
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Tour Optimization in ITB Campus of Jatinangor

Using Implementation of Chinese Postman Problem

Josh Reinhart Zidik - 13524048

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: joshr1710@gmail.com , 13524048@std.stei.itb.ac.id

Abstract—Campus tour is a common event to take place

during new student orientation, usually its participants are

divided into several groups guided by few tour guides. However,

most campus is not designed with touring in mind, some groups

will have to take the exact same route twice and at the same time

colliding with another group. One such example is the ITB

campus of Jatinangor which contains a lot of intersections and

dead-ends. This paper explores inside the application of graph

theory, specifically the Chinese Postman Problem, to optimize

campus tour routes and minimize redundancy. We aim to

identify the most efficient paths for campus tour in order to

improve the overall experience and reduce congestion.

Keywords—Campus Tour, Graph Theory, Chinese Postman

Problem

I. INTRODUCTION

Campus tour is an essential part to introduce the
environment of a campus to new people, whether during
student orientation or campus promotional program.
Commonly, a campus tour isn’t done with every participants in
a single group, but instead divided into a number of groups
with a tour guide leading it.

The goal of campus tour is to introduce every part of the
campus to new people or students. In order to reach this goal
effectively, a tour group must take every single route only
once. It is to prevent a group from taking the same route twice,
colliding with another group during its tour, or missing a spot
to visit. Even though a tour can conclude in many endpoints, it
is preferable to end in the same place as the starting point. This
lets tour guides to be able to efficiently prepare and lead the
next group.

At Institut Teknologi Bandung (ITB), the student
organization Kabinet Mahasiswa hosts an annual orientation
event known as Orientasi Studi Keluarga Mahasiswa (OSKM).
The event lasts for about less than a week and mainly consists
of new college students orientation which includes a campus
tour inside the ITB campus of Jatinangor. In this context, it is
crucial that all tour groups start and end at the same location, as
the campus tour is directly followed by another orientation
activities.

Since it is unlikely for a tour group to take exactly all route
once in ITB Jatinangor campus, then some groups must take
several routes twice. To find the most efficient route each

group must take, this paper will implement the use of graph
theory specifically on the Chinese Postman Problem (CPP).

II. THEORETICAL BASIS

A. Graph Definition

A graph can be defined as a mathematical representation of
a set of points (vertices) and the connections (edges) between
them. A graph must have vertices, meaning that an empty set
of points can’t be defined as a graph. However, a graph may
have no edges, meaning that an empty set of edges is allowed
inside a graph [1].

B. Graph Terminology

1) Adjacency
Two vertices are adjacent to each other if both are

connected with the same edge.

2) Incidency
A vertex is incident to an edge if the edge is connected to

the vertex.

3) Degrees
Degree of a vertex is the number of edges which is

connected to the vertex.

4) Isolated Vertex
An isolated vertex is a vertex that doesn’t have any edges

connected to it. An isolated vertex can also be defined as the
vertex with 0 degree.

5) Path
A path is an alternating sequence of vertices and edges

which starts from a vertex to another vertex.

6) Cycle or Circuit
Cycle is a path that starts and ends in the same vertex. As

an example, on figure 1 a path that consists of vertices 3 – 2 – 1
– 0 – 6 – 3 is a circuit because it starts and ends in vertex 3. [2]

mailto:joshr1710@gmail.com
mailto:author@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 1. An unweighted and undirected graph

Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf, accessed on: 20 Jun. 2025

7) Weighted Graph
A weighted graph is a graph which has weight in every

edges.

Fig. 2. An example of weighted graph
Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf, accessed on: 20 Jun. 2025

C. Euler Circuit and Eulerian Graph

Euler circuit is a circuit of a graph that passes through every
edges inside said graph. While Eulerian graph is a graph that
contains a Euler circuit. The theorem was first introduced when
Euler solved the problem of the Seven Bridges of Konigsberg.
The problem was to find a path through the city that will cross
every bridge at once. [3]

Fig. 3. The Seven Bridges of Konigsberg problem

Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-

Graf-Bagian3-2024.pdf, accessed on: 20 Jun. 2025

A graph must exactly only has even degrees in order to be
Eulerian. This theorem comes from the fact that for every
vertices, there should be n connected edges that goes inward
and n connected edges that goes outward. If there exists at least

a pair of vertices that has odd degrees, then the graph will not
have a Euler circuit.

D. Chinese Postman Problem

Chinese Postman Problem (CPP) is a subtopic of graph
theory found by a mathematician called Kuan Mei-Ko. The
premise of the problem involves finding the minimum distance
needed from a ciruit to travel every edges of the graph at least
once. [4]

The algorithm to solve CPP involves these steps:

• Calculate the degree from every vertices, if there is no
vertex with odd degree then the graph is Eulerian, return the
sum of every weight inside the graph. However if there is one
or more pairs of odd degree vertices, do the following steps.

• Search for every vertices with odd amount of degrees.

• List every possible pair of odd vertices.

• From the list, select several pairs which doesn’t contain
the same vertices inside to create a set of pairs.

• Calculate the shortest distance between every pair
inside the set chosen earlier.

• Repeat step number 4 and 5 until the shortest distance
possible from a set of pair is determined.

• Modify the graph by adding edges based on the set of
pair determined in previous step.

With these steps, an Eulerian graph can be crafted out of a
non-Eulerian graph. Thus, creating a graph that contains a
Euler circuit which the sum of all edges is the solution of CPP
[4].

III. ALGORITHM

This section discusses the implementation of the CPP
algorithm using Dijkstra’s algorithm to find the shortest path
between two vertices. However, since Dijkstra’s algorithm is
not the primary focus of this paper, its implementation will not
be included in this section. The CPP algorithm presented in this
section is adapted from reference [5] with several
modifications to fit our study case.

A. Initialize Graph

The first step of the algorithm is to create an undirected
weighted graph using adjancency list. The row and column of
the list represents a pair of vertices that is connected by an
edge, while the value inside the list is the weight of the edge.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 4. A python function to create a graph based on adjacency list

B. Search For All Odd Vertices

Next step, the algorithm checks if there exists an odd
vertices inside the graph. If there is no odd vertices, then the
graph is Eulerian and the program will return the sum of all
weights. Otherwise, the odd vertices will be appended inside
the array odds which will be used for CPP algorithm.

Fig. 5. A python function to find all odd vertices from a graph

Fig. 6. An implementation of CPP if the graph is Eulerian

C. Generate All Odd Vertices Pair Combinations

All vertices with odd degrees are paired to find out the
combination with the shortest sum of distance. Therefore, the
program generates all possible pairing combinations using a
nested loop.

Fig. 7. A python function to generate every possible pairings of odd vertices

Fig. 8. The example result of the function above

D. Search For The Pair Combination With Minimum Weight

After generating all possible pairing combinations, the
program selects n / 2 pairs where n is the number of vertices
with odd degree. Using Dijkstra’s algorithm it will determine
the shortest distance between each pair. This process will be
iterated through all valid combinations, where a combination is
valid if no vertex appears in more than one pair. As an
example, the pairs (1-2) and (3-4) are valid, but pairs (1-3) and
(3-4) are not because vertex 3 appears in both. After the
iteration process is done, the selection with the minimum
weight or shortest distance will be picked as the solution to
CPP.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 9. The algorithm to solve CPP by creating several sets of vertices pairs

Fig. 10. A python function to determine the set of pairs with shortest distance

The function minAdditional is added so the program will
look for the set of pairs with shortest distance. The chosen set
of pairs later will be used as the solve the CPP.

The line print(minPairs) in the code will print out the pair
of vertices with minimum additional weight. This output will
be our guide to add new edges inside the graph to make it
Eulerian, hence solving the CPP.

IV. IMPLEMENTATION

A. Map Simplification into Weighted Graphs

First, the map of ITB campus of Jatinangor must be
simplified into a weighted graph in order to correctly choose
the path.

Fig. 11. Map of the ITB Jatinangor campus

Source: https://x.com/oskmitb/status/1687787144201596928, accessed on: 18

Jun. 2025

The layout of the ITB Jatinangor campus can be
categorized into two separate networks: transportation routes
and pedestrian pathways primarily used by students.

We begin by simplifying the transportation routes,
representing each road as an edge, each intersection as a vertex,
and each distance as the weight in the graph. This
simplification focuses only on routes that pass through the
campus’s main facilities. Therefore, smaller routes leading to
parking areas such as building 22 and 24 are excluded. Using
yFiles Graph Editor, we constructed an undirected weighted
graph consisting of 11 vertices and 14 edges.

https://x.com/oskmitb/status/1687787144201596928

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 12. The transportation route of ITB Jatinangor campus simplified into a

graph

We also simplify the pedestrian pathways for the main
campus tour with similar technique for transportation route.
Using yFiles Graph Editor, we constructed an undirected
weighted graph consisting of 11 vertices and 17 edges.

Fig. 13. Layout of the inner ITB Jatinangor campus

Fig. 14. Layout of the inner ITB Jatinangor campus’ main route highlighted
Source: https://x.com/oskmitb/status/1687787144201596928, accessed on: 18

Jun. 2025

Fig. 15. Inner layout of ITB Jatinangor campus simplified into a graph

B. Program Implementation

First, the graph’s data is converted to a table in order to fit
the program’s format. The column consists of a pair of vertices
connected by an edge and the weight value of the edge. Table I
shows every edges inside the graph of transportation route,
while Table II shows every edges inside the graph of pedestrian
pathway route.

TABLE I. TRANSPORTATION ROUTE EDGES

 Node 1 Node 2 Weight

1 1 2 180

2 2 3 160

3 2 4 700

4 3 4 230

5 3 10 260

6 4 5 310

7 5 6 190

8 5 7 250

9 6 7 60

10 6 8 50

11 7 8 150

12 8 9 130

13 9 10 190

14 10 11 260

https://x.com/oskmitb/status/1687787144201596928

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

TABLE II. PEDESTRIAN PATHWAYS EDGES

 Node 1 Node 2 Weight

1 1 2 90

2 1 7 110

3 1 8 280

4 2 3 30

5 2 6 110

6 3 4 130

7 3 4 220

8 4 5 50

9 5 6 140

10 5 10 100

11 6 7 90

12 6 9 170

13 7 8 110

14 8 11 290

15 9 10 70

16 9 11 90

17 10 11 160

Next, the data for both the first and second graph is inputted
inside the program made earlier. The result of the program is a
list of vertices pairs which is needed to be traversed twice to
solve the CPP. Using said list, we can add new edges into the
graph to make it Eulerian with the minimum additional weight.

Fig. 16. The result for the transportation route graph showing a set of vertices

pairs needed to solve the CPP

Fig. 17. Modified transportation route graph based on the result from previous

figure

There are six new edges to the graph based on the solution
offered by the program. Edges with blue colored weight are the
new edges as the solution to the CPP. Since the program only
outputs pairs of vertices, the actual path for each new edge
must be determined manually. As an example, one of the pairs
is the pair of vertices 7 and 8, even though there exists a direct
edge connecting them, the chosen edges are the ones passing
through vertex 6 because of the lower total distance.

Even though this transportation route is not part of the main
tour, it can also help for drivers who hope to make a tour inside
ITB Jatinangor campus using transportation. The modified
graph can help drivers efficiently safe energy and tour every
possible facilities.

Fig. 18. The result for the pedestrian pathways graph showing a set of vertices

pairs needed to solve the CPP

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig. 19. Modified graph of pedestrian pathways based on the result of

previous figure

 By connecting the pair of vertices with new edges, we have
successfully added eight new edges into the graph. Edges with
blue colored weight are the new edges as the solution to the
CPP. The edge between vertices 6 and 7 is added twice because
it is part of the route between vertices pair 5-7 and 8-9.

 Every edges now have even number of degree, which
makes the graph Eulerian. Since the graph is Eulerian, a group
can walk through every edges and return at the same point.
With this, a tour can be done efficiently with the same starting
and ending point.

V. CONCLUSION

This study implements the use of Eulerian graph to make a
tour route that can visit every single facility in a campus. By
solving the Chinese Postman Problem on the graph, an Euler
circuit can be crafted inside the graph using the minimum
amount of weight. However, since Chinese Postman Problem
only determines the minimum weight needed, we modified the
algorithm to instead outputs several pairs of vertices. The pairs
of vertices are later used to determine new edges to solve
Chinese Postman Problem. The result of this modified
algorithm is six new edges on the first graph, which represents
transportation route around ITB Jatinangor campus and also
eight new edges on the second graph, which represents
pedestrian pathway inside the ITB Jatinangor campus.

Using this modified graph, we hope that future tours can
use it as a guide to tour efficiently through the entire campus.
We also hope that the modified algorithms crafted for this case
can also be used for other cases, especially one that involves
the crafting of an Eulerian graph.

VI. APPENDIX

Github Repository

https://github.com/Achideon/MakalahMatdisCPP

VII. ACKNOWLEDGMENT

The author of this paper would like to express his gratitude
to God for His blessings that help the writing of this paper. The
author would also like to express his gratitude to his parents
and family who have been supportive during author’s study in
the college and also during the writing of this paper.
Additionally, the author would like to thank the lecturer Arrival
Dwi Sentosa, S.Kom., M.T. for all the subject he has taught the
author during the second semester. Last but not least, the
author would like to express his deepest gratitude to his friends
who’s always around him during the brightest or even the
darkest of times.

VIII. REFERENCES

[1] Wilson, Robin J. “Introduction to Graph Theory”, 4th edition

[2] https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf, [Accessed: 20 Jun.2025]

[3] S. Manoneet Mahesh, “Euler Graphs and Euler Circuits” available
online: https://medium.com/@manoneetsikhwal2k1/euler-graphs-and-
euler-circuits-a54e1f9d2140, [Accessed: 20 Jun. 2025].

[4] C. Gautam, “The Chinese Postman Problem” available online:
https://medium.com/@gautamsir076/the-chinese-postman-problem-
2760799a2b4a, [Accessed: 20 Jun. 2025].

[5] S. Araz, “Chinese Postman in Python” available online:
https://towardsdatascience.com/chinese-postman-in-python-
8b1187a3e5a, [Accessed: 19 Jun. 2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Juni 2025

Josh Reinhart Zidik

https://github.com/Achideon/MakalahMatdisCPP
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://medium.com/@manoneetsikhwal2k1/euler-graphs-and-euler-circuits-a54e1f9d2140
https://medium.com/@manoneetsikhwal2k1/euler-graphs-and-euler-circuits-a54e1f9d2140
https://medium.com/@gautamsir076/the-chinese-postman-problem-2760799a2b4a
https://medium.com/@gautamsir076/the-chinese-postman-problem-2760799a2b4a
https://towardsdatascience.com/chinese-postman-in-python-8b1187a3e5a
https://towardsdatascience.com/chinese-postman-in-python-8b1187a3e5a

