

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Flight Route Optimization with The Travelling

Salesman Problem and Graph Theory

Moh. Hafizh Irham Perdana - 13524025

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
E-mail: hafizhirham06@gmail.com, 13524025@std.stei.itb.ac.id

Abstract—Optimizing flight routes is a critical challenge in air

transportation, especially when considering the Earth's spherical

geometry. This paper applies the Travelling Salesman Problem

(TSP) within the framework of graph theory to model and

determine the most efficient route that visits a set of airports

exactly once and returns to the starting point. By treating each

airport as a node and the great-circle distances between them as

weighted edges, we implement both heuristic and exact

algorithms—such as Nearest Neighbor and Brute Force—to

compare performance and route quality. The study also presents

visualizations of the calculated routes based on a spherical Earth

model, emphasizing the significance of using spherical geometry in

realistic distance calculations. This approach demonstrates the

power of computational optimization in real-world geospatial

problems and highlights the trade-offs between accuracy and

efficiency in algorithmic solutions.

Keywords—Traveling Salesman Problem, flight route, graph

theory.

I. INTRODUCTION

The global aviation industry is a cornerstone of modern

transportation, facilitating the rapid movement of people and

goods across countries and continents. As air traffic continues

to grow, the demand for route planning that is not only

economically efficient but also geographically accurate, has

become increasingly critical. Airlines and logistics companies

continuously seek to optimize their flight schedules to reduce

fuel consumption, lower operational costs, and increase

passenger satisfaction. One of the most fundamental

computational problems underlying these efforts is the

optimization of multi-stop flight routes — a problem that, at its

core, mirrors the classical Travelling Salesman Problem (TSP).

The Travelling Salesman Problem is a well-known

combinatorial optimization problem in theoretical computer

science. It asks: "Given a list of cities and the pairwise distances

between them, what is the shortest possible route that visits each

city exactly once and returns to the starting city?" Despite its

seemingly simple formulation, the TSP is classified as NP-hard,

meaning there is no known polynomial-time algorithm to solve

all instances of the problem efficiently. The number of possible

routes increases factorially with the number of cities, making

brute-force methods computationally infeasible beyond small

inputs. As such, practical solutions often rely on heuristics or

approximation algorithms that balance computational efficiency

with solution quality.

In this paper, we model the problem of flight route

optimization as a specific instance of the TSP. Each airport is

treated as a node in a graph, and each direct flight path between

two airports is represented as an edge weighted by the

geographical distance between them. To accurately reflect the

Earth’s surface, which is approximately spherical, the distances

between airports are not computed using flat (Euclidean)

geometry. Instead, we employ spherical geometry, specifically

the great-circle distance formula, which calculates the shortest

path between two points on the surface of a sphere.

The resulting mathematical model is a complete-weighted-

undirected graph, in which each node (airport) is connected to

every other node by an edge whose weight corresponds to the

great-circle distance. This model captures the key characteristics

of real-world flight networks, where airlines often have the

option to fly directly between any pair of major airports, and the

cost of that flight is influenced primarily by distance.

To solve the TSP in this context, we implement and analyze

two algorithmic approaches with different computational trade-

offs:

1. Brute-Force Search, which enumerates all possible

permutations of airport visits to find the exact shortest

route. This method guarantees the optimal solution but

is computationally expensive and limited to smaller

instances (typically fewer than 10 airports).

2. Nearest Neighbor Heuristic, a greedy approximation

algorithm that builds a tour by repeatedly selecting the

nearest unvisited airport. Although it does not always

yield the optimal solution, this method offers much

faster computation and remains practical for larger

datasets.

II. BASIC THEORY

A. Graph Fundamentals

Graph is a type of data structure consisting of vertices and

edges. It is useful in many fields such as mathematics, data

science, computer science, or even economics. Graph data

structure can be used to model various real-world scenarios,

analyze correlation between packs of objects, and understand

the relation between variables or parameters. In this context,

considering flight routes or networks, nodes represent points of

the airport locations while edges describe the path of the flights.

A graph can be expressed as an ordered pair of two sets

vertices(V) and edges(E). Formally, graph G is defined as:

G = (V, E)

mailto:hafizhirham06@gmail.com
mailto:13524025@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

• V is set of vertices, defined as nodes that can be labeled

or unlabeled as a representation of objects or elements

being connected.

V = {v1, v2, v3, … , vn}

• E is a set of edges that are the connections between pairs

of vertices. They represent the relationships or

associations between the objects. These two are the

fundamental components of graph data structures.

E = {e1, e2, e3, … , en}

Defined graph must consist of a minimum of one vertices with

no edge’s requirements, meaning that it can be consist without

edges or many edges.

A graph can also be represented visually with the point or

node as the vertices and line as the edges.

Figure 1. Simple graph

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/20-Graf-Bagian1-2024.pdf)

A graph can be weighted or unweight depending on its

purpose and objectives.

• Unweighted graph is a graph where all edges are

considered equal. By this definition, there is no

numerical value (weight) assigned to any edge. This

graph focuses on the connections, not the cost, distance,

or time between them, without any measure of how

strong or long those connections are. These types of

graphs are used many to represent social networks and

network connectivity.

Figure 2. Unweighted graph

(https://graphicmaths.com/computer-science/graph-

theory/graphs/)

• Weighted graph is a graph where each edge has a

numerical value (called a weight). This weight can

represent distance, cost, time, energy, or any measurable

factor. This graph not only focuses on how objects are

connected, but how strong or weak those connections are.

This graph has much more complexity but offers more

information and analysis.

Figure 3. Weighted graph

(https://graphicmaths.com/computer-science/graph-

theory/graphs/)

Weighted graphs frequently serve to represent tangible

entities and the connections among them. An instance of

this can be found within the framework of Google Maps,

where cities represent nodes, roads stand as edges, and

the edge weights signify the time or distance of two

cities. An example of the implementation is to find the

shortest path between objects, optimal delivery cost, or

network routing. In this paper case it is to optimize flight

route considering its distance.

Besides the weight, a graph may be directed or undirected

depending on its purpose.

• Undirected have edges that do not have direction. The

edges indicate a two-way relationship, in that each edge

can be traversed in both directions. The figure below

shows an example of the undirected graph with five

nodes and six edges.

Figure 4. Undirected graph

(https://graphicmaths.com/computer-science/graph-

theory/graphs/)

• Directed graph offers directional information. The edges

indicate a one-way relationship, in that each edge can

only be traversed in a single direction. The figure below

shows a simple directed graph with four nodes and five

edges.

Figure 5. Directed graph

(https://graphicmaths.com/computer-science/graph-

theory/graphs/)

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://graphicmaths.com/computer-science/graph-theory/graphs/
https://graphicmaths.com/computer-science/graph-theory/graphs/
https://graphicmaths.com/computer-science/graph-theory/graphs/
https://graphicmaths.com/computer-science/graph-theory/graphs/
https://graphicmaths.com/computer-science/graph-theory/graphs/
https://graphicmaths.com/computer-science/graph-theory/graphs/
https://graphicmaths.com/computer-science/graph-theory/graphs/
https://graphicmaths.com/computer-science/graph-theory/graphs/

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

 B. Travelling Salesman Problem

The Traveling Salesman Problem (TSP) is a famous

algorithmic challenge in computer science and operations

research that seeks to identify the most efficient route, typically

the shortest one, for a salesperson. This route begins with a

specified origin, visits a given set of cities (nodes), and may or

may not include a designated destination. The problem has

significant practical relevance, particularly in optimizing

logistics and delivery operations. In theoretical computer

science, the TSP has commanded so much attention because it’s

so easy to describe yet so difficult to solve. The TSP is classified

as a combinatorial optimization problem, recognized as NP-hard

problem, indicating the quantity of potential solution sequences

escalates exponentially with the increasing number of cities(or

nodes). As a result, computer scientists have yet to discover an

algorithm capable of solving TSP instances in polynomial time,

necessitating the use of approximation algorithms to explore

numerous permutations and identify the shortest, most cost-

effective route.

Let us consider an illustrative example of the Traveling

Salesman Problem (TSP). We are given four cities: A, B, C, D,

and E, along with the distances separating them. Figure 6

visually represents these cities and their inter-city distances. For

this scenario, distinct routes can be generated. The route

A→D→C→B→E→A is identified as the optimal solution for

this particular problem with total of 19 distance.

Figure 6. TSP graph simulation

(https://graphicmaths.com/computer-science/graph-

theory/graphs/)

Numerous heuristic techniques, such as the greedy method,

ant algorithms, simulated annealing, tabu search, and genetic

algorithms, have been employed to find efficient solutions to

this problem. However, as the number of cities grows, the

computational effort required to find a solution becomes

challenging. Despite this computational difficulty, approaches

like genetic algorithms and tabu search can provide near-optimal

solutions for problems involving thousands of cities. This paper

aims to provide an overview of some methods utilized for

solving the Traveling Salesman Problem.

C. Haversine Formula

Haversine formula is an essential equation in the finding

straight line distance between two coordinates on earth using

latitude and longitude parameters. The haversine formula

calculates by using trigonometry applied to a round shape. This

formula discusses the shapes of sides and angles in spherical

triangle. The haversine method is commonly used in the world

of aviation to calculate the distance of an aircraft with the

coordinates of the destination. Following is the haversine

algorithm calculation:

ℎ𝑎𝑣(𝜃) = ℎ𝑎𝑣(𝛥𝜑) + cos(𝜑1) cos(𝜑2) ℎ𝑎𝑣(𝛥𝜆)

Where,

• θ is the central angle between two points(measured

from the earth reference)

• φ1, φ2 are the latitude of point 1 and point 2

• λ1, λ2 are the longitude of point 1 and point 2

• Δφ, Δλ are the latitude difference and longitude

difference

Then the haversine function itself is applied to each variable

above resulting in this following equation,

𝑑 = 2𝑅 ∗ arcsin(√𝑠𝑖𝑛2 (
𝜑2 − 𝜑1

2
) + cos(𝜑1) cos(𝜑2)𝑠𝑖𝑛

2 (
𝜆2 − 𝜆1

2
))

The variable d is the distance between two points along a

great circle and R is the Earth radius (6371 km).

The haversine formula accounts for Earth’s spherical shape

and remains particularly well-conditioned for numerical

computation even at small distances.

D. Brute Force Algorithm

The Brute Force algorithm is a basic problem-solving method

that relies on exhaustively checking all possible solutions, using

computational power rather than optimization techniques to

enhance efficiency. It typically operates based on the problem's

explicit definition and requirements. This method addresses the

task in a direct, straightforward, and intuitive manner. In this

TSP case, it simply calculates the total distance for every

possible route and selects the shortest one.

E. Nearest Neighbor Algorithm

To implement the nearest algorithm, begin at a randomly

selected starting point. And then, the algorithm finds the closest

unvisited node and adds it to the sequence. Then, we move to

the next node and repeat the process of finding the nearest

unvisited node until all nodes are included in the tour. Finally,

we returned to the starting airport to complete the cycle.

Although the nearest neighbor method is simple to grasp and

performs efficiently, it often fails to produce the optimal

solution for the traveling salesman problem. The resulting route

may be considerably longer than the shortest possible path,

particularly in larger or more complex cases. However, this

algorithm remains a useful initial approach, offering a fast and

reasonably effective solution when exact optimization is not

essential.

III. IMPLEMENTATION

As stated previously, the author’s analysis will focus on

making the shortest flight route and comparing the algorithmic

performance between the straightforward brute force algorithm

and heuristic nearest-neighbor algorithm.

https://graphicmaths.com/computer-science/graph-theory/graphs/
https://graphicmaths.com/computer-science/graph-theory/graphs/
http://en.wikipedia.org/wiki/Haversine_formula

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

A. Obtaining Location Data

The data is collected from airports dataset openflights.org.

For the purposes of this study, the airport data is grouped into

five regional categories: Asia, Europe, America, Africa, and

Australia & Oceania.

Figure 7. Asia Airport Dataset

Figure 8. Europe Airport Dataset

Figure 9. America Airport Dataset

Figure 10. Africa Airport Dataset

Figure 11. Oceania Airport Dataset

B. Calculating the Distance

The following Python function implements the Haversine

formula, which is used to compute the shortest distance between

two points on the surface of a sphere (i.e., the Earth), given their

latitude and longitude.

Figure 12. Haversine Formula

Input Parameters:

• coord1 and coord2: Tuples representing the latitude

and longitude of two geographical points (in degrees).

• radius: The radius of the Earth in kilometers (6,371

km).

Process:

• Convert degrees to radian, since trigonometric

functions in Python use radians, while the geographic

coordinates uses degree.

• Calculate the differences between two points.

• Apply the Haversine Formula and finally compute the

distance.

Figure 13. Distance Matrix

The code generates a distance matrix between all pairs of

airports using the previously defined Haversine formula.

• Provides the "cost" or "distance" between any two

nodes.

• After execution, the distance_matrix[i][j] holds the

geographic distance (in km) between airport i and

airport j. This matrix is then used as the input for the

algorithms.

https://openflights.org/data.php

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

C. Implementing Algorithms

The following code implements the Nearest Neighbor (NN)

algorithm. A greedy heuristic that constructs a tour by always

selecting the nearest unvisited airport at each step.

• Retrieves the number of airports, based on the size of

the distance matrix.

• The tour starts at the first airport (index 0), which is

marked as visited. Loops through the remaining

unvisited cities to build the tour, while also calculating

the distance.

Figure 14. Nearest Neighbor Algorithm

Figure 15. Brute Force Algorithm

• Evaluate every possible tour of the airports by

generating all possible permutations of cities to visit,

excluding the starting airport (index 0). This is because

the salesman always starts and ends at the first airport.

• Build a complete route by adding the starting airport

(index 0) at the beginning and end.

• Calculates the total travel distance. Then, it returns to

the one with the lowest total travel cost.

Figure 16. Execution Time

It records the time before starting the algorithm. Records the

time again after the function finishes execution. Then calculates

the total time elapsed by subtracting the start time from the end

time.

D. Visualizing the Flight Route

Converts the indices of the cities in the nn_path (also for the

brute force respectively) into actual geographic coordinates

(latitude and longitude). Then creating a new plot using

Basemap.

Figure 17. Plot Visualization

Labelling the Node

• The coordinates are separated into latitudes and

longitudes. These are converted into 2D map

coordinates using m().

• Each airport on the path is labeled with its visiting

order and code.

Figure 18. Route and Label

E. Implementation Results

The results are Travelling Salesman Problem graph in each

region respectively where NN is a flight route using Nearest

Neighbor Algorithm and BF is using Brute Force algorithm.

a. Asia Group

• NN distance: 26265.29 km

• BF distance: 22269.81 km

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Figure 19. NN Asia Route

Figure 20. BF Asia Route

b. Europe Group

• NN: 12187.50 km

• BF: 10114.82 km

Figure 21. NN Europe Route

Figure 22. BF Europe Route

c. America Group

• NN: 26689.64 km

• BF: 25414.92 km

Figure 23. NN America Route

Figure 24. BF America Route

d. Africa Group

• NN: 22221.94 km

• BF: 21296.35 km

Figure 25. NN Africa Route

Figure 26. BF Africa Route

e. Oceania Group

• NN: 29201.02 km

• BF: 22033.65 km

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Figure 27. NN Oceania Route

Figure 28. NN Oceania Route

IV. CONCLUSION

The implementation evaluates two algorithms—Nearest

Neighbor (NN) and Brute Force (BF)—for solving the

Travelling Salesman Problem (TSP) across five regional

datasets: Asia, Europe, America, Africa, and Oceania. Each

dataset contains 10 to 13 major international airports. The results

are summarized in Table 1 and analyzed further below.

Table 1. Data Analysis

A. Flight Route Accuracy

In terms of accuracy, the Brute Force algorithm consistently

yields the shortest total travel distances, as it exhaustively

explores all possible permutations. The Nearest Neighbor

algorithm, on the other hand, provides faster but sub-optimal

solutions. Table 1 shows that the average NN/BF ratio is greater

than 1, confirming that NN algorithm consistently produces

longer flight routes compared to BF algorithm, which

guarantees the optimal solutions.

Figure 29. NN/BF Ratio

Geographic complexity and airports distribution likely

influence the performance of heuristic algorithms like NN. The

more scattered or irregular the region, the more prone NN is to

suboptimality. The highest deviation occurs in Oceania, where

NN produces a path 32.53% longer than BF. In contrast, Africa

shows the smallest deviation, with only 4.35% longer path,

suggesting that NN performs better when airport locations are

relatively well-aligned geographically. These observations

highlight the sensitivity of the NN heuristic to spatial layout. For

example, NN performs poorly in regions like Oceania and Asia,

where the distributions are more scattered or non-linear.

B. Execution Time

Execution time reveals a stark contrast between the two

algorithms. which can be directly attributed to their

computational complexity:

• Nearest Neighbor: O(𝑛2)

NN visits each airport once, selecting the nearest

unvisited airport at each step making it quadratic in

complexity. Table 1 shows that NN execution time is

near zero.

• Brute Force: O(n!)

Brute Force evaluates every possible permutation of the

cities, making it grow extremely fast with increasing n.

Table 1 shows that BF execution time is immense.

The application of both algorithms, nearest neighbor and

brute force, has successfully made the flight route, even though

each algorithm has its upsides and downsides. The application

of approximation algorithm, which is nearest neighbor, does not

produce optimal results, but it capable of delivering solutions

that fall within acceptable or near-optimal ranges in a short time.

While brute force always produces optimal results even though

it consumes a lot of time.

ATTACHMENT

• GitHub Repository:

https://github.com/hafizhperdana/MakalahMatdis25/tr

ee/main/MakalahMatdis

• YouTube Video:

https://youtu.be/0USvvii8eBw

ACKNOWLEDGMENT

The author wishes to express deep gratitude to God Almighty

for His continuous blessings and guidance, which made it

possible to conduct this research and complete the paper

smoothly. Heartfelt thanks are also directed at the IF1220 course

lecturer, Dr. Ir. Rinaldi Munir, M.T., for his unwavering

dedication and outstanding mentorship. His valuable insights,

teaching, and support have significantly aided the author in

grasping the course material and finishing this assignment. May

the knowledge and kindness he has imparted continue to bring

meaningful impact.

https://github.com/hafizhperdana/MakalahMatdis25/tree/main/MakalahMatdis
https://github.com/hafizhperdana/MakalahMatdis25/tree/main/MakalahMatdis
https://youtu.be/0USvvii8eBw

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

REFERENCES

[1] K. Rai, L. Madan, and K. Anand, “Research Paper on Travelling Salesman

Problem and It’s Solution Using Genetic Algorithm,” International

Journal of Innovative Research in Technology, Vol. 1, Issue 1, pp. 103–
114, 2014.

[2] D. A. Prasetya, P. T. Nguyen, R. Faizullin, I. Iswanto, and E. F. Armay,

“Resolving the Shortest Path Problem using the Haversine Algorithm,”
Journal of Critical Reviews, Vol. 7, Issues 1, pp. 62–64, 2020.

[3] C. Rego, D. Gamboa, F. Glover, and C. Osterman, “Traveling salesman

problem heuristics: Leading methods, implementations and latest
advances,” European Journal of Operational Research, pp. 427–441,

2011.
[4] GraphicMaths, “Travelling Salesman Problem,” available online:

https://graphicmaths.com/computer-science/graph-theory/travelling-

salesman-problem/, [accessed: 17 June 2025].
[5] Routific, “Algorithms for the Travelling Salesman Problem,” available

online: https://www.routific.com/blog/travelling-salesman-problem,

[accessed: 18 June 2025].
[6] GeeksForGeeks, “Introduction to Graph Data Structure,” available online:

https://www.geeksforgeeks.org/introduction-to-graphs-data-structure-

and-algorithm-tutorials/, [accessed: 18 June 2025].
[7] Matlab, “Directed and Undirected Graphs,” available online:

https://www.mathworks.com/help/matlab/math/directed-and-undirected-

graphs.html, [accessed: 17 June 2025].
[8] OpenFlights, “Airport, airline and route data,” available online:

https://github.com/jpatokal/openflights/blob/master/data/airports.dat,

[accessed: 18 June 2025].
[9] MovableType, “Calculate Distance, Bearing and More Between

Latitude/Longitude Points,” available online: https://www.movable-

type.co.uk/scripts/latlong.html, [accessed: 19 June 2025].
[10] R. Munir, Graf (Bagian 1), Program Studi Teknik Informatika, STEI-ITB,

available online:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf, , [accessed: 17 June 2025].

[11] R. Munir, Graf (Bagian 2), Program Studi Teknik Informatika, STEI-ITB,

available online:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-

Graf-Bagian2-2024.pdf, , [accessed: 17 June 2025].

[12] R. Munir, Graf (Bagian 3), Program Studi Teknik Informatika, STEI-ITB,
available online:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-

Graf-Bagian3-2024.pdf, [accessed: 17 June 2025].

STATEMENT

Hereby, I declare that this paper I have written is my own

work, not a reproduction or translation of someone else’s paper,

and not plagiarized.

Bandung, 20 June 2025

Moh. Hafizh Irham Perdana (13524025)

https://graphicmaths.com/computer-science/graph-theory/travelling-salesman-problem/
https://graphicmaths.com/computer-science/graph-theory/travelling-salesman-problem/
https://www.routific.com/blog/travelling-salesman-problem
https://www.geeksforgeeks.org/introduction-to-graphs-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/introduction-to-graphs-data-structure-and-algorithm-tutorials/
https://www.mathworks.com/help/matlab/math/directed-and-undirected-graphs.html
https://www.mathworks.com/help/matlab/math/directed-and-undirected-graphs.html
https://github.com/jpatokal/openflights/blob/master/data/airports.dat
https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf

