
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Return-Oriented Programming Attacks Modelling as

Graph Traversal Problems

Billie Bhaskara Wibawa - 135240241

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1billiebaskarawibawa101@gmail.com, 13524024@std.stei.itb.ac.id

Abstract— Return Oriented Programming (ROP) is the act of

using existing assembly instructions inside a binary executable to

create a series of instructions that executes commands outside of

the intended use of the original binary executable. This paper

proposes a novel formalization of the ROP exploit construction

process as a graph traversal problem. Specifically, this paper will

model the search space for viable gadget chains as paths within a

directed graph, where nodes represent states of the registers and

memories and edges represent feasible transitions between them

using gadgets. This enables the application of established graph-

theoretic algorithms and analysis to systematically investigate the

properties, complexity, and practical limitations of ROP attacks.

By framing ROP exploitation in this graph-theoretic context, our

approach aims to provide deeper insights into attack feasibility,

gadget availability constraints, and the effectiveness of ASLR/PIE

as a mitigation strategy.

Keywords—ASLR, Gadget, Position Independent Executable,

Return Oriented Programming

I. INTRODUCTION

Binaries, or executables, are machine code for a computer to

execute. Binary exploitation involves analyzing and

manipulating executable files to uncover vulnerabilities that

allow unauthorized control flow manipulation, often through

reverse engineering of machine code.

A ROP-based exploit specifically is the act of repurposing

existing machine code fragments already present in the

program’s memory to construct malicious logic. The machine

code fragments that is being repurposed to construct the exploit

is called gadgets. Gadgets must end with a “ret” assembly

insruction as this allows the attacker to redirect code execution

back to the stack in which the attacker has already prepared a

series of gadgets that executes the exploit. The primary goal of

a ROP-based exploit is typically to invoke the system() function

from the C standard library, passing the string “/bin/sh” as its

argument. This executes a shell command, granting the attacker

terminal access to the vulnerable machine and potentially

exposing sensitive files and system resources.

The fundamental mechanism enabling ROP gadget

exploitation begins with a buffer overflow vulnerability, where

an attacker supplies more input data than the program's buffer

can hold. This overflow corrupts the call stack, specifically

targeting the return address of the vulnerable function. By

carefully crafting their input, the attacker overwrites this return

address to point not to legitimate code, but rather back into the

stack memory itself. When the compromised function completes

and executes its ret instruction, instead of returning to the caller,

the program begins executing whatever data resides at the

attacker-specified stack location. The attacker then prepares the

stack with a carefully constructed sequence of gadget addresses,

effectively creating a malicious program by chaining together

existing code fragments. Each “ret” instruction at the end of a

gadget acts as a logical jump to the next gadget in the chain,

allowing the attacker to stitch together complex behaviors from

these borrowed code pieces.

Address Space Layout Randomization (ASLR) was

developed specifically to combat this type of exploitation.

ASLR is a kernel-level security technique that randomizes the

memory addresses used by system components (stack, heap,

shared libraries) when a process starts. It makes memory

addresses non-deterministic across different runs of a program.

This effectively makes it difficult for the attacker to construct

the exploit due to the fact that the main mechanism of a ROP-

based exploit is to redirect code execution to execute functions

inside shared libraries.

Another layer of protection to combat ROP-based

exploitation is the implementation of Position Independent

Executables (PIE). In summary, PIE is a form of compiled

binary in which the position of instructions inside the binary

itself is randomized. The difference between PIE and ASLR is

that PIE randomizes the location of functions inside the binary

itself, such as the main function. While ASLR randomizes the

functions inside the shared C standard library.

II. BINARY EXPLOITATION

Binary exploitation is the art of identifying and leveraging

vulnerabilities within a compiled program, or binary, to force it

to behave in unintended ways, ultimately for the purpose of

compromising a system. The end goal in binary exploitation is

typically to achieve arbitrary code execution, enabling the

attacker to run commands, spawn a shell, and gain control over

the machine with the privileges of the exploited application.

In binary exploitation, there are specific techniques that an

attacker can use to reach their goal. Some techniques are

dependant on other techniques such as ROP being dependant on

mailto:billiebaskarawibawa101@gmail.com
mailto:13524024@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

buffer overflow. In the following section this paper will cover

each techniques in greater detail.

A. Buffer Overflow

A buffer overflow is a type of software vulnerability that

occurs when a program writes more data to a buffer (a temporary

storage area in memory) than it can hold. This causes the excess

data to overflow into adjacent memory spaces, potentially

corrupting data, crashing the program, or allowing attackers to

execute malicious code.

The most common type of buffer overflow and the type that is

relevant to the topic of this paper is a stack-based buffer

overflow. A stack-based buffer overflow is a buffer overflow in

which the data that are being overwritten reside in the stack. This

is because the buffer (usually in form of a character array) is not

allocated using the malloc() function in C or its equivalent.

Rather, its explicitly defined with a fixed size similar to the code

snippet shown below.

int buffer[BUFF_SIZE];

// Code 2.1

The vulnerability that is being exploited in a stack-based

buffer overflow is the fact that the return address that is pointed

by the stack pointer resides in the stack itself. This means that if

we have the capability to overwrite the stack, we also have the

capability to overwrite the return address pointed by the stack

pointer.

Below is a figure showing the condition of the stack when

executing a vulnerable function. Note that ESP or the stack

pointer does not point to the return address. This is merely

because the function is not yet completed.

The following figure is a figure showing what the stack looks

like right before the program executes a “RET” instruction.

Here is a demonstration of a simple program that has a stack-

based buffer overflow vulnerability.

void vuln(){

 char buffer[6];

 fgets(buffer,100,stdin); //takes 100

characters, larger than the buffer!

}

void win(){

 puts("You're not supposed to be here!");

}

int main(){

 vuln();

 return 0;

}

// Code 2.2 A vulnerable program
And here is a simple script that exploits our vulnerable

program.

from pwn import *

p = process("./vuln") //we have compiled our

vulnerable program with the name “vuln”

win_address = p64(0x401159)

payload = b"A"*14 + win_address

p.sendline(payload)

p.interactive()

// Code 2.3 An example script to exploit a

buffer overflow
The python script above will overflow the buffer with a

padding that consists of 14 A’s and then put the address of our

win() function right after the padding. Running the Python script

will make our program output the message “You’re not

supposed to be here!” that originally should not be outputted

since we never call the win() function. Because we overwrite the

return address in the stack, the program does not comeback to

main after calling vuln(), but instead goes to the win() function.

Fig 2.1 The position of the stack pointer and the

base pointer in a function call

Fig 2.2 The position of the stack pointer right before the

“ret” instruction

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

B. Return Oriented Programming

Return-Oriented Programming (ROP) stands as a

sophisticated and potent technique in the arsenal of cyber-

attackers, allowing them to execute malicious code on a target

system despite the presence of modern security defenses. It

represents a significant evolution from traditional code injection

attacks by cleverly repurposing existing, legitimate code for

nefarious ends. This method of attack is particularly effective

against systems that employ security measures like Data

Execution Prevention (DEP) or Non-executable (NX) bit, which

are designed to prevent the execution of code from memory

regions intended for data, such as the stack.

The core principle of ROP lies in the creative abuse of a

program's control flow, typically initiated by a memory

corruption vulnerability such as a stack buffer overflow. When

a function is called, the address of the instruction to which it

should return upon completion is stored on the call stack. An

attacker can exploit a buffer overflow to overwrite this return

address with the address of a chosen piece of code. However,

instead of pointing to the start of a whole function, it only points

to parts of this function to use only specific instructions.These

small snippets are what we call as "gadgets."

The following figure shows how a buffer overflow allows an

attacker to construct a gadget chain. Due to the fact that the “ret”

assembly instruction will redirect code execution to the address

that is pointed by the stack pointer and then pops the stack, we

can chain gadgets such that after one gadget is executed it

continues to the next address in the stack, which is the address

of another gadget the attacker has prepared.

C. ASLR and PIE Bypassing

A foundational defense against Return Oriented Programming

is Address Space Layout Randomization (ASLR), a technique

employed by modern operating systems to thwart attacks that

rely on predictable memory layouts. ASLR works by

randomizing the base addresses of key memory segments—such

as the stack, heap, and shared libraries—each time a program is

launched. This randomization means an attacker can no longer

rely on hardcoded addresses to locate functions or ROP gadgets

needed for their exploit. If the attacker aims for a function in a

library, its location will be different with every execution,

causing a payload that works once to crash the program on the

next attempt.

However, ASLR in its initial form had a significant limitation:

while it effectively randomized libraries and other data

segments, the main program executable itself was often loaded

at a fixed, predictable address. This created a static island of

code that attackers could reliably analyze to find gadgets for

their ROP chains, undermining the protection ASLR was meant

to provide. To close this loophole, the concept of Position-

Independent Executables (PIE) was introduced. PIE is a

compiler feature that generates binary code using relative

addressing instead of absolute memory addresses. This means

the executable's code does not depend on being loaded at a

specific location; it can function correctly from anywhere in

memory.

The true power of this defensive strategy is realized when

ASLR and PIE work in synergy. When an executable is

compiled as a PIE, the operating system's ASLR mechanism is

empowered to load the main program at a new, random memory

address upon every execution, just as it does for libraries. This

eliminates the last remaining static region of code an attacker

could depend on. Together, a PIE-enabled binary running with

full ASLR forces an adversary into a much more difficult

position. They must not only find a memory corruption bug but

also a separate information disclosure vulnerability to leak the

randomized addresses before they can even begin to construct a

reliable exploit, significantly raising the complexity and cost of

a successful attack.

Although it is difficult to bypass ASLR and PIE when they are

combined, we still have several viable options to bypass

security. One of the most consistent option is to try and find

memory leaks in other parts of the program. This means that

even with PIE and ASLR, the attacker can still calculate offsets

of specific points of interest at runtime. Even without direct

memory leak of a specific point of interest, the attacker can still

calculate the address of these points of interest by calculating

the offset between them and known leaked pointers.

III. GRAPH THEORY

In the realm of mathematics, particularly within the branch of

graph theory, a graph is a fundamental structure used to model

pairwise relationships between objects. It is a mathematical

Fig 2.3 Illustration of a ROP chain in the stack

Fig 2.4 Address space layout randomization

example

(Taken from wallarm.com/)

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

representation of a network, consisting of a set of objects and

the connections between them.

At its core, a graph is formally defined as an ordered pair

𝐺 = (𝑉, 𝐸)

where V is a finite, non-empty set of vertices (also known as

nodes or points), and E is a set of edges (also called lines or

arcs). Each edge connects a pair of vertices. An edge represents

a relationship or connection between the two vertices it links.

In the realm of mathematics, particularly within the branch of

graph theory, a graph is a fundamental structure used to model

pairwise relationships between objects. It is a mathematical

representation of a network, consisting of a set of objects and

the connections between them.

A. Types of Graph

Based on the organization of edges in a graph, we can classify

graphs as these two categories

1. Simple graph

A simple graph is a type of graph that is undirected,

contains no loops (edges connecting a vertex to itself), and

has no multiple edges between any two vertices.

2. Non-simple graph

A non-simple graph is a graph that does not adhere to the

restrictions of a simple graph. Specifically, it can contain

multiple edges between the same pair of vertices (also

known as parallel edges) and/or loops (edges connecting

a vertex to itself).

Based on the orientation of the edges in a graph, we can

classify graphs as these two other categories

1. Undirected graph

An undirected graph is a type of graph where edges have

no specific direction, meaning the connection between

two nodes is bidirectional. In simpler terms, if there's a

path from node A to node B, there's also automatically a

path from node B to node A.

2. Directed graph

A directed graph, also known as a digraph, is a graph

where each edge has a direction, meaning it points from

one vertex (node) to another. Unlike undirected graphs

where edges connect nodes bidirectionally, directed

graphs have one-way connections.

IV. ROP GRAPH MODELLING

Delving into the intricate world of Return-Oriented

Programming (ROP) attacks, a powerful analytical lens can be

found in the well-established field of graph theory. By modeling

the components of an ROP attack as a graph, the search for a

viable exploit can be transformed into a classic pathfinding

problem, providing a formal and systematic way to analyze

attack complexity and defense mechanisms.

A. Definition of Edges and Vertices in ROP

To formalize the construction of a Return-Oriented

Programming (ROP) exploit, we propose a graph-based model

where the problem is reframed as a search within a state-space.

In this model, the vertices of our graph represent the achievable

states of the machine by the use of gadgets. Here by state it

means a specific configuration of the CPU's general-purpose

registers. With states represented using vertices, it is logical to

Fig 3.1 Illustration of a graph

(Taken from geeksforgeeks.org)

Fig 3.1 Simple graph

 (Taken from mathworld.wolfram.com)

Fig 3.2 Non-simple graph

(Taken from mathworld.wolfram.com)

Fig 3.3 Undirected graph

(Taken from geeksforgeeks.org)

Fig 3.4 Directed graph

(Taken from geeksforgeeks.org)

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

then proceed defining egdes as the edges of the graph naturally

represent the gadgets that transition the machine from one state

to another. An edge from a source state S1 to a destination state

S2 exists if and only if there is a gadget that, when executed from

S1, results in the new state S2. This transition encapsulates the

full effect of the gadget: the instructions it executes and any

values it pops from the stack into registers. Each edge, therefore,

acts as a directed, functional link, transforming the machine's

context in a well-defined way. The properties of this transition,

such as the gadget's memory address and the number of bytes it

requires on the stack, can be assigned as weights to the edge,

enabling quantitative analysis.

This vertex-as-state abstraction is crucial because the ultimate

objective of a ROP attack is not simply to execute a sequence of

instructions, but to drive the CPU into a precise final state that

enables a malicious action, such as initiating a system call with

specific arguments. The initial vertex in our graph represents the

machine state at the moment an attacker gains control of the

instruction pointer, and the goal is to find a path to a target vertex

representing the desired final state.

The following figure is an illustration on how a simple ROP

of which the objective is to call system(“/bin/sh”) on a x86-64

linux system.

The S1 represents a state in which a pointer to the string

“/bin/sh” is on the stack. S2 represents a state in which the string

"/bin/sh” is now loaded on the rdi register. S3 represents a state

in which a shell of the host’s machine is opened.

In an actual vulnerable program there might be more than one

ways to open a shell to the host’s machine. One program might

be vulnerable to a few different techniques. These techniques

are ret2libc, ret2syscall, and SROP. A graph of ROP can be

simpler or more complex depending on the security measures a

program has. If there is a security measure that completely

blocks one specific technique, then the graph might become

simpler due to the fact that there are no edges connecting the

states for that technique to work. But a security measure might

make the graph more complex if it does not completely block a

technique, but instead only adds some extra steps and extra

gadgets to make the technique work.

B. Weight assignment on edges

For a quantitative analysis to be possible, it is needed for a

graph to be assigned weight on the edges. For a ROP graph there

are multiple metrics that is usable for the assigned weight. One

of those metrics that is the simplest is to weight the edge based

on the amount of bytes the payload for a gadget need. To

calculate the weight of an edge based on the payload size, we

need to calcululate the size of the gadgets pointers itself, and the

arguements that it will need. Using this metric, typically the

weight of an edge would be multiple of 4 bytes or 8 bytes,

depending on the system (32 bit or 64 bit). But there are also

special conditions on which the size is not the multiple of 4 or 8

bytes. Although, in these special conditions a complication

might arise, that which the stack becomes misaligned due to the

non-typical size. To fix this an attacker would need to align the

stack with the help of another gadget.

To calculate the weight of an edge, the formula below is

𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑅𝑒𝑡𝑢𝑟𝑛 𝑃𝑜𝑖𝑛𝑡𝑒𝑟 𝑆𝑖𝑧𝑒 + 𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 𝑆𝑖𝑧𝑒

with Return Pointer Size depending on the size of a pointer and

Argument Size is the size of a pointer times the amount of

arguments. With this formula we can add weight to our previous

graph.

C. Defense Mitigations

An accurate graph representation is not only valuable for its

descriptive power but also for its capacity to elucidate the impact

of external forces. Within the context of our research, the true

analytical strength of the state-space graph model is most

profoundly demonstrated when used to formally describe and

quantify the effects of modern defensive mitigations. This

subchapter posits that security mechanisms such as Address

Space Layout Randomization (ASLR) and Control-Flow

Integrity (CFI) can be understood not as abstract concepts but as

concrete mathematical transformations applied to the ROP

graph. By modeling these defenses as specific graph operations,

Fig 4.2 graph of an x86-64 linux program that is

vulnerable to ret2libc, ret2syscall, and sigreturn

Fig 4.1 Graph of a simple ROP exploit

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

we can move beyond qualitative assessments of their strength

and toward a quantitative analysis of their efficacy in disrupting

exploit construction.

1. The Impact of ASLR

Address Space Layout Randomization (ASLR) is a

foundational defense that aims to thwart memory

corruption attacks by randomizing the base addresses of

key memory segments, including the stack, heap, and

shared libraries. Within our graph-theoretic framework,

ASLR does not alter the fundamental topology of the ROP

graph; the vertices (states) and the transitional logic of the

edges (gadgets) remain intact within the binary's code.

Instead, ASLR's effect manifests as a problem of partial

observability. It effectively anonymizes the majority of

the graph's edges by making their primary identifier—

their memory address—a random variable.

2. Memory Leaks as Graph Discovery

While ASLR obscures the graph, its protection is

contingent on the secrecy of memory addresses, a

property directly undermined by information disclosure

vulnerabilities. An information leak is the mechanism by

which an attacker pierces the veil of randomization, and

its impact can be modeled as a process of graph discovery.

When an attacker successfully leaks a single runtime

address from a randomized memory region—for instance,

the address of the puts function from a program's Global

Offset Table—they have achieved far more than learning

the location of one function.

D. Limitations of ROP in Graph Representation

While the state-space graph provides a powerful and elegant

framework for formalizing Return-Oriented Programming, it

warrants a critical evaluation of its inherent limitations and

practical scalability. The utility of any theoretical model is

bound by its underlying assumptions and its computational

feasibility when applied to real-world problems. Where the

abstraction fails to capture the full complexity of modern

software execution—and by addressing the significant

computational challenges that arise when attempting to apply

this model to large-scale, contemporary binaries.

Acknowledging these constraints is not a refutation of the

model's value, but rather a necessary step in defining its scope

and guiding its practical application.

1. Scalability

The most significant barrier to the naive

implementation of our model is the problem of state-

space explosion. We have defined a vertex as a

complete state of the machine's general-purpose

registers. On a modern 64-bit architecture with sixteen

or more registers, the theoretical number of unique

states is (2^64)^16, a number so astronomically large

as to be computationally indistinguishable from

infinite. A graph with a vertex set of this magnitude is

impossible to construct, store, or traverse. This reality

dictates that any practical application of the model

cannot operate on the complete, theoretical state-space.

To render the problem tractable, the model must

employ state abstraction. Rather than tracking the state

of all registers, a goal-oriented search would only track

the registers relevant to the desired outcome. For an

execve system call, for instance, the state can be

simplified to a tuple representing only the values of rax,

rdi, rsi, and rdx, with all other registers treated as "don't

care" variables. While this abstraction makes

computation feasible, it is a crucial limitation. It

simplifies the problem by ignoring the potential for

side effects in other registers, which could disrupt the

ROP chain in unforeseen ways. Therefore, while the

theoretical model is exhaustive, its practical

implementation must necessarily be a heuristic-driven

approximation, trading completeness for

computational feasibility.

2. Limitation on Dynamic Memory

A second fundamental limitation arises from the

model's static nature. The ROP graph is constructed

through the static analysis of a binary as it exists on

disk. This snapshot-in-time approach, however, fails to

account for the dynamic realities of modern program

execution. Many sophisticated software systems

employ techniques that alter their own code at runtime,

creating a significant gap between the analyzed binary

and the executable code that an attacker actually targets

in memory

3. Gadget Side Effects

The simplicity that makes the graph model elegant also

imposes limits on its fidelity in representing complex,

low-level constraints. A prime example is the

lackluster representation of a gadgets side effect. There

are cases in which a gadget that is needed does not exist

conveniently. Which is to say, that the gadget exists but

it has some side effects that may affect the flow of the

exploit. An example of a side effect would be a gadget

that pops more registers than we need, which can

potentially alter the behavior of the program in the

direction the original exploit does not intend to.

4. Misalignment representation

Many system calls and library functions, particularly

on x86-64, require the stack pointer to be 16-byte

aligned. Misalignment can lead to subtle or

catastrophic failures in the ROP chain. This constraint

is a global property of a path through the graph,

dependent on the cumulative size of all preceding

gadgets. It cannot be accurately represented as a

simple, static weight on a single edge, as the need for

alignment padding is context-dependent. A basic

implementation of Dijkstra's algorithm on our

weighted graph would fail to account for this,

potentially generating "optimal" paths that are, in fact,

non-functional.

V. GRAPH MODELLING IN CTFS

Capture the Flag (CTF) is a competition or exercise where

participants find and exploit vulnerabilities in systems to capture

"flags," which are pieces of information or strings of code. It's a

hands-on way to develop and test cybersecurity skills,

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

simulating real-world attacks and defenses. CTFs can be

competitive or used for educational purposes. and guiding its

practical application.

In this chapter a real CTF challenge from the website

picoctf.org will be represented using the graph model. The

website will give us the binary program that is going to be

exploited, as well as a netcat to connect to once an exploit script

is developed. Specifically the challenge that we are going to

exploit is challenge 179 from PicoGym.

The binary given does not have PIE enabled, but it does have

ASLR enabled, which means that the GOT table itself is not

randomized, but LIBC is randomized. Subsequently, the

location of the string “/bin/sh” which is stored in LIBC is also

randomized. In this case we will bypass ASLR using puts() to

leak memory of the GOT entry of a function in libc. We will

pass GOT entry of functions in LIBC that has already been

called at least once. This is due to lazy binding, which means

resolution of symbols (like function addresses) from shared

libraries is deferred until the symbol is actually used for the first

time during program execution. From disassembling the binary

using GDB we can find that puts(), setresgid(), getegid(), and

setbuf() all has been used before the program takes input.

Here, we can use ROP to leak two GOT entries of the

functions that was mentioned. We can visualize all possible

paths to calculate the base of LIBC using graph representation.

The following figure will show exactly that.

The reason the graph turns out to be cluttered is because it

represents all the possible paths to calculate the base address of

LIBC with all the available gadgets. An attacker can take any

path and it will lead them to calculate the base of LIBC. This

graph representation also have weights to each edge. Due to

limited space for the graph, the weights are not written on the

graph itself. Here, all edges that represent a “pop” gadget have

weight of 16 bytes. And all call to puts@plt will have a weight

of 8 bytes.

VI. CONCLUSION

Complex and often unintuitive process of Return-Oriented

Programming can be formally modeled as a pathfinding problem

within a state-space graph. By representing achievable machine

states as vertices and gadgets as weighted, directed edges, we

have transformed the art of exploit construction into a

systematic and automatable science. This approach enables the

direct application of established graph-theoretic algorithms,

such as Dijkstra's, to not only determine the feasibility of an

attack but also to automatically generate optimal payloads based

on metrics like byte-efficiency. This model provides a unified,

quantitative framework for analyzing the very nature of control-

flow hijacking.

However powerful this approach is, its power lies in its role

as a high-level abstraction. Its successful application requires

acknowledging and mitigating the state-space explosion through

goal-oriented search, understanding its inherent blindness to

dynamic runtime code generation, and augmenting its

pathfinding logic to handle complex, path-dependent constraints

like stack alignment. These limitations do not invalidate the

model; they define its character as a powerful but imperfect lens,

providing a formal language to reason about a problem that

remains, in its deepest complexities, a moving target.

VII. APPENDIX

Full PicoCTF writeup and exploit script:

https://github.com/PTPB25/PTPB25-

Archival/blob/main/Capture%20The%20Flag/Binary%20Expl

oitation/PicoCTF/Here's%20a%20Libc/Here's%20a%20LIBC.

pdf

VIII. ACKNOWLEDGMENT

The author gives his upmost gratitude to Allah SWT for His

endless guidance and mercy. Through His grace, the author has

managed to complete this paper.

The author also gives his gratitude to Mr. Arrival Dwi

Sentosa, S.Kom., M.T., lecturer of Discrete Mathematics of

class K02 IF1220, for his dedication and his guidance through

his lectures throughout the first half of 2025.

REFERENCES

[1] Ryan Roemer, “Return-Oriented Programming: Systems, Languages, and
Applications” [Online]. Available: https://hovav.net/ucsd/dist/rop.pdf

[Accessed: June 16, 2025].

[2] Rinaldi Munir, “Graf (Bagian 1)” [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf [Accessed: June 16, 2025].

[3] Huihoo, “sigcontext Struct Reference” [Online]. Available:
https://docs.huihoo.com/doxygen/linux/kernel/3.7/structsigcontext.html

[Accessed: June 17, 2025].

[4] Wenliang Du, Computer Security: A Hands on Approach, 3rd Edition.

Fig 5.1 Graph of ROP chain to calculate LIBC

https://play.picoctf.org/practice/challenge/179
https://github.com/PTPB25/PTPB25-Archival/blob/main/Capture%20The%20Flag/Binary%20Exploitation/PicoCTF/Here's%20a%20Libc/Here's%20a%20LIBC.pdf
https://github.com/PTPB25/PTPB25-Archival/blob/main/Capture%20The%20Flag/Binary%20Exploitation/PicoCTF/Here's%20a%20Libc/Here's%20a%20LIBC.pdf
https://github.com/PTPB25/PTPB25-Archival/blob/main/Capture%20The%20Flag/Binary%20Exploitation/PicoCTF/Here's%20a%20Libc/Here's%20a%20LIBC.pdf
https://github.com/PTPB25/PTPB25-Archival/blob/main/Capture%20The%20Flag/Binary%20Exploitation/PicoCTF/Here's%20a%20Libc/Here's%20a%20LIBC.pdf
https://hovav.net/ucsd/dist/rop.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://docs.huihoo.com/doxygen/linux/kernel/3.7/structsigcontext.html

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

[5] Jaehyuk Lee and Jinsoo Jang, “Hacking in Darkness: Return-oriented
Programming against Secure Enclaves” [Online]. Available:

https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/lee-jaehyuk [Accessed: June 17, 2025].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Juni 2025

Billie Bhaskara Wibawa 13524024

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk

