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Abstract— Return Oriented Programming (ROP) is the act of 

using existing assembly instructions inside a binary executable to 

create a series of instructions that executes commands outside of 

the intended use of the original binary executable. This paper 

proposes a novel formalization of the ROP exploit construction 

process as a graph traversal problem. Specifically, this paper will 

model the search space for viable gadget chains as paths within a 

directed graph, where nodes represent states of the registers and 

memories and edges represent feasible transitions between them 

using gadgets. This enables the application of established graph-

theoretic algorithms and analysis to systematically investigate the 

properties, complexity, and practical limitations of ROP attacks. 

By framing ROP exploitation in this graph-theoretic context, our 

approach aims to provide deeper insights into attack feasibility, 

gadget availability constraints, and the effectiveness of ASLR/PIE 

as a mitigation strategy.  

 

Keywords—ASLR, Gadget, Position Independent Executable, 

Return Oriented Programming 

 

 

I.   INTRODUCTION 

Binaries, or executables, are machine code for a computer to 

execute. Binary exploitation involves analyzing and 

manipulating executable files to uncover vulnerabilities that 

allow unauthorized control flow manipulation, often through 

reverse engineering of machine code.  

A ROP-based exploit specifically is the act of repurposing 

existing machine code fragments already present in the 

program’s memory to construct malicious logic. The machine 

code fragments that is being repurposed to construct the exploit 

is called gadgets. Gadgets must end with a “ret” assembly 

insruction as this allows the attacker to redirect code execution 

back to the stack in which the attacker has already prepared a 

series of gadgets that executes the exploit. The primary goal of 

a ROP-based exploit is typically to invoke the system() function 

from the C standard library, passing the string “/bin/sh” as its 

argument. This executes a shell command, granting the attacker 

terminal access to the vulnerable machine and potentially 

exposing sensitive files and system resources. 

The fundamental mechanism enabling ROP gadget 

exploitation begins with a buffer overflow vulnerability, where 

an attacker supplies more input data than the program's buffer 

can hold. This overflow corrupts the call stack, specifically 

targeting the return address of the vulnerable function. By 

carefully crafting their input, the attacker overwrites this return 

address to point not to legitimate code, but rather back into the 

stack memory itself. When the compromised function completes 

and executes its ret instruction, instead of returning to the caller, 

the program begins executing whatever data resides at the 

attacker-specified stack location. The attacker then prepares the 

stack with a carefully constructed sequence of gadget addresses, 

effectively creating a malicious program by chaining together 

existing code fragments. Each “ret” instruction at the end of a 

gadget acts as a logical jump to the next gadget in the chain, 

allowing the attacker to stitch together complex behaviors from 

these borrowed code pieces. 

Address Space Layout Randomization (ASLR) was 

developed specifically to combat this type of exploitation. 

ASLR is a kernel-level security technique that randomizes the 

memory addresses used by system components (stack, heap, 

shared libraries) when a process starts. It makes memory 

addresses non-deterministic across different runs of a program. 

This effectively makes it difficult for the attacker to construct 

the exploit due to the fact that the main mechanism of a ROP-

based exploit is to redirect code execution to execute functions 

inside shared libraries. 

Another layer of protection to combat ROP-based 

exploitation is the implementation of Position Independent 

Executables (PIE). In summary, PIE is a form of compiled 

binary in which the position of instructions inside the binary 

itself is randomized. The difference between PIE and ASLR is 

that PIE randomizes the location of functions inside the binary 

itself, such as the main function. While ASLR randomizes the 

functions inside the shared C standard library. 

 

II. BINARY EXPLOITATION 

Binary exploitation is the art of identifying and leveraging 

vulnerabilities within a compiled program, or binary, to force it 

to behave in unintended ways, ultimately for the purpose of 

compromising a system. The end goal in binary exploitation is 

typically to achieve arbitrary code execution, enabling the 

attacker to run commands, spawn a shell, and gain control over 

the machine with the privileges of the exploited application. 

In binary exploitation, there are specific techniques that an 

attacker can use to reach their goal. Some techniques are 

dependant on other techniques such as ROP being dependant on 
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buffer overflow. In the following section this paper will cover 

each techniques in greater detail. 

 

A. Buffer Overflow 

A buffer overflow is a type of software vulnerability that 

occurs when a program writes more data to a buffer (a temporary 

storage area in memory) than it can hold. This causes the excess 

data to overflow into adjacent memory spaces, potentially 

corrupting data, crashing the program, or allowing attackers to 

execute malicious code. 

The most common type of buffer overflow and the type that is 

relevant to the topic of this paper is a stack-based buffer 

overflow. A stack-based buffer overflow is a buffer overflow in 

which the data that are being overwritten reside in the stack. This 

is because the buffer (usually in form of a character array)  is not 

allocated using the malloc() function in C or its equivalent. 

Rather, its explicitly defined with a fixed size similar to the code 

snippet shown below. 

 

int buffer[BUFF_SIZE]; 

// Code 2.1 
 

The vulnerability that is being exploited in a stack-based 

buffer overflow is the fact that the return address that is pointed 

by the stack pointer resides in the stack itself. This means that if 

we have the capability to overwrite the stack, we also have the 

capability to overwrite the return address pointed by the stack 

pointer.  

Below is a figure showing the condition of the stack when 

executing a vulnerable function. Note that ESP or the stack 

pointer does not point to the return address. This is merely 

because the function is not yet completed. 

 

The following figure is a figure showing what the stack looks 

like right before the program executes a “RET”  instruction. 

 

 

 

 

 

 

 

 

 

Here is a demonstration of a simple program that has a stack-

based buffer overflow vulnerability. 

void vuln(){ 

    char buffer[6]; 

    fgets(buffer,100,stdin); //takes 100 

characters, larger than the buffer! 

} 

void win(){ 

    puts("You're not supposed to be here!"); 

} 

int main(){ 

    vuln(); 

    return 0; 

} 

// Code 2.2 A vulnerable program 
And here is a simple script that exploits our vulnerable 

program. 

from pwn import * 

p = process("./vuln") //we have compiled our 

vulnerable program with the name “vuln” 

win_address = p64(0x401159)  

payload = b"A"*14 + win_address 

p.sendline(payload) 

p.interactive() 

// Code 2.3 An example script to exploit a 

buffer overflow 
The python script above will overflow the buffer with a 

padding that consists of 14 A’s and then put the address of our 

win() function right after the padding. Running the Python script 

will make our program output the message “You’re not 

supposed to be here!” that originally should not be outputted 

since we never call the win() function. Because we overwrite the 

return address in the stack, the program does not comeback to 

main after calling vuln(), but instead goes to the win() function. 

 

Fig 2.1 The position of the stack pointer and the 

base pointer in a function call 

Fig 2.2 The position of the stack pointer right before the 

“ret” instruction 
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B. Return Oriented Programming 

Return-Oriented Programming (ROP) stands as a 

sophisticated and potent technique in the arsenal of cyber-

attackers, allowing them to execute malicious code on a target 

system despite the presence of modern security defenses. It 

represents a significant evolution from traditional code injection 

attacks by cleverly repurposing existing, legitimate code for 

nefarious ends. This method of attack is particularly effective 

against systems that employ security measures like Data 

Execution Prevention (DEP) or Non-executable (NX) bit, which 

are designed to prevent the execution of code from memory 

regions intended for data, such as the stack. 

The core principle of ROP lies in the creative abuse of a 

program's control flow, typically initiated by a memory 

corruption vulnerability such as a stack buffer overflow. When 

a function is called, the address of the instruction to which it 

should return upon completion is stored on the call stack. An 

attacker can exploit a buffer overflow to overwrite this return 

address with the address of a chosen piece of code. However, 

instead of pointing to the start of a whole function, it only points 

to parts of this function to use only specific instructions.These 

small snippets are what we call as "gadgets." 

The following figure shows how a buffer overflow allows an 

attacker to construct a gadget chain. Due to the fact that the “ret” 

assembly instruction will redirect code execution to the address 

that is pointed by the stack pointer and then pops the stack, we 

can chain gadgets such that after one gadget is executed it 

continues to the next address in the stack, which is the address 

of another gadget the attacker has prepared. 

C. ASLR and PIE Bypassing 

A foundational defense against Return Oriented Programming 

is Address Space Layout Randomization (ASLR), a technique 

employed by modern operating systems to thwart attacks that 

rely on predictable memory layouts. ASLR works by 

randomizing the base addresses of key memory segments—such 

as the stack, heap, and shared libraries—each time a program is 

launched. This randomization means an attacker can no longer 

rely on hardcoded addresses to locate functions or ROP gadgets 

needed for their exploit. If the attacker aims for a function in a 

library, its location will be different with every execution, 

causing a payload that works once to crash the program on the 

next attempt. 

 

However, ASLR in its initial form had a significant limitation: 

while it effectively randomized libraries and other data 

segments, the main program executable itself was often loaded 

at a fixed, predictable address. This created a static island of 

code that attackers could reliably analyze to find gadgets for 

their ROP chains, undermining the protection ASLR was meant 

to provide. To close this loophole, the concept of Position-

Independent Executables (PIE) was introduced. PIE is a 

compiler feature that generates binary code using relative 

addressing instead of absolute memory addresses. This means 

the executable's code does not depend on being loaded at a 

specific location; it can function correctly from anywhere in 

memory. 

The true power of this defensive strategy is realized when 

ASLR and PIE work in synergy. When an executable is 

compiled as a PIE, the operating system's ASLR mechanism is 

empowered to load the main program at a new, random memory 

address upon every execution, just as it does for libraries. This 

eliminates the last remaining static region of code an attacker 

could depend on. Together, a PIE-enabled binary running with 

full ASLR forces an adversary into a much more difficult 

position. They must not only find a memory corruption bug but 

also a separate information disclosure vulnerability to leak the 

randomized addresses before they can even begin to construct a 

reliable exploit, significantly raising the complexity and cost of 

a successful attack. 

Although it is difficult to bypass ASLR and PIE when they are 

combined, we still have several viable options to bypass 

security. One of the most consistent option is to try and find 

memory leaks in other parts of the program. This means that 

even with PIE and ASLR, the attacker can still calculate offsets 

of specific points of interest at runtime. Even without direct 

memory leak of a specific point of interest, the attacker can still 

calculate the address of these points of interest by calculating 

the offset between them and known leaked pointers. 

 

 

III. GRAPH THEORY 

In the realm of mathematics, particularly within the branch of 

graph theory, a graph is a fundamental structure used to model 

pairwise relationships between objects. It is a mathematical 

Fig 2.3 Illustration of a ROP chain in the stack 

Fig 2.4 Address space layout randomization 

example 

(Taken from wallarm.com/) 
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representation of a network, consisting of a set of objects and 

the connections between them. 

At its core, a graph is formally defined as an ordered pair 

𝐺 = (𝑉, 𝐸) 

where V is a finite, non-empty set of vertices (also known as 

nodes or points), and E is a set of edges (also called lines or 

arcs). Each edge connects a pair of vertices. An edge represents 

a relationship or connection between the two vertices it links. 

In the realm of mathematics, particularly within the branch of 

graph theory, a graph is a fundamental structure used to model 

pairwise relationships between objects. It is a mathematical 

representation of a network, consisting of a set of objects and 

the connections between them. 

 

A. Types of Graph 

Based on the organization of edges in a graph, we can classify 

graphs as these two categories 

 

1. Simple graph 

A simple graph is a type of graph that is undirected, 

contains no loops (edges connecting a vertex to itself), and 

has no multiple edges between any two vertices. 

 

2. Non-simple graph 

A non-simple graph is a graph that does not adhere to the 

restrictions of a simple graph. Specifically, it can contain 

multiple edges between the same pair of vertices (also 

known as parallel edges) and/or loops (edges connecting 

a vertex to itself). 

 

Based on the orientation of the edges in a graph, we can 

classify graphs as these two other categories 

 

1. Undirected graph 

 

An undirected graph is a type of graph where edges have 

no specific direction, meaning the connection between 

two nodes is bidirectional. In simpler terms, if there's a 

path from node A to node B, there's also automatically a 

path from node B to node A.  

 

2. Directed graph 

 

A directed graph, also known as a digraph, is a graph 

where each edge has a direction, meaning it points from 

one vertex (node) to another. Unlike undirected graphs 

where edges connect nodes bidirectionally, directed 

graphs have one-way connections. 

 

 

 

IV.   ROP GRAPH MODELLING 

Delving into the intricate world of Return-Oriented 

Programming (ROP) attacks, a powerful analytical lens can be 

found in the well-established field of graph theory. By modeling 

the components of an ROP attack as a graph, the search for a 

viable exploit can be transformed into a classic pathfinding 

problem, providing a formal and systematic way to analyze 

attack complexity and defense mechanisms. 

 

A. Definition of Edges and Vertices in ROP 

To formalize the construction of a Return-Oriented 

Programming (ROP) exploit, we propose a graph-based model 

where the problem is reframed as a search within a state-space. 

In this model, the vertices of our graph represent the achievable 

states of the machine by the use of gadgets. Here by state it 

means a specific configuration of the CPU's general-purpose 

registers. With states represented using vertices, it is logical to 

Fig 3.1 Illustration of a graph 

(Taken from geeksforgeeks.org) 

Fig 3.1 Simple graph 

 (Taken from mathworld.wolfram.com) 

Fig 3.2 Non-simple graph 

(Taken from mathworld.wolfram.com) 

 

Fig 3.3 Undirected graph 

(Taken from geeksforgeeks.org) 

Fig 3.4 Directed graph 

(Taken from geeksforgeeks.org) 
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then proceed defining egdes as the edges of the graph naturally 

represent the gadgets that transition the machine from one state 

to another. An edge from a source state S1 to a destination state 

S2 exists if and only if there is a gadget that, when executed from 

S1, results in the new state S2. This transition encapsulates the 

full effect of the gadget: the instructions it executes and any 

values it pops from the stack into registers. Each edge, therefore, 

acts as a directed, functional link, transforming the machine's 

context in a well-defined way. The properties of this transition, 

such as the gadget's memory address and the number of bytes it 

requires on the stack, can be assigned as weights to the edge, 

enabling quantitative analysis. 

This vertex-as-state abstraction is crucial because the ultimate 

objective of a ROP attack is not simply to execute a sequence of 

instructions, but to drive the CPU into a precise final state that 

enables a malicious action, such as initiating a system call with 

specific arguments. The initial vertex in our graph represents the 

machine state at the moment an attacker gains control of the 

instruction pointer, and the goal is to find a path to a target vertex 

representing the desired final state. 

The following figure is an illustration on how a simple ROP 

of which the objective is to call system(“/bin/sh”) on a x86-64 

linux system. 

 

The S1 represents a state in which a pointer to the string 

“/bin/sh” is on the stack. S2 represents a state in which the string 

"/bin/sh” is now loaded on the rdi register. S3 represents a state 

in which a shell of the host’s machine is opened. 

In an actual vulnerable program there might be more than one 

ways to open a shell to the host’s machine. One program might 

be vulnerable to a few different techniques. These techniques 

are ret2libc, ret2syscall, and SROP. A graph of ROP can be 

simpler or more complex depending on the security measures a 

program has. If there is a security measure that completely 

blocks one specific technique, then the graph might become 

simpler due to the fact that there are no edges connecting the 

states for that technique to work. But a security measure might 

make the graph more complex if it does not completely block a 

technique, but instead only adds some extra steps and extra 

gadgets to make the technique work. 

 
 

 

B. Weight assignment on edges 

For a quantitative analysis to be possible, it is needed for a 

graph to be assigned weight on the edges. For a ROP graph there 

are multiple metrics that is usable for the assigned weight. One 

of those metrics that is the simplest is to weight the edge based 

on the amount of bytes the payload for a gadget need. To 

calculate the weight of an edge based on the payload size, we 

need to calcululate the size of the gadgets pointers itself, and the 

arguements that it will need. Using this metric, typically the 

weight of an edge would be multiple of 4 bytes or 8 bytes, 

depending on the system (32 bit or 64 bit). But there are also 

special conditions on which the size is not the multiple of 4 or 8 

bytes. Although, in these special conditions a complication 

might arise, that which the stack becomes misaligned due to the 

non-typical size. To fix this an attacker would need to align the 

stack with the help of another gadget. 

To calculate the weight of an edge, the formula below is  

 

𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑅𝑒𝑡𝑢𝑟𝑛 𝑃𝑜𝑖𝑛𝑡𝑒𝑟 𝑆𝑖𝑧𝑒 + 𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑆𝑖𝑧𝑒 

 

with Return Pointer Size depending on the size of a pointer and 

Argument Size is the size of a pointer times the amount of 

arguments. With this formula we can add weight to our previous 

graph. 

 
C. Defense Mitigations 

An accurate graph representation is not only valuable for its 

descriptive power but also for its capacity to elucidate the impact 

of external forces. Within the context of our research, the true 

analytical strength of the state-space graph model is most 

profoundly demonstrated when used to formally describe and 

quantify the effects of modern defensive mitigations. This 

subchapter posits that security mechanisms such as Address 

Space Layout Randomization (ASLR) and Control-Flow 

Integrity (CFI) can be understood not as abstract concepts but as 

concrete mathematical transformations applied to the ROP 

graph. By modeling these defenses as specific graph operations, 

Fig 4.2 graph of an x86-64 linux program that is 

vulnerable to ret2libc, ret2syscall, and sigreturn 

Fig 4.1 Graph of a simple ROP exploit 
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we can move beyond qualitative assessments of their strength 

and toward a quantitative analysis of their efficacy in disrupting 

exploit construction. 

1. The Impact of ASLR 

Address Space Layout Randomization (ASLR) is a 

foundational defense that aims to thwart memory 

corruption attacks by randomizing the base addresses of 

key memory segments, including the stack, heap, and 

shared libraries. Within our graph-theoretic framework, 

ASLR does not alter the fundamental topology of the ROP 

graph; the vertices (states) and the transitional logic of the 

edges (gadgets) remain intact within the binary's code. 

Instead, ASLR's effect manifests as a problem of partial 

observability. It effectively anonymizes the majority of 

the graph's edges by making their primary identifier—

their memory address—a random variable. 

2. Memory Leaks as Graph Discovery 

While ASLR obscures the graph, its protection is 

contingent on the secrecy of memory addresses, a 

property directly undermined by information disclosure 

vulnerabilities. An information leak is the mechanism by 

which an attacker pierces the veil of randomization, and 

its impact can be modeled as a process of graph discovery. 

When an attacker successfully leaks a single runtime 

address from a randomized memory region—for instance, 

the address of the puts function from a program's Global 

Offset Table—they have achieved far more than learning 

the location of one function. 

 

D. Limitations of ROP in Graph Representation  

While the state-space graph provides a powerful and elegant 

framework for formalizing Return-Oriented Programming, it 

warrants a critical evaluation of its inherent limitations and 

practical scalability. The utility of any theoretical model is 

bound by its underlying assumptions and its computational 

feasibility when applied to real-world problems. Where the 

abstraction fails to capture the full complexity of modern 

software execution—and by addressing the significant 

computational challenges that arise when attempting to apply 

this model to large-scale, contemporary binaries. 

Acknowledging these constraints is not a refutation of the 

model's value, but rather a necessary step in defining its scope 

and guiding its practical application. 

 

1. Scalability 

The most significant barrier to the naive 

implementation of our model is the problem of state-

space explosion. We have defined a vertex as a 

complete state of the machine's general-purpose 

registers. On a modern 64-bit architecture with sixteen 

or more registers, the theoretical number of unique 

states is (2^64)^16, a number so astronomically large 

as to be computationally indistinguishable from 

infinite. A graph with a vertex set of this magnitude is 

impossible to construct, store, or traverse. This reality 

dictates that any practical application of the model 

cannot operate on the complete, theoretical state-space. 

 

To render the problem tractable, the model must 

employ state abstraction. Rather than tracking the state 

of all registers, a goal-oriented search would only track 

the registers relevant to the desired outcome. For an 

execve system call, for instance, the state can be 

simplified to a tuple representing only the values of rax, 

rdi, rsi, and rdx, with all other registers treated as "don't 

care" variables. While this abstraction makes 

computation feasible, it is a crucial limitation. It 

simplifies the problem by ignoring the potential for 

side effects in other registers, which could disrupt the 

ROP chain in unforeseen ways. Therefore, while the 

theoretical model is exhaustive, its practical 

implementation must necessarily be a heuristic-driven 

approximation, trading completeness for 

computational feasibility. 

 

2. Limitation on Dynamic Memory 

A second fundamental limitation arises from the 

model's static nature. The ROP graph is constructed 

through the static analysis of a binary as it exists on 

disk. This snapshot-in-time approach, however, fails to 

account for the dynamic realities of modern program 

execution. Many sophisticated software systems 

employ techniques that alter their own code at runtime, 

creating a significant gap between the analyzed binary 

and the executable code that an attacker actually targets 

in memory 

 

3. Gadget Side Effects 

The simplicity that makes the graph model elegant also 

imposes limits on its fidelity in representing complex, 

low-level constraints. A prime example is the 

lackluster representation of a gadgets side effect. There 

are cases in which a gadget that is needed does not exist 

conveniently. Which is to say, that the gadget exists but 

it has some side effects that may affect the flow of the 

exploit. An example of a side effect would be a gadget 

that pops more registers than we need, which can 

potentially alter the behavior of the program in the 

direction the original exploit does not intend to.  

 

4. Misalignment representation 

Many system calls and library functions, particularly 

on x86-64, require the stack pointer to be 16-byte 

aligned. Misalignment can lead to subtle or 

catastrophic failures in the ROP chain. This constraint 

is a global property of a path through the graph, 

dependent on the cumulative size of all preceding 

gadgets. It cannot be accurately represented as a 

simple, static weight on a single edge, as the need for 

alignment padding is context-dependent. A basic 

implementation of Dijkstra's algorithm on our 

weighted graph would fail to account for this, 

potentially generating "optimal" paths that are, in fact, 

non-functional. 

 

V.   GRAPH MODELLING IN CTFS 

Capture the Flag (CTF) is a competition or exercise where 

participants find and exploit vulnerabilities in systems to capture 

"flags," which are pieces of information or strings of code. It's a 

hands-on way to develop and test cybersecurity skills, 
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simulating real-world attacks and defenses. CTFs can be 

competitive or used for educational purposes. and guiding its 

practical application. 

In this chapter a real CTF challenge from the website 

picoctf.org will be represented using the graph model. The 

website will give us the binary program that is going to be 

exploited, as well as a netcat to connect to once an exploit script 

is developed. Specifically the challenge that we are going to 

exploit is challenge 179 from PicoGym. 

The binary given does not have PIE enabled, but it does have 

ASLR enabled, which means that the GOT table itself is not 

randomized, but LIBC is randomized. Subsequently, the 

location of the string “/bin/sh” which is stored in LIBC is also 

randomized. In this case we will bypass ASLR using puts() to 

leak memory of the GOT entry of a function in libc. We will 

pass GOT entry of functions in LIBC that has already been 

called at least once. This is due to lazy binding, which means 

resolution of symbols (like function addresses) from shared 

libraries is deferred until the symbol is actually used for the first 

time during program execution. From disassembling the binary 

using GDB we can find that puts(), setresgid(), getegid(), and 

setbuf() all has been used before the program takes input.  

Here, we can use ROP to leak two GOT entries of the 

functions that was mentioned. We can visualize all possible 

paths to calculate the base of LIBC using graph representation. 

The following figure will show exactly that. 

 

The reason the graph turns out to be cluttered is because it 

represents all the possible paths to calculate the base address of 

LIBC with all the available gadgets. An attacker can take any 

path and it will lead them to calculate the base of LIBC. This 

graph representation also have weights to each edge. Due to 

limited space for the graph, the weights are not written on the 

graph itself. Here, all edges that represent a “pop” gadget have 

weight of 16 bytes. And all call to puts@plt will have a weight 

of 8 bytes. 

 

VI.   CONCLUSION 

Complex and often unintuitive process of Return-Oriented 

Programming can be formally modeled as a pathfinding problem 

within a state-space graph. By representing achievable machine 

states as vertices and gadgets as weighted, directed edges, we 

have transformed the art of exploit construction into a 

systematic and automatable science. This approach enables the 

direct application of established graph-theoretic algorithms, 

such as Dijkstra's, to not only determine the feasibility of an 

attack but also to automatically generate optimal payloads based 

on metrics like byte-efficiency. This model provides a unified, 

quantitative framework for analyzing the very nature of control-

flow hijacking. 

However powerful this approach is, its power lies in its role 

as a high-level abstraction. Its successful application requires 

acknowledging and mitigating the state-space explosion through 

goal-oriented search, understanding its inherent blindness to 

dynamic runtime code generation, and augmenting its 

pathfinding logic to handle complex, path-dependent constraints 

like stack alignment. These limitations do not invalidate the 

model; they define its character as a powerful but imperfect lens, 

providing a formal language to reason about a problem that 

remains, in its deepest complexities, a moving target. 

 

VII.   APPENDIX 

Full PicoCTF writeup and exploit script: 

https://github.com/PTPB25/PTPB25-

Archival/blob/main/Capture%20The%20Flag/Binary%20Expl

oitation/PicoCTF/Here's%20a%20Libc/Here's%20a%20LIBC.

pdf 
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