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Abstract—Social media platforms like X (formerly known as 

Twitter) indirectly support the formation of echo chambers 

through their algorithms. An echo chamber refers to a group of 

individuals who mostly interact only within their own group, 

typically with others who share the same opinions. As a result, 

their beliefs are reinforced, and they rarely receive input from 

outside perspectives. This paper presents an approach to detecting 

echo chambers on the X platform using weighted undirected graph 

theory, by identifying densely connected subgraphs with high 

interaction weights from interaction data. In this context, each 

node represents an individual account, each edge represents an 

interaction between users, and each edge weight represents the 

frequency of interactions between the two nodes. Echo chambers 

are modeled as weighted undirected subgraphs with high internal 

edge density and low external edge density. The result of this paper 

is the application of a community detection algorithm on synthetic 

interaction data to demonstrate the concept on the X platform. 

Keywords—echo chamber; graph theory; community detection 

algorithm; weighted undirected subgraph 

I.  INTRODUCTION 

Social media is a discussion platform that almost everyone 
in the world uses. Most social media algorithms show users 
content (such as FYP or recommended posts) based on what they 
have previously followed, liked, mentioned, or otherwise 
interacted with. This can lead to the formation of echo chambers, 
especially on platforms often used for discussion like X. 

An echo chamber is a group where people mostly interact 
with others who think the same way they do. Over time, this can 
strengthen their beliefs and reduce open discussion. 
Understanding and identifying echo chambers is important to 
see how conversations on social media grow, how strong 
opinions might become more extreme, and to prevent 
polarization that could lead to conflict. 

In this paper, we try to detect echo chambers using a 
weighted undirected subgraph approach. We represent social 
media as a weighted graph where each vertex is a user account, 
each edge represents an interaction such as a reply, mention, or 
retweet, and each edge weight represents the frequency of 
interactions between the two nodes (accounts), where the 
frequency increases by 1 each time node A and node B interact 
mutually.  

Echo chambers appear as tightly connected user groups in a 
weighted undirected subgraph, where internal connections have 

significantly higher interaction frequencies compared to 
connections outside the group. This reflects how users tend to 
engage more often with others who share similar views rather 
than with people outside their group who hold different 
opinions, forming isolated clusters. To demonstrate this concept, 
we apply a community detection algorithm approach on 
synthetic interaction data, finding subgraphs with high internal 
interaction density and analyzing the distribution of edge 
weights directed inward to the group compared to those 
extending outward from the group. 

 

Figure 1. Echo chamber representation in a graph 

This introduction explains the basic idea of how we use 
graph-based detection to find possible echo chambers in online 
social networks, specifically in the context of X (Twitter). 

II. GRAPH THEORY 

Graph is a mathematical structure used to model pairwise 
relations between objects. It consists of two primary 
components: vertices (also called nodes) and edges (also called 
links). A graph 𝐺 can be defined as an ordered pair (𝑉, 𝐸) where 
𝑉 is a set of vertices and 𝐸 is a set of edges, where each edge is 
a pair of vertices from 𝑉.  

A. Basic Concepts in Graph Theory 

Some basic ideas in graph theory are vertices, edges, and 
loops. 

• Vertex or Node 

A vertex (also called a node or junction) is a point in a graph 
where edges meet or connect. In graph theory, it is one of the 
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main parts that make up a graph. Vertices can be connected to 
each other by edges, and they are usually labeled with letters, 
numbers, or a mix of both. 

• Edge or Links 

In graph theory, an edge is a line that connects two vertices, 
forming a link between them. A vertex can have multiple edges, 
but each edge must connect a starting vertex to an ending vertex 
to be valid. Edges can be directed, meaning they have a specific 
direction, or undirected, meaning they do not. They are also 
commonly called lines, branches, arcs, or links. When two 
directed edges exist between the same pair of vertices in 
opposite directions, it is like having one undirected edge. Edges 
are essential in mathematics for connecting vertices and building 
relationships in a graph. 

 

Figure 2. Vertex and edge in a graph 

https://www.mathsisfun.com/sets/graph-theory.html 

• Multiple Edges 

In graph theory, multiple edges — also called parallel edges 
— are two or more edges that link the same pair of vertices. A 
graph that permits more than one edge between the same two 
vertices is known as a multigraph. 

 

Figure 3. Multi-graph 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf 

• Loop 

A loop is a special kind of edge in a graph where both ends 
connect to the same vertex. In other words, when an edge begins 
and ends at the same point, it is called a loop. 

 

Figure 4. Loop in a graph 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf 

B. Types of Graphs 

Graph theory includes several kinds of graphs, such as null 
graphs, trivial graphs, simple graphs, undirected graphs, directed 
graphs, weighted graphs, complete graphs, and bipartite graphs. 

• Null Graph 

A null graph (or empty graph) is a graph that contains one or 
more vertices but has no edges at all. In other words, while the 
vertex set 𝑉 is not empty, the edge set 𝐸 is completely empty. 

For example, a null graph with four vertices would have: 

Vertex set 𝑉: {𝐴, 𝐵, 𝐶, 𝐷}, Edge set 𝐸: {} or ∅ 

 Since there are no edges, each vertex in a null graph has a 
degree of zero. 

 

Figure 5. Null graph 

https://educativesite.com/line-graph-empty-graph/ 

• Trivial Graph 

A trivial graph is the most basic form of a graph, containing 
only a single vertex and no edges.  

For instance, in a trivial graph: 

Vertex set 𝑉: {𝐴}, Edge set 𝐸: {} or ∅ 

• Simple Graph 

A simple graph is a graph where each pair of vertices is 
connected by at most one edge, and no vertex is connected to 
itself. In other words, it contains no loops or multiple edges 
between the same pair of vertices.  

For example, a simple graph with four vertices may have, 

Vertex set 𝑉: {𝐴, 𝐵, 𝐶, 𝐷}, Edge set 𝐸: 
{{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐵, 𝐷}, {𝐶, 𝐷}} 

 

Figure 6. Simple Graph 

https://www.mathsisfun.com/sets/graph-theory.html
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
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• Undirected Graph 

An undirected graph is a graph where the edges do not have 
a specific direction. This implies that the connection between 
two linked vertices goes both ways. In such graphs, the edge 
(𝑢, 𝑣) is considered the same as (𝑣, 𝑢), indicating a mutual 
relationship between the vertices. 

• Directed Graph 

A directed graph, or digraph, is a graph in which each edge 
has a specific direction. This means every edge goes from a 
source vertex to a destination vertex, showing a one-way 
connection between the two vertices. 

 

Figure 7. Directed and undirected graph 

https://cs226fa21.github.io/notes/26-graph/step05.html 

 

• Weighted Graphs 

A weighted graph is a graph where each edge carries a 
numerical value called a weight or cost. These weights can 
represent things like distance, expense, capacity, or other 
measures that describe the strength or significance of the 
connection between vertices.  

For example a weighted graph with four vertices, 

Vertex set 𝑉: {𝐴, 𝐵, 𝐶, 𝐷}, Edge set 𝐸: 
{(𝐴, 𝐵, 4), (𝐴, 𝐶, 10), (𝐴, 𝐷, 2), (𝐶, 𝐵, 4)} 

 
Figure 8. Weighted and unweighted graph 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf 

 

• Complete Graph 

A graph is called complete if every vertex is connected to 
every other vertex in the graph. In other words, all possible edges 
between vertices are present. A complete graph with 𝑛 vertices 
is usually denoted as 𝐾𝑛.  

 
Figure 9. Complete graph 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf 

• Bipartite Graphs 

A bipartite graph is a graph in which the vertices can be split 
into two separate groups, where no vertices within the same 
group are directly connected. This means that each edge 
connects a vertex from one group to a vertex in the other group. 

For example a bipartite graph with vertex sets, 

Vertex set 𝑉1: {𝐴, 𝐵}, Vertex set 𝑉2: {𝐶, 𝐷, 𝐸}  

Edge set 𝐸: {{𝐴, 𝐶}, {𝐵, 𝐶}, {𝐴, 𝐷}, {𝐵, 𝐸}} 

 

Figure 10. Bipartite graph 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf 

 

• Cycle Graph 

A cycle graph, sometimes called a circular graph, is a graph 
that forms one continuous loop. In this graph, every vertex is 
connected to exactly two other vertices, resulting in a closed 
circular path. 

 

Figure 11. Cycle graph 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf 

 

C. Representations of Graphs 

Besides using graphical form, graphs can also be 

represented in other important ways, such as adjacency matrix, 

adjacency list, and incidence matrix. 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
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• Adjacency Matrix 

An adjacency matrix is a method to represent a graph using 
a two-dimensional array of size 𝑛 × 𝑛, where 𝑛 is the number of 
vertices. Each element 𝑎[𝑖][𝑗] in the matrix shows whether an 
edge exists between vertex 𝑖 and vertex 𝑗. In the case of weighted 
graphs, the matrix entry can hold the weight of the edge instead 
of just 0 or 1.  

For example an undirected graph with four vertices, 

Vertex set 𝑉 = {1, 2, 3, 4} 

Edge set 𝐸 = {(1, 3), (2, 3), (4, 3), (1, 2), (4, 2)} 

 

Figure 12. Example four vertices graph for adjacency matrix 

and adjacency list 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf 

 

The adjacency matrix for Figure 12 graph is: 

 

Table 1. Adjacency matrix 

 𝑣1 𝑣2 𝑣3 𝑣4 

𝑣1 0 1 1 0 

𝑣2 1 0 1 1 

𝑣3 1 1 0 1 

𝑣4 0 1 1 0 

 

• Adjacency List 

An adjacency list represents a graph by storing, for each 
vertex, a list of the other vertices it is connected to. This method 
is especially efficient for sparse graphs, where the total number 
of edges is significantly lower than the square of the number of 
vertices.  

The adjacency list representation for Figure 12 graph is: 

Vertex Adjacent Vertices 

1 2, 3 

2 1, 3, 4 

3 1, 2, 4 

4 2, 3 

 

• Incidence Matrix 

An incidence matrix is a type of graph representation that 
displays the connection between vertices and edges. It uses a 
two-dimensional array of size 𝑛 × 𝑚, where 𝑛 is the number of 
vertices and 𝑚 is the number of edges. Each entry in the matrix 
indicates whether a particular vertex is connected to a specific 
edge.  

The incidence matrix for Figure 12 graph is: 

Table 2. Incidence matrix 

Vertex / 
Edge 

𝑒1  

(1, 2) 

𝑒2 

(1, 3) 

𝑒3 

(3, 4) 

𝑒4 

(2, 3) 

𝑒5 

(2, 4) 

1 1 1 0 0 0 

2 1 0 0 1 1 

3 0 1 1 1 0 

4 0 0 1 0 1 

 

D. Community Detection and Modularity Optimization 

Community detection in graph theory refers to the task of 
identifying groups of nodes that are more densely connected to 
each other than to the rest of the network. In online social 
networks, these communities often reflect real-world social 
clusters, such as groups of friends, interest-based communities, 
or ideological echo chambers.  

A common approach for detecting such communities is 
based on modularity optimization. In the weighted version of 
modularity, which is more suitable for social interaction data, 
edge weights reflect the strength of relationships (e.g., 
frequency or intensity of interaction). The modularity function 
measures how much the actual distribution of edge weights 
within communities deviates from a random distribution with 
the same node strengths. 

The modularity value 𝑄 for a weighted graph is defined as: 

𝑄 =
1

2𝑚
 ∑ [𝐴𝑖𝑗 −

𝑠𝑖𝑠𝑗

2𝑤
]

𝑖,𝑗

𝛿(𝑐𝑖 , 𝑐𝑗) 

Where: 

• 𝐴𝑖𝑗 is the weight of the edge between node 𝑖 and 

node 𝑗, 

• 𝑠𝑖 and 𝑠𝑗 are the strengths of nodes 𝑖 and 𝑗, i.e., the 

sum of their incident edge weights, 

• 𝑤 is the total weight of all edges in the network, 

• 𝛿(𝑐𝑖 , 𝑐𝑗) equals 1 if nodes 𝑖 and 𝑗 are in the same 

community, and 0 otherwise. 

A higher modularity score indicates that more edge weight 
falls within communities than would be expected by chance, 
suggesting a strong community structure. 

One efficient algorithm that uses this approach is the Fast-
Greedy Modularity Optimization algorithm. It begins by 
assigning each node to its own community and then iteratively 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
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merges communities in a way that increases the overall 
modularity score, until no further improvement is possible. This 
method is computationally efficient and suitable for large-scale 
social networks.  

In this study, we apply this approach to identify groups of 
users who interact more frequently within their own group than 
with others, which is a typical pattern observed in echo chambers 
on social media platforms. 

III. METHODOLOGY 

A. Data Modelling 

In this study, a synthetic dataset was constructed to simulate 
interaction patterns typically found in echo chambers. Each node 
represents a user, and each edge represents mutual interaction 
between users. The weight of an edge indicates the frequency or 
intensity of the interaction. Internal connections within 
communities are stronger (higher weights) than external 
connections. 

We used two datasets: 

• Data 1, strong internal interactions representing a 
synthetic echo chamber. 

• Data 2, randomized connections to simulate a weak 
or flat social network structure. 

B. Graph Construction 

Let’s say we have a set of interaction data defined as a list of 
weighted edges, where each edge is represented by a tuple 
(𝑢, 𝑣, 𝑤) with 𝑢 and 𝑣 being the interacting users and 𝑤 the 
interaction weight. An example of such strong echo chamber is 
shown in Figure 13 and weak echo chamber is shown in Figure 
14. 

 
 

Figure 13. Synthetic data 1 strong community data using 

python 

 
 

Figure 14. Synthetic data 2 weak community data using 

python 

In this study, we used Python along with several libraries to 

construct and visualize the graph. The networkx library was 

used for creating and manipulating the graph structure, 

matplotlib.pyplot for visualizing the network, and 

community (also known as community_louvain) to 

apply the Louvain method for modularity-based community 

detection. 

 

 
 

Figure 15. Python libraries used for graph visualization and 

community detection. 

To make echo chamber detection more reliable, each edge 
between nodes A and B represents a single mutual interaction. 
For example, in Figure 16, the connection between A and B on 
platform X means they both replied to each other, and this 
interaction is counted once as the edge’s weight. This also helps 
filter out one-sided interactions and keeps the analysis focused 
on actual two-way communication. Additionally, passive 
interactions such as likes and shares were not included as edge 
weights, as they do not reflect active reciprocal engagement. 

 
 

Figure 16. Example of a mutual interaction between two 

users, counted one as the edge’s weight. 

C. Community Detection 

To identify echo chambers, we applied modularity-based 

community detection using the Louvain method, implemented 

in the community package (community-louvain). This 

method iteratively optimizes modularity by grouping nodes 

into communities with dense internal connections. 

 

 
 

Figure 17. Community detection using python library 
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Figure 18. Modularity score 

D. Visualization 

We visualized the resulting graph and its detected 

communities using a spring layout, where node positions are 

influenced by interaction strengths. Node colors represent the 

communities assigned through modularity optimization. 

 

In addition, we also created a separate visualization of the 

graph without applying community detection, using a 

random layout to display the raw structure of the network. This 

provides a baseline view of the graph before modularity-based 

clustering is applied. 

E. Assumptions 

• Only mutual (two-way) interactions were considered 

meaningful and assigned as one edge. 

• Edge weights were set higher for intra-community 

interactions and lower for cross-community 

interactions. 

• Self-loops and isolated nodes were excluded from the 

graph. 

• Passive interactions (e.g., likes and shares) were not 

included in the edge weights. 

IV. RESULT AND DISCUSSION 

A. Graph Visualization Without Community Detection 

To begin, we visualized both graphs using a random layout 
without applying any community detection algorithm. In this 
form, all nodes and edges are displayed without grouping or 
color differentiation, making it difficult to identify any distinct 
communities or interaction patterns by eye. This visualization is 
shown in Figure 19 (data 1 strong echo chamber) and Figure 20 
(data 2 strong echo chamber). 

 

Figure 19.  Synthetic Data 1 Strong Echo Chamber Network 

(No Community Detection) 

 
 

Figure 20. Synthetic Data 2 Weak Echo Chamber Network 

(No Community Detection) 

B. Community Detection Result 

After applying the Louvain community detection 
algorithm to both graphs, the differences became evident. The 
first dataset (echo chamber) produced well-defined 
communities, where nodes interacted mostly within their own 
group. This is illustrated in Figure 21, where distinct color-coded 
clusters emerge, each representing a potential echo chamber. 

In contrast, the second dataset produced blurry or 
overlapping community structures, reflecting a lower 
modularity score and less clearly separated clusters (see Figure 
22). This confirms that dense intra-group connections are a 
strong indicator of echo chamber formation, whereas more 
distributed or random interactions lead to weaker community 
structures. 

 

Figure 21. Detecting Echo Chamber Communities via 

Modularity Optimization (Strong Echo Chamber Dataset) 
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Figure 22. Detecting Echo Chamber Communities via 

Modularity Optimization (Weak Echo Chamber Dataset) 

C. Modularity Score 

To quantitatively evaluate the strength of community 
structure in both graphs, we calculated their modularity scores 
using the Louvain method. The modularity score reflects how 
well the graph is divided into communities, where higher values 
indicate denser intra-community connections and sparser inter-
community links. 

• Data 1 Echo Chamber Graph 

 

Figure 23. Modularity score data 1 (strong echo chamber) 

Modularity Score = 0.5991. 

 This high score suggests a strong community structure, 
consistent with the graph's design—each group has tight 
internal interactions and only a few weak connections to 
other groups. 

• Data 2 Weak Community Graph 

 

Figure 24. Modularity score data 1 (weak echo chamber) 

Modularity Score = 0.2926. 

 This lower score indicates weaker community 
boundaries. The interactions are more evenly spread, and the 
detected clusters are less distinct, meaning the network lacks 
clear separation into echo chambers. 

These results support the hypothesis that echo chambers can 
be identified through high modularity values, representing 
socially clustered structures with limited external 
communication. 

V. CONCLUSION 

A. Research Conclusion 

This study aimed to detect echo chambers in a social network 
using a graph-based approach, specifically modularity 
optimization via the Louvain algorithm. By constructing two 
synthetic datasets — one with strong intra-community 
interactions and another with weak or random connections — 
we were able to compare how graph structure affects community 
detection. 

The results showed that the graph with stronger internal 
connections yielded a higher modularity score (0.5991) and 
clearer community separation, which aligns with the 
characteristics of an echo chamber. Meanwhile, the graph with 
weaker or distributed interactions had a lower modularity score 
(0.2926), indicating less defined communities. These findings 
demonstrate that modularity is a useful metric in identifying 
echo chamber-like structures within social graphs. 

Visualizations further supported these findings by showing 
compact, well-separated clusters in the strong community graph 
and loosely connected groups in the weak community graph. 

B. Limitiations 

While the results support the effectiveness of modularity-

based community detection for identifying potential echo 

chambers, several limitations remain: 

 

• Synthetic Dataset: The networks used in this 

study were artificially constructed to simulate echo 

chamber behavior. Although useful for illustrating 

the method, they may not fully capture the 

complexity and unpredictability of real-world 

social interactions. 

• Interaction Assumptions: Only mutual (two-

way) interactions were considered meaningful. 

Passive actions such as likes or shares were 

excluded from edge weights. As a result, some 

subtle influence patterns might be overlooked. 

• Simplified Edge Weights: Edge weights were 

assigned based on assumed interaction intensity, 

not from actual frequency or content of interaction. 

• Echo Chamber ≠ Closed Mindset: High internal 

interaction within a community does not always 

imply a closed mindset. Individuals might 

frequently communicate within a group simply due 

to shared interests or friendships, without 

necessarily rejecting outside perspectives. 

Therefore, structural patterns alone cannot fully 

capture ideological rigidity, and further 

qualitative analysis would be needed to confirm 

the presence of echo chamber behavior. 

C. Future Research Opportunities 

Several directions can be pursued to enhance and expand 

this research: 

• Real-World Dataset Integration: Future studies can 

apply this method to large-scale social media datasets 
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(e.g., Twitter, Reddit, or Facebook public data) to 

validate its effectiveness in real environments. 

• Temporal Graph Analysis: Including the dimension 

of time can help observe how echo chambers evolve 

over time. 

• Interaction Type Classification: Differentiating 

between types of interactions (e.g., agreement, 

disagreement, sarcasm) can offer deeper insight into 

community dynamics. 

• Comparison with Other Algorithms: Testing and 

comparing other community detection methods, such 

as Girvan–Newman or label propagation, may provide 

complementary perspectives. 

VIDEO LINK AT YOUTUBE 

https://youtu.be/fXtCmtyZ4hI 

SOURCE CODE AND GRAPH IMAGES 

https://github.com/MHarisPutraS/Makalah-Matdis.git 
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