segin Squad Star Badge (Node 5)

7. Cascarrafa Gym Badge (Node 9)

8. Medali Gym Badge (Node 11)

9. Montenevera Gym Badge (Node 12)

10. Glaseado Gym Badge (Node 15)

11. Cortondo Gym Badge (Node 1)

12. Alfornada Gym Badge (Node 14)

13. Open Sky Titan Badge (Node 4)

14. Quaking Earth Titan Badge (Node 13)

15. False Dragon Titan Badge (Node 17)

16. Ruchbah Squad Star Badge (Node 16)

17. Caph Squad Star Badge (Node 18)

18. Schedar Squad Star Badge (Node 7)

19. Path of Legends Completion (Node 19)
20. Victory Road and Starfall Street Completion (Node 0)

This leads to a route that has a total relative distance value

of 3568. In finding these results, the author was also able to

improve upon the Nearest Neighbor Algorithm used to solve

the TSP by finding its faults, such as:

1. The NN algorithm’s inability to see past one route

when other routes could lead to a shorter path/cycle
2. The second version of the author’s NN algorithm’s

inability to reanalyze the order of the current route
taken and whether it is truly the shortest route taken.

By enhancing the regular NNA, the author developed an

algorithm that provides a deeper and more accurate analysis of

the graph while also being significantly more efficient in terms

of time compared to a brute force algorithm.

V. APPENDIX

GitHub repository for the source code made for this research

paper:

https://github.com/BenedictD-RH/Badge-Collection-

Optimization-Using-an-Improved-NNA

Explanation of the research paper in video form:

https://youtu.be/luZBkQmU5y0

VI. ACKNOWLEDGEMENT

First of all, the author would like to give his deepest

gratitude to the Almighty God for giving him the health and

capacity to finish this paper and this semester. The author

would also like to thank Mr. Rinaldi Munir for his guidance

and teachings on Discrete Mathematics, which provided the

foundations for the concepts used in this paper.

VII. REFERENCE

[1] R. Munir, “Graf (Bagian 1),” Informatika STEI ITB, Bandung,
Indonesia. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf. [Accessed: Jun. 14, 2025].

[2] R. Munir, “Graf (Bagian 2),” Informatika STEI ITB, Bandung,
Indonesia. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-
Graf-Bagian2-2024.pdf. [Accessed: Jun. 14, 2025].

[3] W3Schools, “DSA The Traveling Salesman Problem”, W3Schools
[Online]. Available:
https://www.w3schools.com/dsa/dsa_ref_traveling_salesman.php.
[Accessed: Jun 15, 2025].

[4] Bulbagarden, “Badge”, Bulbapedia. [Online]. Available:
https://bulbapedia.bulbagarden.net/wiki/Badge. [Accessed: Jun 15,
2025]

STATEMENT

Hereby, I declare that this paper I have written is my own

work, not a reproduction or translation of someone else’s

paper, and not plagiarized.

Bandung, 20 June 2025

Benedict Darrel Setiwan

13524057

https://github.com/BenedictD-RH/Badge-Collection-Optimization-Using-an-Improved-NNA
https://github.com/BenedictD-RH/Badge-Collection-Optimization-Using-an-Improved-NNA
https://youtu.be/luZBkQmU5y0
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://www.w3schools.com/dsa/dsa_ref_traveling_salesman.php
https://bulbapedia.bulbagarden.net/wiki/Badge

