
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 
 

Anomaly Detection in AI Knowledge Graphs: 
A Discrete Mathematical Framework 

Against Graph Poisoning 
Made Branenda Jordhy - 13524026 
Informatics Engineering Study Program 

School of Electrical Engineering and Informatics 
Bandung Institute of Technology, 10 Ganesha Street, Bandung 
E-mail: ethgalleryin@gmail.com , 13524026@std.stei.itb.ac.id   

 
 

Abstract—Knowledge graphs (KGs) are increasingly used 
in AI systems to organize factual information for reasoning 
and decision-making. However, their growing size and open 
nature make them vulnerable to a kind of attack known 
as graph poisoning, where malicious nodes or edges are 
added to distort meaning or mislead AI outputs. In this 
paper, we introduce a lightweight and interpretable 
framework for detecting such structural anomalies using 
discrete mathematics—particularly graph-theoretic 
concepts like node degree, clustering, and cut-points. 
Instead of relying on machine learning, our approach 
focuses on analyzing the graph’s shape and connection 
patterns to flag suspicious entities. We tested the method on 
a synthetic knowledge graph with injected anomalies and 
found that even basic structural features can reveal hidden 
manipulations. The goal here isn't to replace ML-based 
methods, but to provide a simpler, explainable pre-
processing step that can help safeguard the integrity of AI 
systems built on top of knowledge graphs. 

Keywords—component; knowledge graphs; anomaly detection, 
graph poisoning, discrete mathematics; graph theory; AI security 

I.  INTRODUCTION 

A. Background 
Knowledge graphs (KGs) are widely used in today’s AI 

systems to represent structured information about entities and 
the relationships between them. By organizing facts into a 
graph format, these systems can support advanced reasoning, 
improve search accuracy, and enable more intelligent decision-
making. From search engines and personal assistants to 
biomedical and recommendation systems, KGs have become a 
core part of many modern applications. 

However, just like any other system, knowledge graphs are 
not immune to security threats. One serious issue is graph 
poisoning, where attackers intentionally add, remove, or alter 
parts of the graph to distort its meaning. This could result in 
misleading conclusions, hidden misinformation, or failure of 
downstream AI models that rely on the graph’s structure. Due 
to the interconnected nature of graphs, even a small 

manipulation can propagate widely and cause significant 
impact. 

B. Research Objectives 
Many existing approaches to detecting graph poisoning rely 

on machine learning models or embedding techniques. While 
effective in some cases, these methods often act as black boxes, 
they require large amounts of labelled data, and their outputs 
can be difficult to interpret or justify. 

This paper takes a different approach. The goal is to develop 
a lightweight, interpretable framework for detecting structural 
anomalies in knowledge graphs using techniques from discrete 
mathematics and graph theory. By analysing features such 
as node degree, connectivity patterns, local clustering, 
and graph motifs, the system can flag suspicious nodes or edges 
without needing prior training data. 

To demonstrate the feasibility of this approach, we simulate 
poisoning scenarios in example knowledge graphs and evaluate 
whether the proposed methods can detect anomalies effectively. 
The results show that even simple structural features can reveal 
hidden manipulations and serve as an early defence mechanism 
against graph-based attacks in AI systems. 
 

II. THEORITICAL BACKGROUND 

A. Graphs and Knowledge Representation 
Graphs are fundamental structures in mathematics and 

computer science that consist of nodes (vertices) and edges 
(connection between nodes). When used in Artificial 
Intelligence, graphs are powerful tools for modeling relationship 
between entities in the real world. 

A knowledge graph (KG) is a special type of graph that 
represents information in the form of facts. These facts are 
typically stored as triples: subject, predicate, and object. For 
example, the fact “Alan Turing is a mathematician” would be 
written as (Alan Turing, hasOccupation, Mathematician). In 
graph form, this translates to a directed edge labeled 
“hasOccupation” pointing from the node “Alan Turing” to the 
node “Mathematician”. 

mailto:ethgalleryin@gmail.com
mailto:13524026@std.stei.itb.ac.id


Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 
 

Most-large scale knowledge graphs, such as Wikidata or 
Google’s Knowledge Vault, are dynamic in nature. They are 
continuously updated and expanded with information from 
various sources, automated, human-curated, or even 
crowdsourced. This makes them flexible, but also vulnerable to 
inconsistencies and manipulation. 

 
Figure 1. A simple knowledge graph representing facts as 

labeled directed edges. Each edge connects two entities with a 
specific relationship. (source: Author) 

B. Graph Poisoning Attacks 
As knowledge graphs grow larges and are used in critical AI 

pipelines, they become more attractive targets for attackers. 
One of the main threats is graph poisoning, where the structure 
of the graph is deliberately manipulated. Attackers may insert 
fake relationship, remove important connections, or alter 
existing facts to distort downstream reasoning or predictions. 

There are different types of poisoning attacks: 

• Injection attacks, where fake nodes ad edges are 
added to insert misleading information. 

• Deletion attacks, where key nodes or connections are 
removed to break context or isolate data. 

• Semantic modification, where labels or properties 
are changed to cause misinterpretation (e.g., changing 
“hasOccupation” to “hasInterest”). 

 
Figure 2. Illustration of a knowledge graph after poisoning. 
Malicious edges are injected to mislead inference or corrupt 

downstream reasoning. (source: Author) 

These changes can be subtle but impactful. A single edge 
injection in the right place can shift the behavior of 
recommendations systems, ranking algorithms, or fact-
checking engines. What makes this problem harder is that 
poisoned graphs often still look structurally valid, anomalies 
hide in plain sight. 

C. Discrete Anomaly Detection Techniques 
To identify poisoned elements in a knowledge graph, one 

effective approach is to analyze its structure using techniques 
from discrete mathematics, especially graph theory. Instead of 
relying on complex machine learning models, we can use simple 
graph-based features to detect unusual patterns. 

 Some common techniques include: 

• Node degree analysis – detecting nodes that have too 
many or too few connections compared to others. 
 

 
Figure 3. Node degree anomaly detection. The red node 

exhibits an unusually high number of connections 
compared to other nodes, which may indicate an injected 



Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 
 

hub, spamming entity, or corrupted node in a knowledge 
graph. (source: Author) 

Nodes with significantly higher or lower degree 
that their neighbors can be detected as structural 
outliers. In this example, node D connects to most of 
the graph despite being unrelated to the main triangle, 
indicating a potential anomaly due to manipulation or 
injection. 

 
• Clustering coefficient – measuring how connected a 

node’s neighbors are to one another. 
 

 
Figure 4. Clustering coefficient anomaly detection. The red 
node connects to two densely linked nodes without forming 

a triangle, resulting in a low local clustering coefficient 
that may signal structural inconsistency. (source: Author) 

Nodes embedded in dense subgraphs typically 
exhibit high clustering. When a node connects to 
clustered nodes but fails to form connections among 
its neighbors, it may indicate improper linkage or 
injected outlier nodes [4]. 

 

• Betweenness centrality – identifying nodes that sit on 
many shortest paths and might be artificially important. 
 

 
Figure 5. Betweenness centrality anomaly detection. The 
red node lies on many shortest paths between two dense 

regions, giving it high centrality and influence over graph 
flow despite a small degree. (source: Author) 

Nodes with high betweenness can control or 
disrupt communication between communities. Such 
nodes may be critical or vulnerable points in 
knowledge graphs or social networks. 

• Rare motif detection – spotting subgraph patterns that 
are unusual or don’t normally exist in a healthy graph. 
 

 
Figure 6. Rare motif detection. The red nodes form an 

uncommon linear substructure that deviates from typical 
dense or cyclic motifs, suggesting potential outlier behavior 

or injected structure. (source: Author) 

Graphs often contain recurring structural patterns. 
The presence of rare or unfamiliar motifs may point to 
synthetic, corrupted, or misclassified data within the 
system. 

• Cut-point detection – finding nodes whose removal 
would disconnect the graph. The red node shown on 
Figure 5 acts as a single point of connection between 
two communities. Its removal would disconnect the 
graph, making it a structurally critical node. Cut-point 
soften represent bridge, gatekeepers, or critical 
connections. Detecting such nodes is vital in assessing 
the robustness and vulnerability of graph-based 
system. 
 

These techniques are lightweight, interpretable, and scalable. 
They work well even when no training data is available, making 
them ideal for real-time anomaly detection in growing 
knowledge graphs. 

III. PROBLEM STATEMENT 

A. Motivation and Context 
Knowledge graphs are a powerful way to represent facts and 

relationships in a structured format. They’re uses in all sorts of 
AI systems, from search engines to recommendation platforms, 
to help machines reason more effectively. As these graphs grow 
larger and more widely used, the risks that come with them also 
increase. 

One of the key threats is graph poisoning. This happens 
when someone intentionally adds, removes or changes parts of 
the graph to mislead the system. These manipulations are often 
crafted to blend in with valid data. For instance, a fact like (Alan 
Turing, hasOccupation, Mathematician) could be quietly 



Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 
 

accompanied by a misleading one like (Alan Turing, 
hasOccupation, Chef). Structurally, it looks fine, it connects two 
nodes using a familiar relation, but semantically, it introduces 
noise or even disinformation. Since most systems check only the 
structure, such poisoned links may go unnoticed. 

Existing solutions often rely on machine learning or 
embedding-based techniques to detect anomalies. While 
powerful, these approaches typically require large, labeled 
datasets and often lack transparency. It’s difficult to interpret 
why a certain node or edge is flagged, which becomes a problem 
in sensitive or safety-critical applications. 

This paper explores a different path. Instead of learning from 
examples, it focuses on lightweight, interpretable techniques 
from discrete mathematics, especially graph theory. By studying 
basic graph features, like node degree, clustering patterns, 
centrality, or structural roles, we can identify suspicious 
elements based purely on structure. These methods don’t require 
training data and produce results that are easier to understand 
and justify. 

As shown in Figure 2, even a single poisoned edge can 
subtly distort a knowledge graph while escaping detection. 
Detecting this kind of anomaly requires more than just checking 
surface-level validity, it calls for deeper structural analysis. This 
motivates the need for practical detection tools grounded in 
graph structure itself, rather than relying on opaque black-box 
models. 

B. Problems Definition 
The main problem addressed in this paper is how to detect 

structural anomalies in a knowledge graph that may indicate 
poisoning. Specifically, we aim to identify nodes or edges 
whose presence deviates from common patterns or weakens the 
semantic reliability of the graph, not based on contents or label, 
but purely from how to graph is shaped. We define the problem 
as follows: 

 

Given a directed knowledge graph  
 

G = (V, E) 
 

where V is a set of entities and E ⊆	V	×	R	× V is a set of labeled 
edges representing relationships, identify suspicious nodes or 
subgraphs based on structural properties. These properties 
include: 

 
• Node degree – how many connections a node has, and 

whether it is unusually high or low 
• Clustering behavior – whether a node’s neighbors are 

well-connected among themselves 
• Betweenness centrality – whether a node appears too 

frequently on shortest paths 
• Motif presence – whether small subgraph patterns are 

rare or unexpected 
• Cut-point roles – whether a node critically holds two 

parts of the graph together 
 

Rather than relying on training data or semantic validation, 
our focus is on outliers from a structural standpoint. For 

example, a single node that suddenly connects to many 
unrelated entities could raise suspicion, even if edge labels 
appear syntactically valid. 

We assume that the graph is static at the time of analysis and 
that no prior poisoning labels are available. The methods used 
should work on any graph topology if basic structural 
information is accessible. 

IV. PROPOSED SOLUTION 

A. Overview 
This paper Introduces a lightweight and interpretable 

framework for detecting structural anomalies in knowledge 
graphs. Instead of using machine learning or graph embeddings, 
the framework relies on discrete mathematical techniques 
rooted in graph theory. The focus is on identifying structural 
irregularities, such as unexpected connections, unusual 
centrality, or rare graph motifs, that could signal potential 
poisoning. 

Each anomaly is detected through simple, rule-based checks 
that evaluate the local or global structure of the graph. The 
approach is modular and can be extended or combined with 
other features as needed, depending on the context and the 
graph topology. 

B. Detection Workflow  
The detection process is built as a modular pipeline that 
analyzes a knowledge graph’s structural properties to uncover 
potential anomalies. The goal is to spot unusual behaviors, such 
as sudden connectivity spikes or structural bottlenecks, without 
relying on node labels or semantic interpretation. 
 

1) Graph Input & Construction 
The system accepts a knowledge graph in the form of a 

directed labeled graph. This can be manually constructed 
(e.g., using Python dictionaries or NetworkX), or imported 
from external formats such as .ttl, .json, or triple-based 
CSV. Toy example, a graph is constructed with facts such 
as: 

 

(Alan Turing, hasOccuption, Mathematician) 
(Alan Turing, studiedAt, Cambridge) 
(Alan Turing, invented, Enigma Machine) 
 

A poisoned edge is then injected 
(Alan Turing, hasOccupation, Chef) 
 

2) Structural Feature Extraction 
For each node and edge, structural metrices are extracted 

using standard graph-theoretic functions: 
 

• Node degree (in-degree and out-degree) 
• Clustering coefficient 
• Betweenness centrality 
• Motif frequency analysis 
• Cut-point (articulation point) detection 

 



Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 
 

These metrices from the basis for structural anomaly 
detection 

 

3) Rule-Based Evaluation 
Each metric is tested against heuristics or threshold 

rules. For example: 
 

• A node with out-degree significantly higher than 
the graph’s mean may be flagged as a hub anomaly 

• A node with low clustering in a dense 
neighborhood may be a suspicious outlier 

• Nodes with high betweenness or functioning as 
cut-points may indicate synthetic bridges 
 

In our toy example, Alan Turing initially has a modest 
out-degree of 3. After the poisoned edge (Alan Turing -> 
Chef) is added, his out-degree spikes. If this deviates 
beyond the normal range, the node is flagged. Each flagged 
element is annotated with the reason for detection and stored 
for later reporting. 

 
4) Visualization 

Anomalous nodes and edges are visualized using 
layout algorithms (e.g., spring_layout) with colored nodes 
(red for flagged anomalies), labeled edges, stylized arrows 
or dashed lines for suspicious links. These visualizations 
help in verifying the structural outliers and in presenting 
results clearly. 
 
5) Output Summary 

Finally, the system outputs: 
 

• A list of flagged nodes and/or edges 
• An explanation per flag (e.g., “high degree 

anomaly”, “rare motif”, “cut-point node”) 
• A saved visualization or adjacency representation 

 

This ouput can be reviewed by a human operator or fed 
into further pipeline components for mitigation or logging. 

 

V. IMPLEMENTATION AND EVALUATION 

A. Tools and Environment 
The anomaly detection framework was implemented 

using Python 3.10, a versatile and widely adopted programming 
language for both academic research and production systems. 
The codebase was tested and run on a macOS machine (Apple 
M4 chip, 16 GB RAM), ensuring it performs well even on 
consumer-grade hardware. To ensure portability and 
reproducibility, all components were also tested on Google 
Colab, which allows for broader access and ensures consistent 
results across platforms. 

• NetworkX (v3.2.1): Core library used to construct and 
analyze graph data structures. It supports operations 
like degree analysis, clustering, centrality measures, 
and articulation point detection, all crucial for rule 
based anomaly detection. 

• Matplotlib: Used to generate visual representations of 
the knowledge graph. This includes color coded nodes 
and annotated edges, making it easier for humans to 
interpret anomalies. 

• Statistic (built-in) / NumPy: Applied to compute key 
statistical values such as the mean and standard 
deviation, enabling us to define dynamic anomaly 
thresholds based on distribution rather than fixed 
heuristics. 
 

Notably, the entire system does not rely on GPU 
acceleration, nor does it require large scale machine learning 
libraries. This ensures that the solution is both lightweight and 
deployable on resource constrained environments, a core design 
goal that favors transparency and explainability over 
complexity. 

B. Graph Construction and Dataset 
To evaluate the framework, we designed a synthetic yet 

realistic knowledge graph that spans multiple semantic 
domains. At the core of this graph are historical scientific 
figures such as Alan Turing, Grace Hopper, Ada Lovelace, 
Charles Darwin, Gregor Mendel, and Rosalind Franklin. These 
entities are connected through accurate relationships like 
“hasOccupation”, “collaboratedWith”, and “studiedAt”. 

The graph is composed of 25+ nodes and 30+ edges, and 
structured in three semantic clusters: 

• Computer Science and Mathematics 
• Biological and Genetic Sciences 
• Abstract / Fictional Entities (used to simulate poison) 

The initial “clean” graph encodes factual relationships:  

 
To emulate graph poisoning, we deliberately injected 10 

syntactically valid but semantically incorrect edges. Examples 
include (“Alan Turing”, “Chef”, “hasOccupation”), (“Rosalind 



Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 
 

Franklin”, “Sith Lord”, “became”) and (“Atlantis”, “Wizard”, 
“inhabitedBy”). 

 
These false links do not break the graph’s syntactic 

consistency, and in RDF-style triple stores would pass 
validation, yet they distort the knowledge graph semantically. 
This poisoning structure allows us to test whether rule based 
methods relying purely on topological features can successfully 
flag suspicious patterns without needing labeled data or 
supervision. 

C. Detection Techniques and Their Justification 
The system integrates five structural anomaly detection 
techniques. The choice of methods reflects a balance between 
simplicity, explainability, and practical effectiveness [3]. 

• Node Degree Detection 
 

Why it matters: Nodes that have been injected with 
multiple poisoned facts tend to have abnormally high 
out-degree. For instance, a node that originally had 2-
3 valid relationships may suddenly have 6 or more due 
to false attachments. 

 
Implementation: We compute the Z-Score of each 

node’s out-degree and flag those above a threshold 
(e.g., +1.5 standard deviations). This catches degree 
inflation while tolerating natural variance in hubs like 
“Mathematician”. 
 

• Clustering Coefficient Anomaly 
 

Why it matters: Legitimate knowledge graphs tend 
to exhibit local clustering (e.g., coworkers, academic 
collaborators). Poisoned nodes often attach to isolated 
concepts or fictional entities, leading to a drop in 
clustering. 

 
Critical Reflection: Clustering coefficient alone is 

a weak signal in sparse graphs. However, in entity 

centric subgraphs (e.g., person, organization), it 
becomes much more expressive. 
 

• Betweenness Centrality Check 
 

Why it matters: A poisoned node might artificially 
bridge unrelated subgraphs. For example, connecting 
Charles Darwin to “Hogwarts”. Betweenness 
centrality identifies such nodes by measuring how 
often they appear on shortest paths. 

 
Design Choice: We use percentile thresholding 

instead of fixed value, making the method adaptable to 
graphs of varying sizes. 
 

• Cut-Point Detection 
 

Why it matters: In graph security, cut-points can 
serve as failure points or injection gateways. Detecting 
them highlights weak spots, even if not directly 
manipulated. 

 
Use Case: Flagging these can expose structural 

bottlenecks or high rick entry points. 
 

• Rare Motif Detection 
 

Why it matters: In real-world attacks, false facts 
are often added as leaf nodes. When too many leaves 
attach to a single node, they form a star motif, 
suspicious if unmatched in the rest of the graph.

 
Trigger: We flag nodes with 3+ leaf children that 

themselves have no further edges. 

D. Integration and Execution 
Each detection technique is implemented as a pure function 

over the graph object. The system aggregates outputs from all 
modules, applies deduplication, and returns a unified report 
where each node may have multiple anomaly tags. 

• Extensible: New rules can be plugged in with minimal 
code change. 

• Traceable: Each flagged node is justified by specific 
topological reasoning. 



Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 
 

• Portable: The system requires no training or fine-
tuning and runs in seconds commodity hardware. 

E. Visual Interpretation and Output 
To complement the detection process, this framework 

provides interpretable visualizations that allow analysts to 
quickly identify suspicious patterns without needing to inspect 
structural metrics manually. Nodes flagged as anomalous are 
colored red, immediately drawing attention to potential 
manipulations or misinformation. Additionally, all edges are 
labeled semantically (e.g., hasOccupation, collaboratedWith, 
developed), making it easier to trace how entities are connected 
and whether their relationships fall within a reasonable domain 
of knowledge. 

In our expanded test case, which now includes multiple 
semantic clusters such as historical scientists, computer 
scientist, and biological researchers, anomalies arise not only 
from a single entity (e.g., Alan Turing) but also from multiple 
high-profile nodes. These include: 

• Alan Turing flagged due to a surge in out-degree 
caused by links to “Chef” and “Atlantis”. 

• Rosalind Franklin flagged for the poisoned connection 
to “Sith Lord” 

• Grace Hopper flagged due to an inflated neighborhood 
from injected relationships with “Wizard”. 

• And several fictional or disconnected nodes with low 
clustering and no legitimate context. 

These poisoned links result in various structural red flags, 
from degree inflation and star motifs to bridging anomalies and 
cut-points, which are all captured by out lightweight detectors. 
Compared side by side, the Figure 7 presents the graph before 
any analysis, all nodes are treated equally. In Figure 8, the 
anomalies are visually highlighted, offering an immediate shift 
in interpretability. This visual feedback supports human in the 
loop auditing, which is essential for decision support systems, 
especially in domains where transparency and explainability are 
prioritized over raw predictive power. 

 
Figure 7. Poisoned Knowledge Graph Before Detection (source: 

Author) 

 
Figure 8. Poisoned Knowledge Graph After Detection: Multiple 

Nodes Flagged as Structurally Anomalous. (source: Author) 
 

 
 

Figure 9. Anomaly Detection Result Table. (source: Author) 

The Figure 9 summarizes all flagged nodes based on the 
five detection rules applied. Nodes such as Alan Turing, Grace 
Hoper, and Ada Lovelace were identified as having unusually 
high out-degree, likely due to injection of poisoned facts. Other 
nodes such as Rosalind Franklin and Wizard exhibit low local 
clustering, while Charles Darwin was flagged for high 
betweenness centrality. Additionally, “DNA Structure” and 
“Mathematician” function as cut-point nodes, indicating 
potential structural vulnerability. 

This approach stands in contrast to opaque black box 
machine learning models. Instead of merely signaling that 
“something is wrong”, our method explains why a node is 
suspicious, whether due to structural abnormality, isolated 
behavior, or unexpected connections. 

F. Full Implementation 
To ensure complete transparency and reproducibility, the 

entire anomaly detection pipeline is implemented in pure 
Python, using only standard graph and visualization libraries. 
Each component, from graph construction and poison injection 
to anomaly detection and visualization, is built as modular and 
testable code. No machine learning models, or external datasets 
are needed.  



Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 
 

 
Figure 10. Full Code Implementation. (source: Author) 

This core implementation constructs a large scale directed 
graph (networkx.DiGraph) modeling real and fictional 
knowledge, injects syntactically valid but semantically false 
edges that simulates real world poisoning attempts, applies five 

independent rule-based detectors, and aggregates all detection 
results into a structured report and overlays the finding on the 
graph. This code supports visual comparison before and after 
detection, layered layout resembling neural architectures for 
better readability, and tabular summary of all flagged anomalies 
(e.g., nodes + reasons). 

This full stack implementation enables research and 
practitioners due to audit graphs interactively, extend detection 
rules for custom use cases, and integrate anomaly feedback into 
downstream reasoning or filtering systems. All outputs, 
including visual graphs and DataFrames, can be saved or 
embedded directly into reports and dashboards. The framework 
is designed to be both useful (for teaching graph theory and 
adversarial robustness) ad practically applicable (for early stage 
KG integrity audits in production). 

VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 
This study demonstrates that structural anomaly detection in 

knowledge graphs can be effectively through lightweight, 
interpretable techniques rooted in graph theory. By modeling a 
poisoned knowledge graph and applying rule based detectors, 
including node degree, clustering coefficient, betweenness 
centrality, cut-point, and motif analysis, we show that it is 
possible to detect anomalies without relying on machine 
learning or semantic validation. 

The detection results align with intuitive expectations. Key 
nodes such as Alan Turing, Grace Hopper, and Ada Lovelace 
were flagged for out-degree inflation, while entities like 
Rosalind Franklin and Wizard were identified for low 
clustering. Moreover, structural roles like cut-points and 
bridging nodes were successfully highlighted. The use of visual 
overlays (red-highlighted nodes) reinforces the method’s 
explainability, making the results accessible even to non-
technical auditors. 

Compared to black-box ML systems, this approach offers a 
critical advantage. Each anomaly is structurally traceable and 
explainable by design. The output is not just a binary flag, but 
a reflection of how the node’s topology deviates from expected 
behavior. In short, this work supports the thesis that discrete 
mathematical heuristics are sufficient to reveal meaningful 
structural anomalies in knowledge graphs, especially in early-
stage or zero-training contexts. 

B. Limitations 
Despite its strength, the system has several limitations: 

• Context-agnostic: Structural detectors do not 
incorporate semantic nuance. A node with high out-
degree may not be poisoned in a real world context, 
but flagged nonetheless. 

• Scalability: While efficient for small to medium 
graphs (≤ 100 nodes), some techniques (e.g., 
betweenness centrality) scale poorly to massive graphs 
without approximation. 



Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 
 

• No repair mechanism: The system flags anomalies but 
does not offer automated correction or mitigation. 

These limitations underscore the need to treat this 
framework as a first stage filter, a preprocessor or early warning 
system, rather than a complete security pipeline. 

C. Future Work 
This project opens several directions for further exploration: 

• Hybrid Models: Integrating graph structure with 
lightweight semantic embeddings could combine the 
best of both worlds, interpretability and expressivity. 

• Real World Datasets: Applying the system to real RDF 
knowledge (e.g., DBpedia, Wikidata) will test its 
practical viability under noisy and heterogeneous 
conditions [7]. 

• Interactive Auditing Tools: Packaging the system into 
a web-based UI with graph interactivity could 
empower domain experts to manually verify and edit 
poisoned facts. 

• Explainability Metrics: Developing quantitative 
measures for explanation clarity (e.g., “why was node 
X flagged?”) could strengthen trust and usability. 

Ultimately, while simple, the framework provides a strong 
foundation for transparent, explainable knowledge graph 
integrity checks, especially in scenarios where trust and 
auditability matter as much precision. 

 

APPENDIX 
Video link and PowerPoint slides:  

https://drive.google.com/drive/u/2/folders/1aohEzlyuEWX
_pNmBqLki2F3g3SbJjHHI 

Full code: 

https://github.com/ethj0r?tab=repositories 

 

ACKNOWLEDGMENT 
The author would like to thank the lectures and teaching 

assistants of IF1220 Discrete Mathematics, School of Electrical 
Engineering, Bandung Institute of Technology, for the valuable 
foundational material that supported the development of this 
paper. Appreciation is also extended to the open-source 
contributors of NetworkX and Matplotllib for enabling rapid 
prototyping and visualization of graph-based anomaly detection 
techniques. 

 

REFERENCES 
[1] Rinaldi Munir, Graf (Bagian 1 dan 2), Lecture Notes IF1220 Matematika 

Diskrit, STEI ITB, 2024. 
[2] NetworkX Developers, “NetworkX Documentation (v3.2.1),” [Online]. 

Available: https://networkx.org/documentation/stable/ 
[3] J. Leskovec, A. Rajaraman, J. Ullman, Mining of Massive Datasets, 3rd 

ed., Cambridge University Press, 2020. 
[4] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos, “Summarizing and 

understanding large graphs,” Statistical Analysis and Data Mining: The 
ASA Data Science Journal, vol. 8, no. 3, pp. 183–202, 2015. 

[5] A. Akoglu, H. Tong, and D. Koutra, “Graph-based anomaly detection and 
description: A survei,” Data Mining and Knowledge Discovery, vol. 29, 
no. 3, pp. 626–688, 2015. 

[6] Y. Zhang and H. Chen, “A survey on graph neural network-based 
knowledge graph completion,” ACM Computing Surveys, vol. 54, no. 5, 
pp. 1–37, 2021. 

[7] DPpedia Project, “DBpedia Knowledge Graph,” [Online]. Available: 
https://www.dbpedia.org 

[8] M. Newman, Networks: An Introduction, Oxford University Press, 2010. 
[9] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for 

irregular graphs,” Journal of Parallel and Distributed Computing, vol. 48, 
no. 1, pp. 96–129, 1998. 
 

 

STATEMENT 
 

I hereby declare that the paper I have written is entirely my own 
work. It is not an adaptation, a translation of another person’s 
work, nor a product of plagiarism. 
 
 

Bandung, June 19, 2025 
 

 
 

Made Branenda Jordhy 13524026 
    
 
 

 
 
 

 
 

https://drive.google.com/drive/u/2/folders/1aohEzlyuEWX_pNmBqLki2F3g3SbJjHHI
https://drive.google.com/drive/u/2/folders/1aohEzlyuEWX_pNmBqLki2F3g3SbJjHHI
https://github.com/ethj0r?tab=repositories
https://networkx.org/documentation/stable/
https://www.dbpedia.org/

