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Abstract—Optimizing flight routes is a critical challenge in air 

transportation, especially when considering the Earth's spherical 

geometry. This paper applies the Travelling Salesman Problem 

(TSP) within the framework of graph theory to model and 

determine the most efficient route that visits a set of airports 

exactly once and returns to the starting point. By treating each 

airport as a node and the great-circle distances between them as 

weighted edges, we implement both heuristic and exact 

algorithms—such as Nearest Neighbor and Brute Force—to 

compare performance and route quality. The study also presents  

visualizations of the calculated routes based on a spherical Earth 

model, emphasizing the significance of using spherical geometry in 

realistic distance calculations. This approach demonstrates the 

power of computational optimization in real-world geospatial 

problems and highlights the trade-offs between accuracy and 

efficiency in algorithmic solutions. 

 

Keywords—Traveling Salesman Problem, flight route, graph 

theory. 

 

I.   INTRODUCTION 

The global aviation industry is a cornerstone of modern 

transportation, facilitating the rapid movement of people and 

goods across countries and continents. As air traffic continues 

to grow, the demand for route planning that is not only 

economically efficient but also geographically accurate, has 

become increasingly critical. Airlines and logistics companies 

continuously seek to optimize their flight schedules to reduce 

fuel consumption, lower operational costs, and increase 

passenger satisfaction. One of the most fundamental 

computational problems underlying these efforts is the 

optimization of multi-stop flight routes — a problem that, at its 

core, mirrors the classical Travelling Salesman Problem (TSP). 

The Travelling Salesman Problem is a well-known 

combinatorial optimization problem in theoretical computer 

science. It asks: "Given a list of cities and the pairwise distances 

between them, what is the shortest possible route that visits each 

city exactly once and returns to the starting city?" Despite its 

seemingly simple formulation, the TSP is classified as NP-hard, 

meaning there is no known polynomial-time algorithm to solve 

all instances of the problem efficiently. The number of possible 

routes increases factorially with the number of cities, making 

brute-force methods computationally infeasible beyond small 

inputs. As such, practical solutions often rely on heuristics or 

approximation algorithms that balance computational efficiency 

with solution quality. 

In this paper, we model the problem of flight route 

optimization as a specific instance of the TSP. Each airport is 

treated as a node in a graph, and each direct flight path between 

two airports is represented as an edge weighted by the 

geographical distance between them. To accurately reflect the 

Earth’s surface, which is approximately spherical, the distances 

between airports are not computed using flat (Euclidean) 

geometry. Instead, we employ spherical geometry, specifically 

the great-circle distance formula, which calculates the shortest 

path between two points on the surface of a sphere. 

The resulting mathematical model is a complete-weighted-

undirected graph, in which each node (airport) is connected to 

every other node by an edge whose weight corresponds to the 

great-circle distance. This model captures the key characteristics 

of real-world flight networks, where airlines often have the 

option to fly directly between any pair of major airports, and the 

cost of that flight is influenced primarily by distance. 

To solve the TSP in this context, we implement and analyze 

two algorithmic approaches with different computational trade-

offs: 

1. Brute-Force Search, which enumerates all possible 

permutations of airport visits to find the exact shortest 

route. This method guarantees the optimal solution but 

is computationally expensive and limited to smaller 

instances (typically fewer than 10 airports). 

2. Nearest Neighbor Heuristic, a greedy approximation 

algorithm that builds a tour by repeatedly selecting the 

nearest unvisited airport. Although it does not always 

yield the optimal solution, this method offers much 

faster computation and remains practical for larger 

datasets. 

 

II.  BASIC THEORY 

A. Graph Fundamentals 

Graph is a type of data structure consisting of vertices and 

edges. It is useful in many fields such as mathematics, data 

science, computer science, or even economics. Graph data 

structure can be used to model various real-world scenarios, 

analyze correlation between packs of objects, and understand 

the relation between variables or parameters. In this context, 

considering flight routes or networks, nodes represent points of 

the airport locations while edges describe the path of the flights. 

A graph can be expressed as an ordered pair of two sets 

vertices(V) and edges(E). Formally, graph G is defined as: 

 

G = (V, E) 
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• V is set of vertices, defined as nodes that can be labeled 

or unlabeled as a representation of objects or elements 

being connected.  

 

V = {v1, v2, v3, … , vn} 

 

• E is a set of edges that are the connections between pairs 

of vertices. They represent the relationships or 

associations between the objects. These two are the 

fundamental components of graph data structures.  

 

E = {e1, e2, e3, … , en} 

 

Defined graph must consist of a minimum of one vertices with 

no edge’s requirements, meaning that it can be consist without 

edges or many edges. 

A graph can also be represented visually with the point or 

node as the vertices and line as the edges. 

 

 

 

 

 

 

 

Figure 1. Simple graph 

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/20-Graf-Bagian1-2024.pdf) 

 

A graph can be weighted or unweight depending on its 

purpose and objectives.  

• Unweighted graph is a graph where all edges are 

considered equal. By this definition, there is no 

numerical value (weight) assigned to any edge. This 

graph focuses on the connections, not the cost, distance, 

or time between them, without any measure of how 

strong or long those connections are. These types of 

graphs are used many to represent social networks and 

network connectivity. 

 

 

 

 

 

 

 

 

Figure 2. Unweighted graph 

(https://graphicmaths.com/computer-science/graph-

theory/graphs/) 

 

• Weighted graph is a graph where each edge has a 

numerical value (called a weight). This weight can 

represent distance, cost, time, energy, or any measurable 

factor. This graph not only focuses on how objects are 

connected, but how strong or weak those connections are. 

This graph has much more complexity but offers more 

information and analysis.  

 

 

 

 

 

 

 

 

Figure 3. Weighted graph 

(https://graphicmaths.com/computer-science/graph-

theory/graphs/) 

 

Weighted graphs frequently serve to represent tangible 

entities and the connections among them. An instance of 

this can be found within the framework of Google Maps, 

where cities represent nodes, roads stand as edges, and 

the edge weights signify the time or distance of two 

cities. An example of the implementation is to find the 

shortest path between objects, optimal delivery cost, or 

network routing. In this paper case it is to optimize flight 

route considering its distance. 

 

Besides the weight, a graph may be directed or undirected 

depending on its purpose. 

• Undirected have edges that do not have direction. The 

edges indicate a two-way relationship, in that each edge 

can be traversed in both directions. The figure below 

shows an example of the undirected graph with five 

nodes and six edges. 

 

 

 

 

 

 

 

Figure 4. Undirected graph 

(https://graphicmaths.com/computer-science/graph-

theory/graphs/) 

 

• Directed graph offers directional information. The edges 

indicate a one-way relationship, in that each edge can 

only be traversed in a single direction. The figure below 

shows a simple directed graph with four nodes and five 

edges. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Directed graph 

(https://graphicmaths.com/computer-science/graph-

theory/graphs/) 
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 B. Travelling Salesman Problem 

The Traveling Salesman Problem (TSP) is a famous 

algorithmic challenge in computer science and operations 

research that seeks to identify the most efficient route, typically 

the shortest one, for a salesperson. This route begins with a 

specified origin, visits a given set of cities (nodes), and may or 

may not include a designated destination. The problem has 

significant practical relevance, particularly in optimizing 

logistics and delivery operations. In theoretical computer 

science, the TSP has commanded so much attention because it’s 

so easy to describe yet so difficult to solve. The TSP is classified 

as a combinatorial optimization problem, recognized as NP-hard 

problem, indicating the quantity of potential solution sequences 

escalates exponentially with the increasing number of cities(or 

nodes). As a result, computer scientists have yet to discover an 

algorithm capable of solving TSP instances in polynomial time, 

necessitating the use of approximation algorithms to explore 

numerous permutations and identify the shortest, most cost-

effective route. 

Let us consider an illustrative example of the Traveling 

Salesman Problem (TSP). We are given four cities: A, B, C, D, 

and E, along with the distances separating them. Figure 6 

visually represents these cities and their inter-city distances. For 

this scenario, distinct routes can be generated. The route 

A→D→C→B→E→A is identified as the optimal solution for 

this particular problem with total of 19 distance.  

 

 

 

 

 

 

 

 

 

 

Figure 6. TSP graph simulation 

(https://graphicmaths.com/computer-science/graph-

theory/graphs/) 

 

Numerous heuristic techniques, such as the greedy method, 

ant algorithms, simulated annealing, tabu search, and genetic 

algorithms, have been employed to find efficient solutions to 

this problem. However, as the number of cities grows, the 

computational effort required to find a solution becomes 

challenging. Despite this computational difficulty, approaches 

like genetic algorithms and tabu search can provide near-optimal 

solutions for problems involving thousands of cities. This paper 

aims to provide an overview of some methods utilized for 

solving the Traveling Salesman Problem. 

C. Haversine Formula 

Haversine formula is an essential equation in the finding 

straight line distance between two coordinates on earth using 

latitude and longitude parameters. The haversine formula 

calculates by using trigonometry applied to a round shape. This 

formula discusses the shapes of sides and angles in spherical 

triangle. The haversine method is commonly used in the world 

of aviation to calculate the distance of an aircraft with the 

coordinates of the destination. Following is the haversine 

algorithm calculation: 

 

ℎ𝑎𝑣(𝜃) = ℎ𝑎𝑣(𝛥𝜑) + cos(𝜑1) cos(𝜑2) ℎ𝑎𝑣(𝛥𝜆) 
 

Where, 

• θ is the central angle between two points(measured 

from the earth reference) 

• φ1, φ2 are the latitude of point 1 and point 2 

• λ1, λ2 are the longitude of point 1 and point 2 

• Δφ, Δλ are the latitude difference and longitude 

difference 

Then the haversine function itself is applied to each variable 

above resulting in this following equation, 

 

𝑑 = 2𝑅 ∗ arcsin(√𝑠𝑖𝑛2 (
𝜑2 − 𝜑1

2
) + cos(𝜑1) cos(𝜑2)𝑠𝑖𝑛

2 (
𝜆2 − 𝜆1

2
)) 

 

The variable d is the distance between two points along a 

great circle and R is the Earth radius (6371 km). 

The haversine formula accounts for Earth’s spherical shape 

and remains particularly well-conditioned for numerical 

computation even at small distances. 

 

D. Brute Force Algorithm 

The Brute Force algorithm is a basic problem-solving method 

that relies on exhaustively checking all possible solutions, using 

computational power rather than optimization techniques to 

enhance efficiency. It typically operates based on the problem's 

explicit definition and requirements. This method addresses the 

task in a direct, straightforward, and intuitive manner. In this 

TSP case, it simply calculates the total distance for every 

possible route and selects the shortest one.  

 

E. Nearest Neighbor Algorithm 

To implement the nearest algorithm, begin  at a randomly 

selected starting point. And then, the algorithm finds the closest 

unvisited node and adds it to the sequence. Then, we move to 

the next node and repeat the process of finding the nearest 

unvisited node until all nodes are included in the tour. Finally, 

we returned to the starting airport to complete the cycle. 

Although the nearest neighbor method is simple to grasp and 

performs efficiently, it often fails to produce the optimal 

solution for the traveling salesman problem. The resulting route 

may be considerably longer than the shortest possible path, 

particularly in larger or more complex cases. However, this 

algorithm remains a useful initial approach, offering a fast and 

reasonably effective solution when exact optimization is not 

essential. 

 

III.   IMPLEMENTATION 

As stated previously, the author’s analysis will focus on 

making the shortest flight route and comparing the algorithmic 

performance between the straightforward brute force algorithm 

and heuristic nearest-neighbor algorithm. 
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A. Obtaining Location Data 

The data is collected from airports dataset openflights.org. 

For the purposes of this study, the airport data is grouped into 

five regional categories: Asia, Europe, America, Africa, and 

Australia & Oceania. 

Figure 7. Asia Airport Dataset 

 

Figure 8. Europe Airport Dataset 

 

Figure 9. America Airport Dataset 

 

Figure 10. Africa Airport Dataset 

 

Figure 11. Oceania Airport Dataset 

 

B. Calculating the Distance 

The following Python function implements the Haversine 

formula, which is used to compute the shortest distance between 

two points on the surface of a sphere (i.e., the Earth), given their 

latitude and longitude. 

 
Figure 12. Haversine Formula 

 

Input Parameters: 

• coord1 and coord2: Tuples representing the latitude 

and longitude of two geographical points (in degrees). 

• radius: The radius of the Earth in kilometers (6,371 

km). 

Process: 

• Convert degrees to radian, since trigonometric 

functions in Python use radians, while the geographic 

coordinates uses degree. 

• Calculate the differences between two points. 

• Apply the Haversine Formula and finally compute the 

distance. 

 

 
Figure 13. Distance Matrix 

 

The code generates a distance matrix between all pairs of 

airports using the previously defined Haversine formula. 

• Provides the "cost" or "distance" between any two 

nodes. 

• After execution, the distance_matrix[i][j] holds the 

geographic distance (in km) between airport i and 

airport j. This matrix is then used as the input for the 

algorithms. 

 

https://openflights.org/data.php
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C. Implementing Algorithms 

The following code implements the Nearest Neighbor (NN) 

algorithm. A greedy heuristic that constructs a tour by always 

selecting the nearest unvisited airport at each step. 

• Retrieves the number of airports, based on the size of 

the distance matrix. 

• The tour starts at the first airport (index 0), which is 

marked as visited. Loops through the remaining 

unvisited cities to build the tour, while also calculating 

the distance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Nearest Neighbor Algorithm 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Brute Force Algorithm 

 

• Evaluate every possible tour of the airports by 

generating all possible permutations of cities to visit, 

excluding the starting airport (index 0). This is because 

the salesman always starts and ends at the first airport. 

• Build a complete route by adding the starting airport 

(index 0) at the beginning and end. 

• Calculates the total travel distance. Then, it returns to 

the one with the lowest total travel cost. 

 

 
Figure 16. Execution Time 

 

It records the time before starting the algorithm. Records the 

time again after the function finishes execution. Then calculates 

the total time elapsed by subtracting the start time from the end 

time. 

 

D. Visualizing the Flight Route 

Converts the indices of the cities in the nn_path (also for the 

brute force respectively) into actual geographic coordinates 

(latitude and longitude). Then creating a new plot using 

Basemap.  

 

 
Figure 17. Plot Visualization 

 

Labelling the Node 

• The coordinates are separated into latitudes and 

longitudes. These are converted into 2D map 

coordinates using m().  

• Each airport on the path is labeled with its visiting 

order and code. 

 

 
Figure 18. Route and Label 

 

E. Implementation Results 

The results are Travelling Salesman Problem graph in each 

region respectively where NN is a flight route using Nearest 

Neighbor Algorithm and BF is using Brute Force algorithm. 

a. Asia Group 

• NN distance: 26265.29 km 

• BF distance: 22269.81 km 
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Figure 19. NN Asia Route 

 
Figure 20. BF Asia Route 

 

b. Europe Group 

• NN: 12187.50 km 

• BF: 10114.82 km 

 
Figure 21. NN Europe Route 

 

 
Figure 22. BF Europe Route 

 

c. America Group 

• NN: 26689.64 km 

• BF: 25414.92 km 

 
Figure 23. NN America Route 

 
Figure 24. BF America Route 

 

d. Africa Group 

• NN: 22221.94 km 

• BF: 21296.35 km 

 
Figure 25. NN Africa Route 

 

 
Figure 26. BF Africa Route 

 

e. Oceania Group 

• NN: 29201.02 km 

• BF: 22033.65 km 
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Figure 27. NN Oceania Route 

 
Figure 28. NN Oceania Route 

 

IV.   CONCLUSION 

The implementation evaluates two algorithms—Nearest 

Neighbor (NN) and Brute Force (BF)—for solving the 

Travelling Salesman Problem (TSP) across five regional 

datasets: Asia, Europe, America, Africa, and Oceania. Each 

dataset contains 10 to 13 major international airports. The results 

are summarized in Table 1 and analyzed further below. 

 

 
Table 1. Data Analysis 

 

A. Flight Route Accuracy 

In terms of accuracy, the Brute Force algorithm consistently 

yields the shortest total travel distances, as it exhaustively 

explores all possible permutations. The Nearest Neighbor 

algorithm, on the other hand, provides faster but sub-optimal 

solutions. Table 1 shows that the average NN/BF ratio is greater 

than 1, confirming that NN algorithm consistently produces 

longer flight routes compared to BF algorithm, which 

guarantees the optimal solutions.  

 

 

 

 

 

 

 

 

 

Figure 29. NN/BF Ratio 

 

Geographic complexity and airports distribution likely 

influence the performance of heuristic algorithms like NN. The 

more scattered or irregular the region, the more prone NN is to 

suboptimality. The highest deviation occurs in Oceania, where 

NN produces a path 32.53% longer than BF. In contrast, Africa 

shows the smallest deviation, with only 4.35% longer path, 

suggesting that NN performs better when airport locations are 

relatively well-aligned geographically. These observations 

highlight the sensitivity of the NN heuristic to spatial layout. For 

example, NN performs poorly in regions like Oceania and Asia, 

where the distributions are more scattered or non-linear. 

 

B. Execution Time 

Execution time reveals a stark contrast between the two 

algorithms. which can be directly attributed to their 

computational complexity: 

• Nearest Neighbor: O(𝑛2) 

NN visits each airport once, selecting the nearest 

unvisited airport at each step making it quadratic in 

complexity. Table 1 shows that NN execution time is 

near zero. 

• Brute Force: O(n!) 

Brute Force evaluates every possible permutation of the 

cities, making it grow extremely fast with increasing n. 

Table 1 shows that BF execution time is immense.  

 

The application of both algorithms, nearest neighbor and 

brute force, has successfully made the flight route, even though 

each algorithm has its upsides and downsides. The application 

of approximation algorithm, which is nearest neighbor, does not 

produce optimal results, but it capable of delivering solutions 

that fall within acceptable or near-optimal ranges in a short time. 

While brute force always produces optimal results even though 

it consumes a lot of time.  

 

ATTACHMENT 

• GitHub Repository:  

https://github.com/hafizhperdana/MakalahMatdis25/tr

ee/main/MakalahMatdis 

• YouTube Video: 

https://youtu.be/0USvvii8eBw  
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