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Abstract— This paper addresses the challenge of efficiently 

handling dynamic data operations, such as searching, deleting, 

and insertion, within tree-based data structures, specifically 

focusing on self-balancing binary search trees. The problem lies 

in understanding the trade-offs between different self-balancing 

algorithms to select the most suitable one for various workloads. 

The method employed involves a theoretical analysis and 

practical evaluation of two prominent self-balancing binary 

search tree algorithms: Red-Black Trees and AVL Trees. The 

paper compares their structural properties, balancing strategies, 

and operational efficiencies, particularly focusing on insertion, 

deletion, and search operations. The purpose of this paper is to 

provide a comprehensive understanding of the efficiency and 

complexity trade-offs between Red-Black Trees and AVL Trees.  

Keywords—AVL Tree, Red-Black Tree, Binary Seacrh Tree. 

I.  INTRODUCTION  

In the world of data structures, trees play a crucial role due 
to their accessibility in efficiently and hierarchically handling 
data. While other data structures like arrays, linked list, or hash 
tables offer various functionalities, trees hold a highly 
significant position in data structures due to their proficiency in 
hierarchical and efficient data management. Getting into the 
details, self-balancing binary search trees stand out by 
addressing efficiency concerns in dynamic operations like 
searching, deleting, and insertion, solidifying trees role as a 
primary foundation in numerous modern computer 
applications.  

There are various types of algorithms that operate on binary 
search trees, with Red-Black Trees and AVL Trees being two 
of the most well-known. While these two algorithms share 
many similarities, they also have significant differences in how 
they maintain balance and handle operations. AVL Trees 
maintain a stricter balance by ensuring that the height 
difference between the left and right subtrees does not exceed 
one. This tight control often leads to quicker search times, but 
may require more frequent rebalancing. On the other hand, 
Red-Black Trees apply specific coloring rules to maintain a 
looser balance, which typically results in faster insertions and 
deletions due to fewer rotations. 

This paper examines the trade-offs in efficiency and 
complexity between Red-Black Trees and AVL Trees through 
both theoretical analysis and practical evaluation. By 
comparing their structural properties and balancing strategies, 

the paper aims to identify which tree structure is better suited 
for various workloads and applications scenarios. A thorough 
understanding of these differences is essential for developers, 
students who want to study these two algorithms for their 
projects, and computer scientists in selecting the most 
appropriate data structure to achieve optimal performance. 

 

 

Figure 1.1 Binary Search Tree, AVL Tree, Red-Black 
Tree 

(DeepDiveIntoBinary) 

II. THEORETICAL BASIS 

A. Definition and Components of Tree 

A tree can be understood as an undirected graph that 
contains two crucial properties: it is entirely connected, and it 
contains no circuits. Therefore, the defining characteristics of a 
tree are its undirected nature, its connectivity, and the absence 
of any cycles within in structures. Rooted tree is a tree which a 
single node is chosen as the root, and its edges are given 
direction, transforming it into a directed graph. 
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Figure 2.1 Rooted Tree 

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/202
4-2025/23-Pohon-Bag1-2024.pdf) 

There are several terms or terminologies regarding trees 
that one must understand to comprehend Binary Search Trees. 
These terminologies are: 

 

Figure 2.2 Basic Terminologies In Tree 

(https://www.geeksforgeeks.org/introduction-to-tree-
data-structure/) 

1. Parent Node : The nod which is an immediate 
predecessor of a node is called the parent of that node. 
Example: B is the parent node of D and E 

2. Child Node : The node which is the immediate 
successor of a node is called the child node of that 
node. Example: D and E are the child nodes of B. 

3. Root Node : The topmost node of a tree or the 
noed which does not have any parent node is called the 
root node. Referring to the figure above, A is the root 
node. 

4. Leaf Node : The nodes which do not have any 
child nodes. Example: I,J,K,F,G, and H are the leaf 
nodes of the tree. 

5. Sibling  : Children of the same parent node. 
Example: D and E are called siblings. 

6. Ancestor of a node : Any prodecessor nodes on the path 
of the root to that node. Example: A and B are the 
ancestor nodes of the node E. 

7. Descendant : A node x is a descendant of 
another node y if and only if y is an ancestor of x. 

8. Level of a node : The count of edges on the path 
from the root node to that node. The root node, {A}, 
has level 0. 

9. Internal Node : A node with at least one child. 

10. Subtree  : Any node of the tree along with its 
descendant.  

B. Binary Search Tree 

 A Binary Search Tree (BST) is a fundamental data 
structure in computer science used to organize and store 
data in a sorted manner. Each node in a BST has at most 
two children: a left and a right child. The left child’s value 
is always less than its parent node’s value, while the right 
child’s value is greater than or equal to its parent’s value. 
This structure allows for more efficient search, insertion, 
and deletion operations on the data stored within the tree. 

 

Figure 2.3 Binary Search Tree 

(https://www.geeksforgeeks.org/binary-search-tree-
data-structure/) 

C. AVL Tree 

An AVL Tree is a prime example of a self-balancing binary 
search tree. This innovative method was developed by 
computer scientist Georgi Maximovich Adelson-Velsky and 
Yevgeny Mikhailovich Landis in 1962. 

An AVL tree is a type of binary search tree that maintains 
balance by ensuring that for every node, the height difference 
between its left and right subtrees is never more than one. If a 
insertion or deletion operation causes this balance to be 
disturbed, the tree automatically rebalances itself using AVL 
rotations. This process guarantees efficient performance for all 
tree operations. 

The height of a subtree demonstrates how far the root is 
from the lowest node. Therefore, a subtree that contains only a 
root node has height of 0. A node’s balance factor (BF) is 
calculated by subtracting the height of its left subtree from the 
height of its right subtree. For any non-existent subtrees, their 
height is considered to be -1 (which is one less than a subtree 
with just a single node).  

BF(node) = H(node.right) – H(node.left) 

There are three cases: 

1. If the balance factor is < 0, the node is classified as 
left-heavy. 

2. If the balance factor is > 0, the node is classified as 
right-heavy 

3. A balance factor of 0 indicates a balanced node. 

In an AVL tree, the balance factor at each node must have a 
value between -1, 0, or 1. 

 AVL rotations become necessary when an insertion or 
deletion operation causes the tree become unbalanced. There 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
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are two types of rotations: right rotations and left rotations. The 
image below illustrates a right rotation and left rotation. The 
tree displayed the following nodes: 

1. N: the root node where an imbalance was found 

2. L: the child node of N 

3. LL: the left child node of L 

4. LR: the right child node of L 

5. R: the right child node of N 

 From the tree below, there is a key piece of information: 

LL(1) < L(2) < LR(3) < N(4) < R(5) 

 

 

Figure 2.4 Right Rotation 

(https://www.happycoders.eu/algorithms/avl-tree-java/) 

 

Figure 2.5 Left Rotation 

(https://www.happycoders.eu/algorithms/avl-tree-java/) 

 To keep an AVL Tree balanced, whenever a node is 
inserted or deleted, the height and balance factor for all 
affected nodes must be recalculated, moving upward from the 
modification towards the tree’s root. If this process reveals a 
node where the AVL invariant is broken (meaning its balance 
factor falls outside the acceptable range of -1,0, or 1) then the 
tree must be rebalanced. This rebalancing process falls into one 
of four categories:  

1. Balancing a left-heavy node: 

a. Right rotation 

b. Left-right rotation 

2. Balancing a right-heavy node: 

a. Left rotation 

b. Right-left rotation 

D. Red-Black Tree 

 A red-black tree is a type of self-balancing binary search 
tree designed to automatically keep itself balanced. Each node 
within this tree is assigned either a red or black color. A 
specific set or rules governs how these colors are arranged; for 

instance, a red node cannot have red children. This color 
scheme helps the tree maintain its balance. 

 After nodes are inserted or deleted, complex algorithms are 
used to verify that these rules are still being followed. If any 
rules are violated, the tree is rebalanced by recoloring nodes 
and performing rotations to restore the required properties. 
These trees are often represented with NIL nodes, which are 
empty leaf nodes without values. These NIL nodes are crucial 
for the algorithms, particularly when determining the colors of 
related nodes like uncles or siblings. 

 

Figure 2.6 Red-Black Tree 

(https://www.happycoders.eu/algorithms/red-black-tree-
java/) 

 A red-black tree maintains balance through a set of strict 
rules governing node colors. Each node is either red or black, 
and all NIL leaves are strictly black. A critical rule requires 
that a red node may not have red children, and furthermore, 
every path from given node to its descendant leaves must 
contain an identical count of black nodes. While the root is 
typically black, the particular rule is often omitted in literature 
because its observance is often enforced by other rules. The 
specific rule’s implementation typically results in only a minor 
code difference in operations.  

 The height of a red-black tree is defined as the maximum 
number of nodes from the root to a NIL leaf, excluding the root 
itself. A significant property derived from the rules is that the 
longest path from the root to any leaf is at most twice the 
length of the shortest path.  

 Inserting and deleting nodes in a red-black tree largely 
follows the standard procedures for binary search trees. 
However, after these operations, the tree’s observance to its 
red-black rules must be checked. if any rules are violated, the 
tree is rebalanced by recoloring nodes and performing 
rotations. These rotations function identically to those used in 
AVL trees. 

III. COMPARISON OF AVL TREE AND RED BLACK TREE 

Both AVL tree and red-black tree are self-balancing binary 

search trees that guarantee a worst-case height of O(log n) for 

n nodes, which means operations like search, insertion, and 

deletion will take at most O(log n) time. While AVL tree 

maintains a stricter balance, often leading to faster search 

times, red-black tree employs a looser balancing strategy using 

color rules. This difference in balancing strictness is key to 

https://www.happycoders.eu/algorithms/avl-tree-java/)
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understanding why the more complex red-black tree is still 

relevant, despite the simpler implementation of AVL tree. The 

comparison will focus on two primary primitive operations: 

insertion and deletion. The tool to used to visualize these two 

algorithms is Python. 

 

A. Algorithm for AVL Tree 

 

Figure 3.1 Create a Tree Node (AVL Tree) 

(https://www.programiz.com/dsa/avl-tree) 

 The TreeNode class serves as the foundational building 
block for constructing an AVL tree. Each TreeNode object 
contains four essential attributes: a key to store the node’s 
value, left and right pointers to reference its child nodes 
(initialized as None), and a height value (initialized to 1) that 
tracks the depth of the subtree rooted at that node. The key 
determines the node’s position within the tree, adhering to the 
binary search tree property where all keys in the left subtree are 
smaller than the node’s key, and all keys in the right subtree are 
larger. The height attribute is critical for maintaining the AVL 
tree’s balance, as it enables the calculation of the balance 
factor—the difference between the heights of the left and right 
subtrees. By ensuring this balance factor remains within the 
range of -1,0,or 1, the AVL tree guarantees efficient operations 
with logarithmic time complexity. When a new node is created, 
it starts as a leaf node with no children, and its height is set to 
1. 

 

 

Figure 3.2 Algorithm for Insertion (AVL Tree) 

(https://www.programiz.com/dsa/avl-tree) 

The AVL tree insertion algorithm is a carefully designed 
process aimed at maintaining the tree's balance as new nodes 
are introduced. It begins with the standard binary search tree 
(BST) insertion method, where the algorithm recursively 
searches for the new node's appropriate position. If the 
designated spot is empty, a new node is created. Conversely, if 
the spot is occupied, the new key is compared with the current 
node's key, and the insertion proceeds recursively into either 
the left or right subtree to uphold the BST property. 

Once the new node is placed, the algorithm updates the 
height of the current node by adding one to the maximum 
height of its child subtrees. This height management is vital for 
the subsequent balance checks. The balance factor is then 
computed by subtracting the height of the right subtree from 
that of the left subtree. Should this balance factor fall outside 
the acceptable range of -1 to 1, the tree undergoes rebalancing 
through specific rotations. There are four distinct rotation 
scenarios, each addressing a particular type of imbalance: a 
right rotation for a left-left imbalance, a left-right rotation for a 
left-right imbalance, a left rotation for a right-right imbalance, 
and a right-left rotation for a right-left imbalance. These 
rotations effectively reorganize the tree's structure while 
preserving its BST properties, thereby ensuring that the height 
difference between any node's subtrees never exceeds one. The 
algorithm concludes by returning the modified subtree, 
allowing these balancing adjustments to propagate up the 
recursive call stack and maintain overall tree stability. This 
combination of recursive insertion, height tracking, and 
conditional rotations guarantees that AVL tree operations 
consistently achieve O(log n) time complexity. 

https://www.programiz.com/dsa/avl-tree
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Figure 3.3 Algorithm for Deletion (AVL Tree) 

(https://www.programiz.com/dsa/avl-tree) 

Deletion within an AVL tree is managed by a structured 
algorithm that strictly upholds the tree's balanced configuration 
during node removal. The process initiates by adhering to 
standard binary search tree (BST) deletion principles, 
recursively seeking the node targeted for removal. If the node 
is not present (i.e., the root is null), the operation simply 
terminates. Upon locating the desired node, its removal is 
handled based on its child count: nodes with no left child are 
replaced by their right child; those with no right child are 
replaced by their left child; and nodes possessing both children 
necessitate finding their in-order successor (the smallest value 
in the right subtree), transferring its value to the current node, 
and then recursively deleting that successor from the right 
subtree. This strategy ensures the BST property remains 
preserved. 

Subsequent to the node's removal, the algorithm undertakes 
crucial rebalancing adjustments. It first updates the height of 
the affected node, computing it as one plus the maximum 
height of its remaining child subtrees. The balance factor is 
then derived by comparing the heights of the left and right 
subtrees. Should an imbalance manifest—that is, if the balance 
factor exceeds 1 or falls below -1—the algorithm triggers the 
appropriate rotation(s) to restore equilibrium. Four distinct 
rotation patterns address specific imbalances: a simple right 
rotation for left-left scenarios, a left-right double rotation for 
left-right cases, a simple left rotation for right-right situations, 
and a right-left double rotation for right-left imbalances. These 
rotations are meticulously designed to maintain both the BST 
property and the AVL balance condition while minimizing 
structural alteration. The algorithm concludes by returning the 
potentially restructured subtree, allowing these changes to 
propagate upward through the recursive call stack to ensure 
balance across the entire tree. This integrated approach—
combining recursive node removal with height management 
and conditional rotations—guarantees that AVL tree operations 
consistently achieve optimal O(log n) time complexity and 
retain their balanced characteristics. 

For example, the initial AVL tree contains the following 
nodes: [50,12,52,10,25,61,8,11]. The objective is to insert the 
value [30] into this tree while maintaining the AVL property. 

 

Figure 3.4 Initial and Final AVL Tree Insertion 

The insertion of the value 30 into the initial AVL tree [50, 
12, 52, 10, 25, 61, 8, 11] follows a systematic process to 
maintain the tree's balanced structure. The algorithm begins by 
performing a standard BST insertion, traversing from the root 
(50) to the appropriate position. Since 30 is less than 50 but 
greater than 12 and 25, it is inserted as the right child of node 
25. Following insertion, the heights of affected nodes (30, 25, 
12, and 50) are recalculated to reflect the structural changes. 

The critical rebalancing phase occurs when checking the 
balance factors after insertion. Node 12, with a balance factor 
of 2 (left subtree height of 3 minus right subtree height of 1), 
becomes unbalanced. This specific imbalance represents a 
Right-Right (RR) case, where the right subtree of node 12's 
right child (25) contains the newly inserted node (30). To 
correct this, a left rotation is performed on node 12. The 
rotation restructures the tree by making node 25 the new parent 
of node 12, with node 12 becoming the left child of node 25 
and node 30 remaining as the right child. This rotation reduces 
the height difference between subtrees while preserving the 
BST property. 

The rotation successfully restores balance to the tree, 
maintaining the AVL property where no node has a balance 
factor exceeding ±1. The final tree structure demonstrates how 
AVL trees dynamically adjust through rotations to ensure 
optimal performance, with all operations maintaining O(log n) 
time complexity. This example illustrates the essential self-
balancing mechanism of AVL trees, where insertions are 
followed by height updates and necessary rotations to preserve 
the tree's balanced state. 

 

Figure 3.5 Initial and Final AVL Tree Deletion 

https://www.programiz.com/dsa/avl-tree
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The deletion of node 12 from the given AVL tree, which 
initially contains [50, 12, 52, 10, 25, 61, 8, 11, 30], follows a 
precise procedure to ensure the tree remains balanced. Since 
node 12 has both a left child (10) and a right child (25), it is 
replaced by its in-order successor, which is node 25. 
Subsequently, node 25 is removed from its original location. 
This causes a structural adjustment where node 25 takes node 
12's former position, with node 10 becoming its left child, and 
nodes 11 and 30 relocating within the right subtree. 

After this initial deletion, the algorithm proceeds to update 
the heights of affected nodes and check their balance factors. A 
potential imbalance often arises at node 50 (the tree's root) 
because its left subtree's height has decreased. The balance 
factor for node 50 is calculated by subtracting the height of its 
right subtree (rooted at 52) from the height of its left subtree 
(now rooted at 25). If this balance factor moves outside the 
acceptable range of ±1, rotations are then initiated to restore 
balance. 

In this specific example, two main scenarios might 
necessitate rotation: 

• Should node 50 become left-heavy (balance factor 
greater than 1), a right rotation would be performed. 
This action would promote node 25 to the new root, 
with node 50 becoming its right child. 

• If, however, node 25's right subtree becomes too 
heavy (balance factor less than -1), a left-right double 
rotation might be required. This involves first a left 
rotation on node 25's right child (node 30), followed 
by a right rotation on node 25 itself. 

These corrective rotations are crucial for maintaining the 
AVL property, ensuring that no node's balance factor deviates 
beyond ±1. This preservation of balance is key to upholding the 
tree's efficient O(log n) time complexity for all operations. The 
precise rotations employed are determined by the exact height 
differences observed after the deletion, systematically restoring 
balance while fully retaining the binary search tree property.  

B. Algorithm for Red-Black Tree 

 
Figure 3.6 Create a Tree Node (Red Black Tree) 

(https://www.programiz.com/dsa/red-black-tree) 
The fundamental structure of a Red-Black tree's Node class 

is quite similar to that of an AVL tree, with the key distinctions 
being the inclusion of two additional attributes: parent and 
color. In an AVL tree, each node typically stores its key, 
pointers to its left and right children, and a height attribute. 

This height is crucial for maintaining the tree's balance by 
ensuring that the height difference between any left and right 
subtree does not exceed one. 

On the other hand, the Red-Black Tree's Node class 
contains an item (or key), left and right child pointers, a parent 
pointer, and a color attribute (where '1' often denotes red and '0' 
signifies black). The parent pointer is vital for efficient 
movement within the tree and for rebalancing operations, as it 
allows access to a node's ancestor. The color attribute, 
meanwhile, is essential for enforcing the Red-Black Tree's 
specific balancing rules: primarily, that no two consecutive red 
nodes are allowed (meaning a red node cannot have a red 
child), and that every path from the root to any leaf must 
contain an identical count of black nodes. 

 These constraints work together to ensure that the Red-
Black Tree remains approximately balanced. This balancing is 
less strict than that of an AVL tree, which typically leads to 
fewer structural adjustments (rotations) during insertions and 
deletions. Therefore, while AVL trees prioritize strict height 
balance for potentially faster search operations, Red-Black 
Trees are optimized for more efficient modifications (insertions 
and deletions) by relying on these color-based rules. The 
inclusion of the parent and color attributes in the Red-Black 
Tree's node structure is fundamental to its distinct self-
balancing mechanism, setting it apart from the AVL tree's 
height-centric approach. 

  

Figure 3.7 Algorithm for Insertion (Red-Black Tree) 

(https://www.programiz.com/dsa/red-black-tree) 
The insertion process in a Red-Black Tree consists of two 

fundamental phases: standard binary search tree insertion 
followed by tree rebalancing to maintain the tree's critical 
properties. The process begins by creating a new node 
containing the key value, which is initialized as red (color = 1) 
with its left and right children set to null (TNULL). The 
algorithm then traverses the tree from the root downward, 
comparing the new node's value with existing nodes to 
determine its proper position according to BST rules - moving 
left when the new value is smaller and right when it is larger. 

Once the appropriate position is found, the new node is 
linked to its parent. Special cases are handled immediately: if 
the new node becomes the root, it is recolored black to satisfy 

https://www.programiz.com/dsa/red-black-tree
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the root property, and if the parent is the root (meaning no 
grandparent exists), the insertion completes without further 
adjustments. For all other cases, the fix_insert method is 
invoked to address potential violations of Red-Black Tree 
properties, primarily the red-red conflict where a red node has a 
red parent. 

The fix_insert method systematically resolves these 
violations through a combination of recoloring and rotations. 
Three main scenarios are considered: when the uncle node is 
red (Case 1), requiring simple recoloring of the parent, uncle, 
and grandparent; when the new node forms a triangle 
configuration with its parent and grandparent (Case 2), 
necessitating an initial rotation to convert it to Case 3; and 
when they form a straight line (Case 3), resolved with a single 
rotation and recoloring. These operations ensure the tree 
maintains all essential properties: the root remains black, no 
two red nodes are adjacent, and all paths from any node to its 
descendant leaves contain the same number of black nodes, 
thereby guaranteeing balanced performance with O(log n) time 
complexity for all operations. Similarly, after a node is deleted, 
the tree will attempt to rebalance itself. 

Using the same example as the AVL tree, the value 30 will 
be inserted into the initial tree (50, 12, 52, 10, 25, 61, 8, 11). 

 

 

Figure 3.8 Initial and Final Red Black Tree Insertion 

To integrate the value 30 into the Red-Black Tree (initially 
containing nodes [50, 12, 52, 10, 25, 61, 8, 11]), a structured 
procedure is followed to uphold the tree's crucial balancing 
characteristics. Node 30 is initially added as a red node, 
correctly positioned as the right child of 25 according to 
standard binary search tree rules. This immediate placement, 
however, promptly results in a red-red violation, as both node 
30 and its parent 25 are red. 

To address this conflict, the tree assesses the "uncle" of 
node 30—the sibling of its parent 25. This node, 10, is black. 
Given the black uncle, the tree initiates a sequence of rotations 
and recoloring operations. Initially, a left rotation is performed 
at node 25, which converts the right-heavy subtree into a linear 
arrangement. Subsequently, nodes are recolored: node 30 turns 
black, and node 12 changes to red. This is then followed by a 
right rotation at node 12, aiming to fully restore the tree's 
balance. 

The resulting structure successfully upholds all Red-Black 
Tree properties: the root (50) remains black, no two red nodes 

are adjacent, and every path from the root to any leaf contains 
an equal count of black nodes. This entire procedure 
exemplifies the Red-Black Tree's efficient self-balancing 
capability through judicious rotations and color adjustments 
post-insertion. Such dynamic reorganization ensures optimal 
O(log n) time complexity for all operations and safeguards the 
tree's structural integrity, thereby averting the performance 
decline that an unbalanced binary search tree might experience. 

 

Figure 3.9 Initial and Final Red Black Tree Deletion  

 

The removal of node 12 from the Red-Black Tree adheres 
to a carefully organized process designed to preserve the tree's 
essential characteristics. Initially, the algorithm identifies node 
12, which possesses two children (node 10 and node 25). Given 
that node 12 is red and its children are black, the deletion can 
be simplified by substituting node 12 with its in-order 
successor, node 25. Following the removal of node 12, node 25 
is promoted to assume its former position, while node 10 is 
retained as the left child. 

This structural alteration, however, introduces a potential 
imbalance that necessitates correction through recoloring and, 
if required, rotations. The tree then executes a color flip: node 
25 changes from black to red, and node 10 similarly changes 
from black to red, thereby maintaining the crucial black height 
property. If this recoloring were to result in a red-red violation 
between node 10 and its new parent, subsequent rotations 
would be performed for correction. In this particular instance, 
however, no additional rotations are necessary, as node 10's 
parent (node 25) remains black. 

The resulting tree successfully maintains all Red-Black 
properties: the root (50) remains black, no red nodes are 
adjacent, and all paths from the root to the leaves contain an 
identical number of black nodes. 

C. Comparison of Two Algorithms  

Red-Black Trees and AVL Trees represent two distinct 

approaches to self-balancing binary search trees, each with 

unique advantages tailored to different computing scenarios. 

The fundamental difference lies in their balancing mechanisms 

- Red-Black Trees employ a color-coding system (red or black 
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nodes) with specific rules about node coloration and black 

node distribution, while AVL Trees maintain strict height 

balance through precise balance factors (-1, 0, or 1) for each 

node. This structural divergence leads to significant 

performance variations: AVL Trees, with their stricter 

balancing, guarantee a more optimal tree height of 

approximately 1.44 log(n) compared to Red-Black Trees' 2 

log(n), making AVL Trees approximately 20-25% faster for 

lookup operations. However, this advantage comes at a cost - 

AVL Trees typically require more frequent and complex 

rotations during insertions and deletions, sometimes needing 

O(log n) rotations per operation, whereas Red-Black Trees 

usually require at most two rotations and often just simple 

recoloring. Storage requirements also differ substantially, with 

Red-Black Trees needing only a single bit per node for color 

information, while AVL Trees must store integer values 

(typically 2-4 bytes) for height or balance factor data. These 

characteristics lead to distinct application domains: Red-Black 

Trees dominate in systems requiring frequent modifications, 

such as language libraries (C++'s map/set, Java's TreeMap) 

and filesystem implementations, where their efficient 

insertion/deletion performance outweighs slightly slower 

searches. Conversely, AVL Trees excel in read-intensive 

environments like database indexing and real-time systems 

where maximum search speed is crucial and the data changes 

less frequently. Both maintain O(log n) time complexity for all 

operations, but their different balancing philosophies make 

each uniquely suited to specific performance requirements in 

computer science applications. The following table presents a 

summary of the distinctions between the two programs. 

 

Comparison 

Indicators 

AVL Tree Red-Black Tree 

Balance 

Factor 

Each node has a 

balance factor 

whose value is 

between -1,0, or 1 

It does not have a 

balance factor 

Balancing  Take more 

processing for 

balancing 

Take less processing 

for balancing. The 

maximum number of 

rotations is two. 

Lookups AVL Trees 

provide faster 

lookups than Red-

Black Trees 

because they are 

more strictly 

balanced 

Red-Black Tree has 

fewer lookups because 

they are not strictly 

balanced. 

Color There is no color 

of the node 

The color of the node is 

either Red or Black 

Insertion and 

Deletion 

AVL Trees 

provide complex 

insertion and 

deletion operations 

as more rotations 

are done due to 

Red-Black Trees 

provide faster insertion 

and deletion operations 

than AVL Trees as 

fewer rotations are 

done due to relatively 

relatively strict 

balancing 

relaxed balancing 

Storage AVL Trees store 

balance factors or 

heights with each 

node. Therefore, 

requiring storage 

for an integer per 

node 

Red-Black Tree 

requires only 1 bit of 

information per node 

Searching AVL Trees 

provide efficient 

searching 

Red-Black Trees does 

not provide efficient 

searching 

Applications For indexing large 

records in 

databases, for 

searching in large 

databases, etc. 

To implement finite 

maps, to implement 

Java packages, to 

implement Standard 

Template Libraries 

(STL) in C++: 

multiset,map,multimap, 

etc. 

 

APPENDIX  

 Source code: https://github.com/kalitz23/Makalah-

Matdis. 
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